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Abstract 
Temperature is one of the key factors that affects the growth and development of macrofungi. Heat stress not only nega-
tively affects the morphology and growth rate of macrofungi, but also destroys cell structures and influences cell metabo-
lism. Due to loosed structure of cell walls and increased membrane fluidity, which caused by heat stress, the outflow 
of intracellular nutrients makes macrofungi more vulnerable to invasion by pathogens. Macrofungi accumulate reactive 
oxygen species (ROS), Ca2+, and nitric oxide (NO) when heat-stressed, which transmit and amplify the heat stimula-
tion signal through intracellular signal transduction pathways. Through regulation of some transcription factors includ-
ing heat response factors (HSFs), POZCP26 and MYB, macrofungi respond to heat stress by different mechanisms. In 
this paper, we present mechanisms used by macrofungi to adapt and survive under heat stress conditions, including anti-
oxidant defense systems that eliminate the excess ROS, increase in trehalose levels that prevent enzymes and proteins 
deformation, and stabilize cell structures and heat shock proteins (HSPs) that repair damaged proteins and synthesis of 
auxins, which increase the activity of antioxidant enzymes. All of these help macrofungi resist and adapt to heat stress. 

Key points   
• The effects of heat stress on macrofungal growth and development were described.
• The respond mechanisms to heat stress in macrofungi were summarized.
• The further research directions of heat stress in macrofungi were discussed.

Keywords  Heat stress · Macrofungi · Growth · Development · Signal transduction · Response mechanisms

Introduction

Macrofungi, also known as mushrooms and truffles, are defined 
as a kind of fungi with well-developed hyphae that usually can 
form large fruiting bodies (Turło 2014). Some macrofungi have 
high nutritional value; they are rich in proteins, polysaccharides, 
vitamins, and minerals (Sun et al. 2020). And some contain 
triterpenoids, flavonoids, and phenolic compounds, etc. which 
make them have a wide range of medicinal value, such as anti-
tumor, antioxidant, antivirus, and immunomodulatory (Kalaras 
et  al. 2017). However, during growth and development, 

macrofungi may encounter unsuitable environmental factors, 
which seriously affect their yields and qualities (Bellettini et al. 
2019; He et al. 2020; Pavlík et al. 2020).

Temperature is one of the main environmental factors that 
may unexpectedly disrupt macrofungi growth and develop-
ment (Andrew et al. 2018; Büntgen et al. 2012; Larson et al. 
2016). In the mycelial stage, optimal temperature is bene-
ficial to the continuous growth and nutrient accumulation 
of vegetative mycelia (Deshaware et al. 2021; Wan Mahari 
et al. 2020; Zervakis et al. 2001). Excessive temperatures can 
cause heat stress, which not only affects the mycelial growth 
rate, but also disrupts cell structures and cell metabolism and 
increases the probability of infection by pathogenic microor-
ganisms (Liu et al. 2017a; Qiu et al. 2018b). The quality of 
mycelial growth is closely related to the formation of primor-
dia and production efficiency of fruiting bodies (Foulongne-
Oriol et al. 2014; Salmones et al. 2018). In the fruiting body 
stage, heat stress may cause mass deaths of young fruiting 
bodies and even reduce the production significantly (Chang 
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et al. 2021). Therefore, studying growth and development 
changes in response to heat stress and revealing the heat-
resistant mechanisms are important for avoiding heat damage 
and improving the heat tolerance of macrofungi.

There are more and more studies on heat stress in macro-
fungi, but the underlying mechanisms for them to response 
heat stress are not systematically described. As a reference, 
here we review the effects of heat stress on the morphology, 
cell structure, and metabolism of macrofungi and summa-
rize recent progress in understanding the response mecha-
nisms of macrofungi to heat stress. At the same time, future 
research directions are also discussed.

Effects of heat stress on macrofungal growth 
and development

Effect on mycelial and fruiting body morphology

Under normal growth conditions, aerial hyphae grow rapidly 
and vigorously. However, aerial hyphae become loose and 
wilted after heat stress, which readily deform and fracture 
(Hoa and Wang 2015; Yan et al. 2020). During the recovery 
stage from heat stress, hyphae usually form obvious heat 
shock loops (Fig. 1, our unpublished work). At a tempera-
ture of 30 ˚C, hyphae of Cantharellus cibarius even stop 

growing (Deshaware et al. 2021). Furthermore, continuous 
increase of temperature may lead to the increase of aerobic 
respiration. Because of the restriction of air circulation and 
the enhancement of aerobic respiration, dissolved oxygen 
in cultured bag decreases, and the activity of anaerobic res-
piration enzymes increases. At 34 ˚C, which is far lower 
than the maximum growth temperature of 38 ˚C and lethal 
temperature of 41 ˚C, the inhibition of anaerobic respira-
tory metabolites, and low energy-saving efficiency can cause 
“spawn-burning” syndrome in Pleurotus eryngii (Zhang 
et al. 2016a). Heat stress have been shown to darken the 
color of ectomycorrhizal fungus Tuber borchii and weaken 
its survival ability on host roots (Leonardi et al. 2017). Dur-
ing fruiting, excessive temperature may cause a longer stipe 
and a thinner, smaller cap (Foulongne-Oriol et al. 2014; 
Halbwachs and Simmel 2018). Some reddish spinules may 
appear on the top of Cordyceps militaris fruiting bodies 
under heat stress (Zhang et al. 2018). All of these features 
lead to the deterioration of macrofungal morphology. What’s 
more, extreme temperatures and long stress periods can 
cause a reduction in hyphal branching, which is not con-
ducive for the formation of fruiting body primordia, and 
cause mass deaths of young fruiting bodies, or secondary 
non-fruiting, and in some cases even no production at all 
(Chang et al. 2021; Hoa and Wang 2015; Kang et al. 2013).

Effect on cell structure

Heat stress can destroy the cell wall of Pleurotus ostreatus, 
leading to chitin deposition and loose structure, thus destroy-
ing the first protective barrier of cells (Qiu et al. 2018a). It may 
cause a reduction in the content of unsaturated fats by changing 
the fatty acid composition of cell membrane, which affects the 
fluidity of the cell membrane (Li et al. 2020; Liu et al. 2017b). 
Moreover, changes to the plasma membrane fluidity and perme-
ability increase the outflow of intracellular electrolytes (Awasthi 
et al. 2015). The increase of mycelial extracellular metabolites 
and the outflow of intracellular nutrients can accelerate myce-
lial growth and spore germination of pathogenic fungi, thus 
causing apoptosis-like cell death in P. eryngii and P. ostreatus 
(Liu et al. 2017a; Qiu et al. 2018b). In addition, heat stress 
also causes secondary and tertiary structural changes to some 
enzymes, even inactivation in severe cases, resulting in nuclear 
condensation, mitochondrial dysfunction, and DNA fragmen-
tation (Prasad et al. 2016; Yan et al. 2020; Zhou et al. 2017).

Effects on cell metabolism

Microorganisms typically respond to stress by undergo-
ing metabolic changes. The activities of various proteins 
involved in metabolism were found to be downregulated in 
P. ostreatus when placed under heat stress (Zou et al. 2018). 
The metabolic pathways which include tricarboxylic acid 

Fig. 1   Effect of heat stress on apparent and microscopic morphol-
ogy of Pleurotus tuber-regium. a The mycelium is thick and powerful 
when grew at 32 ˚C for 7 days. b The mycelium is thin with obvious 
heat shock circles when grew at 32 ˚C for 4 days, stressed at 40 ˚C for 
10 h, and then at 32 ˚C for 3 days. c Micrograph of mycelium grew 
at 32 ˚C, the hyphae had more branches. d Micrograph of mycelium 
stressed at 40 ˚C for 10 h, the hyphae twined, and branches decreased
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cycle, glucose metabolism, sphingolipid metabolism, and 
some amino acid metabolism may change significantly under 
heat stress. During the early stages of exposure to heat stress, 
intermediate metabolites that are part of glycolysis and the 
tricarboxylic acid cycle were observed to decrease in Len-
tinula edodes, resulting in carbon starvation, which stunted 
growth and development of L. edodes (Zhao et al. 2018). 
To maintain an energy balance, cells need more energy, 
which involves conversion of glycogen to glucose. Those 
typical energy supply pathways such as glycolysis, tricar-
boxylic acid cycle, and the pentose phosphate pathway may 
be activated to cope with heat stress (Tan et al. 2018a). Heat 
stress can promote the continuous degradation of proteins 
and increase the content of amino acids, such as valine, phe-
nylalanine, and tyrosine, which contributes to the stability of 
the cell wall under heat stress (Krah et al. 2021; Wang et al. 
2018b). Heat stress can promote the synthesis of ganoderic 
acid and increase the content of polysaccharides (Tan et al. 
2018b; Tian et al. 2019). All of these processes suggest that 
appropriate heat stress is beneficial for macrofungi to accu-
mulate nutrients, and such stress can be used to improve the 
accumulation of particular metabolites in cells. However, 
long-term exposure to heat stress increases the content of 
FMN, FAD, NADP, riboflavin, and nicotinic acid, indicat-
ing that electron transfer ability and the redox state of cells 
are negatively affected by heat stress (Yan et al. 2020). Fur-
thermore, under heat stress, the accelerated respiration rate 
of macrofungi can cause accumulation of reactive oxygen 
species (ROS). Elevated concentrations of ROS may dis-
rupt redox homeostasis and cause oxidative stress damage, 
such as membrane peroxidation, and even facilitate apopto-
sis (Song et al. 2014; Xu et al. 2021c; Zhang et al. 2016a). 
Therefore, it is necessary to study the response mechanisms 
of macrofungi to heat stress.

Intracellular heat signal transduction systems 
in macrofungi

Under heat stress, macrofungi show certain physiological 
changes in cell structure and metabolism. Therefore, mac-
rofungi are probably able to perceive stress signals. Stud-
ies in plants have found that the cell membrane is highly 
influenced by temperature and thus may act as a potential 
cellular thermoreceptor (Los and Murata 2004; Vu et al. 
2019). In bacteria, higher temperatures cause greater disor-
der in lipid arrangement, and the cell membrane becomes 
thinner. Sensors located in the transmembrane region regis-
ter changes in cell membrane thickness, which activates the 
corresponding kinase activity. The destruction of the helix 
between transmembrane segment and intracellular domain 
is mechanically used to transfer temperature-dependent con-
formational changes from the transmembrane to the intra-
cellular domain (Inda et al. 2014). Then the thermal signal 

transmitted through intracellular signal transduction systems 
(Krah et al. 2021). However, research on thermal sensors 
in macrofungi have not been reported. Current studies have 
reported mainly on the signal transduction of ROS, Ca2+, and 
nitric oxide (NO) during heat stress (Chen et al. 2017; Liu 
et al. 2018b). Some transcription factors in macrofungi, such 
as heat response factors (HSFs), POZCP26, and MYB have 
been reported to transmit signals and regulate the expression 
of a variety of genes in response to heat stress (Hou et al. 
2020b; Vihervaara et al. 2018; Wang et al. 2018a).

ROS signaling

ROS is a by-product of all aerobic respiration. Its produc-
tion is not only a sign of stress damage degree to organism, 
but also a signal molecule involved in secondary metabolism 
biosynthesis and response to environmental stimuli (Li et al. 
2015; Liang et al. 2015). The accumulation of ROS, a typi-
cal signaling molecule of all organisms, in several macrofun-
gal mycelia under heat stress has been reported recently (Lei 
et al. 2019; Liu et al. 2018a). For example, heat stress has 
been shown to increase the fluidity of the Ganoderma lucidum 
membrane, which activates NADPH oxidase (NOx) to produce 
ROS. The increase of intracellular ROS can activate the anti-
oxidant defense system of G. lucidum to alleviate oxidative 
damage caused by heat stress (Shi et al. 2015). Furthermore, 
an increase in ROS production activates the Ca2+ signaling 
pathway and stimulates heat shock proteins (HSPs) expres-
sion under mild heat stress (Zuo et al. 2015; Liu et al. 2018c).

Ca2+ signaling

As the second messenger connecting extracellular environ-
ment and intracellular physiological activities, Ca2+ is a key 
messenger in the growth and development of fungi and plays 
a crucial role in stress signal transduction (Juvvadi et al. 
2014; Zhu et al. 2019). The intracellular-free Ca2+ concen-
tration in heat-tolerant P. ostreatus and G. lucidum has been 
found to be relatively high (Yao et al. 2019; Zhang et al. 
2016b). An increase in the fluidity of the plasma membrane 
following heat stress causes the temporary opening of spe-
cific calcium channels and triggers Ca2+ flow into cells (Liu 
et al. 2017c). Meanwhile, high temperature stress stimulates 
inositol phospholipid metabolism of cells. GTPases activate 
phosphatidylinositol kinase (PIK), which phosphorylates 
phosphatidylinositol (PI) into PI-4,5-bisphosphate [PI(4,5)
P2]. PI(4,5)P2 can act as a precursor to inositol 1,4,5-tris-
phosphate (IP3) and triggers the rapid accumulation of IP3 
and the release of intracellular calcium pool (Liu et al. 2006, 
2018d; Tang et al. 2007). After Ca2+ influx into cells, they 
bind to the EF-hand binding domains of calmodulin (CaM) 
to activating specific CaM- and kinase-dependent signaling 
pathways and interact with DNA-binding proteins to regulate 
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their activities (Kameshita et al. 2007; Kamthan et al. 2015). 
Ca2+ entering into mitochondria, it may be accompanied 
by the hyperpolarization of mitochondrial intima and the 
increase in ROS production, which can directly or indirectly 
regulate ROS production and HSP synthesis through respira-
tory burst homologous proteins (Liu et al. 2018c; Pathak 
and Trebak 2018; Yao et al. 2019; Zhang 2016b). In addi-
tion, the synergistic effect of Ca2+ and NO can regulate the 
biosynthetic of ganoderic acid under high temperature stress 
(Chen et al. 2017).

NO signaling

Nitric oxide regulates the activity of antioxidant enzymes 
through protein modification and helps cells to proliferate 
and resist heat stress (Napoli et al. 2013; Xuan et al. 2010). 
Heat stress promotes the NO synthase (NOS) oxidation of 
L-arginine with NADPH and O2 as substrates to produce NO 
(Liu et al. 2018c). The stress signal is further transmitted to 
downstream response factors by activating guanylate cyclase 
and increasing cGMP levels (Loshchinina and Nikitina 
2016). The addition of the NOS inhibitor nitro-L-arginine 
methyl ester inhibits the production of NO and increases the 
content of malondialdehyde in P. eryngii mycelium, which 
suggests that NO effectively alleviates oxidative damage 
caused by heat stress (Kong et al. 2012a). NO enhances the 
activity of antioxidant enzymes, eliminates harmful ROS, 
and maintains cellular redox homeostasis; at the same time, 
it can regulate the protective effects of carotenoids (neutral-
izing free radicals) (Parankusam et al. 2017). By inhibiting 
the protein and gene expression of aconitase (ACO), NO 
can stimulate the expression of alternating oxidase (AOX), 
thereby reducing oxidative damage of P. ostreatus (Hou 
et al. 2020a; Kleschyov 2017). Moreover, NO participates 
in the accumulation of intracellular trehalose and stimulates 
the DNA-binding activity of heat-stimulated HSF and the 
accumulation of HSP18.2 by regulating the expression of 
AtCaM3 (Kong et al. 2012b; Xuan et al. 2010).

Transcription factors

Transcription factors (TFs) are trans-acting factors that 
can combine with specific DNA sequences to control gene 
expression, so as to ensure the effective life activities of an 
organism at a specific time or in a specific cell (Latchman 
1997; Pelkmans et al. 2017). Currently, HSFs are master 
transcription factors affecting the response of macrofungi 
to heat stress. Under heat stress, Ca2 +, ROS, and NO can 
interdependently change the activity of HSF by activat-
ing multiple signaling pathways through post-translational 
modification (Li et al. 2018; Liu et al. 2018b). When mac-
rofungi are exposed to heat stress, HSFs transform from an 
inactive monomeric state to an active trimeric state, and 

activated HSFs recognize the heat shock element region 
upstream of heat stress genes, which leads to an increase 
in transcription and accumulation of heat-stimulated gene 
products (Liu and Chen 2015; Tiwari et al. 2015; Vihervaara 
et al. 2018). When stress is relieved or HSPs accumulate to 
a particular level, HSFs adopt an inactivate state and switch 
off transcription of HSPs (Taipale et al. 2010). PoZCP26 as 
a transcription factor have double zinc-finger transcription 
domain in P. ostreatus that positively regulates heat stress 
tolerance and post-stress recovery of mycelium (Hou et al. 
2020b). As one of the largest family of transcription factors 
in eukaryotes, the MYB gene family exhibits extremely high 
expression levels after heat stress, which regulates a variety 
of genes in response to environmental changes and helps 
mycelium to resist heat stress (Wang et al. 2018a). Currently, 
there is limited research on transcription factors in macro-
fungi that response to heat stress, which hampers research 
examining heat stress signaling pathways. Therefore, the role 
of transcription factors in protecting macrofungi from heat 
stress requires further study.

Heat stress response in macrofungi

Antioxidant defense system

Antioxidant enzymes play an important role in the whole 
growth and development of macrofungi (Orban et al. 2021). 
It is found that oxidative stress is often associated with heat 
stress and can directly induce cell damage after heat stress 
(Liu et al. 2019). Therefore, macrofungi response to heat 
stress usually causes an increase in cell oxidative scavenging 
capacity. Glutathione peroxidase (GPX) regulates the level 
of ROS in G. lucidum, affects the Ca2+ content in the cyto-
plasm, and regulates Ca2+ signaling pathway-related genes 
involved in the regulating heat stress, thereby reducing heat 
damage (Li et al. 2015). The activities of catalase (CAT), 
peroxidase (POD), and superoxide dismutase (SOD) in G. 
lucidum mycelium were found to increase after heat treat-
ment (Liu et al. 2018c). CAT is the primary enzyme that 
scavenges for ROS and alleviates oxidative damage under 
heat stress; however, different stress temperatures and stress 
durations cause different expressions of CAT-encoded genes 
(Wang et al. 2017). Moreover, Vitamin C (Vc) and N-acetyl-
cysteine also reduce ROS content in G. lucidum following 
heat stress (Liu et al. 2018d).

Synthesis and metabolism of trehalose

High concentrations of trehalose can prevent denaturation 
and inactivation of enzymes and proteins under stress, 
reduce protein aggregation, and stabilize cells (Arastoo et al. 
2018; Jain and Roy 2008). Numerous studies have shown 
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that the trehalose contents in macrofungi increased under 
heat stress (Lei et al. 2019; Liu et al. 2016, 2019; Meng et al. 
2015). The accumulation of intracellular trehalose induces 
a decrease in lipoxygenase (Lox) activity, by reducing the 
accumulation of H2O2 and O2−. Trehalose has been shown 
to partially alleviate oxidative damage of membranes and 
promote the recovery of P. pulmonarius mycelia growth 
following heat stress (Liu et al. 2019).Currently, there are 
three viewpoints on the molecular mechanism of trehalose 
alleviating oxidative damage induced by heat stress: (i) 
trehalose activates the total antioxidant reduction system 
(Rohman et al. 2019); (ii) trehalose acts directly on the 
glycolysis pathway and pentose phosphate pathway to 
restore mitochondrial dysfunction (Yan et al. 2020); and 
(iii) trehalose activates the nuclear factor erythrocyte 
type 2-associated factor (Nrf2) mediating the antioxidant 
pathway (Mizunoe et al. 2018). NADPH is a central cofactor 
in the antioxidant system of glutathione and thioredoxin/
peroxygenase and a product of the pentose phosphate 
pathway; thus, the pentose phosphate pathway is considered 
to be the main pathway in trehalose response to heat stress 
(Boone et al. 2017; Matsumoto et al. 2018).

However, addition of trehalose cannot completely repair 
growth defects caused by the deletion of the trehalose 6 
phosphate synthase (TPS) gene, suggesting that TPS rather 
than trehalose may be responsible for protecting fungi from 
heat stress (Gibney et al. 2015). TPS stimulates trehalose 
biosynthesis and maintains the ATP level to ensure energy 
homeostasis. However, it has been shown that the products 
of TPS protein itself may also help Pleurotus tuoliensis tol-
erate heat stress (Petitjean et al. 2015; Wu et al. 2018).

Expression of heat shock proteins

As molecular chaperones, HSPs prevent protein aggrega-
tion, remove denatured proteins, help damaged proteins fold, 
and play a key role in response to adversity stress (Clerico 
et al. 2015; Mogk et al. 2015). According to the mode of 
action, HSPs are divided into inducible and constitutive 
types. Inducible HSPs have a protective effect on cells and 
are only synthesized when cells are stimulated by external 
factors, whereas constitutive HSPs are mainly involved in 
cell differentiation processes and are synthesized at all stages 
of growth and development (Kurahashi et al. 2014; Treseder 
and Lennon 2015). Proteomic and transcriptomic stud-
ies have shown that the expression of HSPs in macrofungi 
is significantly upregulated under heat stress (Krah et al. 
2021; Liu et al. 2020; Tan et al. 2018a; Zou et al. 2018). 
The small HSP gene LeDnaJ silent mutant of L. edodes was 
defective in mycelial growth under heat stress (Wang et al. 
2018a). Xu et al. (2020) cloned an Hsp70 (A0A369K2K3) 
gene hmHsp70 of Hypsizygus marmoreus into tobacco; the 
transgenic tobacco displayed enhanced resistance to a lethal 

temperature. These observations indicate that HSPs play an 
important role in macrofungal heat stress response.

Synthesis of auxins

Exogenous addition of indoleacetic acid (IAA), auxin ana-
logue α-naphthylacetic acid (NAA) and 2, 4-dichloropheny-
lacetic acid (2, 4-D) to L. edodes was shown to inhibit the 
production of O2−, reduce the activity of lipoxygenase, and 
maintain the activity of POD under heat stress, thus reducing 
heat injury (Zhou et al. 2018). Proteomic and transcriptomic 
studies by Wang et al. (2018b) indicated that IAA improves 
the heat tolerance of L. edodes through regulation of the 
tryptophan pathway. Ma et al. (2018) found that the syn-
thesis gene of anthranilate synthase may regulate mycelial 
heat resistance by affecting the IAA content in L. edodes. 
Yeast two-hybrid and bimolecular fluorescence complemen-
tation showed that LeDnaJ07 may also be involved in the 
regulation of IAA biosynthesis and resistance to heat stress 
by interacting with LetrpE (Wang et al. 2020). However, 
suitable concentration of IAA restores the mycelial growth 
of heat sensitive strain after heat stress, while excessive 
concentration of IAA inhibits the recovery ability of myce-
lial growth (Wang et al. 2018c). Furthermore, exogenous 
salicylic acid improves the heat tolerance of mycelium, and 
an increase of salicylic acid under heat stress may repre-
sent a defense mechanism of P. ostreatus (Yan et al. 2020). 
However, the mechanisms of these auxins under heat stress 
require further investigation.

Other heat‑related genes

In addition to the heat stress response mentioned above, 
some additional genes also participate in these responses of 
macrofungi. Yin et al. (2015) found that overexpression of 
methionine sulfoxide reductase A gene (Msr A) enhanced the 
thermal tolerance of P. ostreatus. Xin et al. (2016) reported 
that the gene hyd1 of L. edodes played an important role in 
the response to heat stress. The work of Andreu et al. (2021) 
confirmed that efficient expression of hydrophobins of HFBI 
and DewA on the cell surface of Saccharomyces cerevisiae 
increased resistance to several adverse conditions includ-
ing heat and osmotic stress. In P. ostreatus, 40 hydrophobin 
genes were screened by genome and transcriptome sequenc-
ing and functional characterized; meanwhile, a microRNA 
(Po-MilR-1) may perform its physiological function through 
negative regulation of its target hydrophobin gene POH1 
(Xu et al. 2021a, b). Under heat stress, the expression of 
para-aminobenzoic acid (PABA) synthase gene Pabs 
increased, which enhanced thermotolerance of Agaricus 
bisporus by removing H2O2 and elevating defense-related 
proteins (Lu et al. 2014). In addition, the results of a heat 
stress test showed that the RNAi strains of phenylalanine 
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ammonia lyase gene pal 1 enhanced mycelial tolerance to 
heat stress, and pal 2 RNAi strains enhanced mycelial resist-
ance to H2O2, which confirmed that pal may negatively regu-
late the heat stress response of P. ostreatus through different 
regulatory processes (Hou et al. 2019).

Summary and prospect

Cultivation of high-yield and high-quality macrofungi 
remains a hot research topic because of the high economic 
value these macrofungi offer. Temperature is a key factor 
affecting the growth and development of macrofungi. Heat 
stress have been shown that affects the morphology of mac-
rofungi and damages cell structure and metabolism. Damage 
to the cell structure and the outflow of metabolites increase 
the vulnerability of macrofungi to the invasion of patho-
genic microorganisms and induce cell apoptosis. Signal 
transduction pathways in macrofungi involving ROS, Ca2+, 
NO, and transcription factors have been found to participate 
in intracellular heat stress signal transductions. Macrofungi 
respond to heat stress in many ways. Antioxidant defense 
systems eliminate excessive accumulation of ROS caused 
by heat stress; the synthesis and metabolism of trehalose 
prevent the denaturation of enzymes and proteins under heat 
stress and stabilize the structure of cells; HSPs repair protein 
damage; auxin synthesis improves the activity of antioxidant 
enzymes. All of these processes combine to increase macro-
fungi resistance and adaption to heat stress (Fig. 2).

Although researchers have studied extensively how 
macrofungi respond to heat stress, the mechanisms of 
response to heat stress in macrofungi remain unresolved, 
and there are many areas that require further investiga-
tion. Firstly, thermal sensors in macrofungi have not been 
identified, and the intracellular heat signal transduction 
systems are not fully understood. There are possibly other 
heat-signaling pathways that have not been discovered. 
Secondly, current researches focus mostly on the myce-
lial stage. It remains to be verified whether heat-resistant 
substances that improve heat resistance in the mycelial 
stage play a role in the growth and development of the 
fruiting body. Thirdly, the specific mechanism and poten-
tial relationship between signal transduction and response 
pathways have not been clarified. In addition, the tem-
perature limit of beneficial or harmful effects on macro-
fungi requires further investigation. Understanding these 
issues in greater detail will promote the economic value 
of macrofungi.
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Fig. 2   Main heat stress response 
mechanisms in macrofungi. 
The orange lines indicate the 
Ca2+ signaling, and the blue 
lines indicate the ROS signal-
ing, the green lines indicate the 
NO signaling; the black line 
shows heat stress response path-
ways, and the red lines represent 
the result of these response 
mechanisms. The dotted line 
and question mark indicate the 
unknown mechanism
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