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Abstract

Increased understanding of the interactions between endophytic fungi and plants has led to the discovery of a new gen-
eration of chemical compounds and processes between endophytic fungi and plants. Due to the long-term co-evolution
between fungal endophytes and host plants, endophytes have evolved special biotransformation abilities, which can have
critical consequences on plant metabolic processes and their composition. Biotransformation or bioconversion can impact
the synthesis and decomposition of hormones, sugars, amino acids, vitamins, lipids, proteins, and various secondary
metabolites, including flavonoids, polysaccharides, and terpenes. Endophytic fungi produce enzymes and various bioac-
tive secondary metabolites with industrial value and can degrade or sequester inorganic and organic small molecules and
macromolecules (e.g., toxins, pollutants, heavy metals). These fungi also have the ability to cause highly selective cata-
lytic conversion of high-value compounds in an environmentally friendly manner, which can be important for the produc-
tion/innovation of bioactive molecules, food and nutrition, agriculture, and environment. This work mainly summarized
recent research progress in this field, providing a reference for further research and application of fungal endophytes.

Key points
o The industrial value of degradation of endophytes was summarized.
o The commercial value for the pharmaceutical industry is reviewed.
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Introduction

Bacterial and fungal endophytes deeply involved in the
physiology and metabolism of host plants can be found in
almost all studied plants (Chen et al. 2020). Plant survival
and development is often inseparable from the participa-
tion of such endophytes (Adamo et al. 2020). Therefore,
plants should no longer be simply regarded as independent
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individuals; rather, they must be considered “symbiotic
functional bodies” containing internal microorganisms
(Kuzniar et al. 2020). In particular, endophytic fungi sustain
part or their entire life cycle within healthy plants without
causing any obvious diseases (Strobel 2018).

Of the 300,000 species of plants existing on earth,
about one-sixth produce compounds potentially useful in
disease treatment, able to synthesize various bioactive
compounds, within the special internal environments in
plants whose habitats are different from the ordinary envi-
ronment (e.g., soil) for microorganisms (Nisa et al. 2015).
These special habitats provide unique niches for a large
number of endophytic fungi (Li et al. 2020a).

Among recent studies on secondary metabolites of fungi,
51% of newly discovered compounds with pharmacological
activity have been found from endophytic fungi, with many
showing versatile biological functions, including promoting
plant nutrient absorption and helping plants cope with stress
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(Liu et al. 2020; Pilsyk et al. 2020; Xiao et al. 2020). They
are also deeply involved in plant physiology and metabolism,
including gene exchange, signal induction, and element shar-
ing with plants. In addition, fungal secondary metabolites can
be involved in regulating plant gene expression, modulating the
activity and direction of branched metabolic pathways, and modi-
fying plant metabolites and their production. With respect to the
latter, fungal endophytes often impact the amount and concen-
tration of (final) metabolites accumulating in plants tissues. In
terms of the level of metabolic modifications, endophytic fungi
can directly synthesize or decompose some metabolites; i.e., they
can affect the metabolite composition of medicinal plants through
biotransformation. For example, the endophytic fungi Flavobac-
terium sp. GE 32 and Arthritis sp. GE 17-18 in Panax ginseng
can transform ginsenoside Rb1 that has low bioavailability into
ginsenoside Rg3 and C-K (these products from ginseng root have
been implicated in having a host of human health benefits), which
has high bioavailability (Fu 2019; Fu et al. 2016).

Endophytic fungi complement the biotransformation
capacity of the host plant, thus helping solve issues in com-
plex compound production and the decomposition of difficult
substances, such as industrial waste and pollutants. Biotrans-
formation, including decomposition and synthesis affected
by endophytic fungi both in vivo (in plant) and in vitro, is an
area of significant active research. Recent advances have been
successfully applied in drug synthesis (Louis et al. 2019),
pollutant degradation, and food fermentation, e.g., wine
brewing (Rho et al. 2020), thus providing opportunities for
green and efficient solutions to industrial challenges. How-
ever, correlated summaries on these applications are largely
lacking. The present study focuses on the biosynthesis and
biodegradation abilities of endophytic fungi relevant to vari-
ous applications, i.e., biotransformations and catalyses, to
provide a scientific reference for sustainable production.

Research progress on the biodegradation
activity of endophytic fungi

The research on and application of biodegradation activities
of endophytic fungi includes the decomposition of small
organic molecules and polymers.

Progress in degradation of small organic molecules
by endophytic fungi

A balanced but potentially antagonistic relationship often
exists between endophytic fungi and host plants (Schulz et al.
2015). Plants activate their defense system when many fungal
endophytes initiate colonization, but the fungus often disrupt
these defense responses by targeting plant defensive signaling
factors to suppress host responses allowing for establishment
within the plant more easily. For example, endophytic Mucor
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sp. KU234656 and Epichloé festucae KM400586, which have
various hosts, decompose plant signaling molecules such
as strigolactones (plant hormones that stimulate branching)
and salicylic acid (plant hormones that regulate the plant
immune system), to facilitate the penetration of the fungus
into plant tissues (Rozpadek et al. 2018; Ambrose et al. 2015).
Such fungal decomposing abilities are attributed to degrada-
tive enzyme systems, which include carbohydrate esterases,
glycoside hydrolases, and polysaccharide lyases (Gramaje
et al. 2020). Some endophytic fungi have evolved metabolic
abilities to decompose plant-specific organic substances; for
instance, Phomopsis liqguidambari from the bark of Bischofia
polycarpa can degrade sinapic acid (one of the most repre-
sentative methoxy phenolic pollutants) to H,O and CO, (Xie
et al. 2016). Further to this, Burkholderia cenocepacia 869T2
from the roots of Vetiveria zizanioides has the unique ability
to dechlorinate the compound dioxin (persistent carcinogenic
byproducts of anthropogenic activities) into dibenzo-p-dioxin
and subsequently decompose it into catechol and 2-hydroxy-
succinate with low carcinogenicity (Nguyen et al. 2021). Endo-
phytic fungi also develop various abilities to directly decom-
pose defense substances. For example, Fusarium verticillioides
from Zea mays, Acrmetonium sp. and F. moniliforme from
Aphelundra tetragona, and Paecilomyces formosus HQ444388
from Glycine max can degrade toxic substances, such as benzo-
xazolin-2-(3H)-one (Schulz et al. 2016), aphelandrine (Christa
et al. 1997), jasmonic acid (Bilal et al. 2018), 2-hydroxy-N-(2-
hydroxypheyl) acetate (Zikmundova et al. 2002), 6-methoxy-
benzox-azolin-2-one, and 2-benzoxazolinone (Glenn et al.
2016), in plants to adapt to the environment and establish a
balanced symbiotic relationship with plants.

When an equilibrium is attained between an endophytic
fungus and its host plant(s), a mutual relationship is estab-
lished. Endophytic fungi can help plants avoid external
damage through contributions of their unique biodegrada-
tion capability. For example, the endophytic fungus Neu-
rospora intermedia MF362953 isolated from Saccharum
officinarum can decompose phenylurea herbicide diuron
[3-(3,4-dichlorophenyl)-1,1-dimethylurea] (Morais et al.
2017). Some endophytic fungi can degrade some host plants’
compounds, but the biochemical mechanism(s) of how these
compounds are degraded has yet to be clearly elucidated.
For instance, Paraconiothyrium variabilis LCP5644 from
Cephalotaxus harringtonia and F. oxysporum 2T12J01A
from Andrographis paniculata can decompose O-glyco-
sides and change the metabolite profile of the host (Tian
et al. 2014; Wang et al. 2014). Some endophytic fungi from
Salvia miltiorrhiza can degrade limonene, geraniol, and
pinene (plant essential oil components) into intermediates
of terpenoid biosynthesis to produce new valuable biological
products, and Mucor circinelloides DF20 from Salvia milti-
orrhiza can promote tanshinone (pharmacological active
component of host plant) biosynthesis and accumulation
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in Salvia miltiorrhiza root (Chen et al. 2018, 2021). How-
ever, the degradation of endophytic fungi can sometimes
destroy the medicinal substances of plants. For example,
Alternaria eureka 20131E1BL1 from Ruscus aculeatus can
transform the spirochete alcohol skeleton of neoruscogenin,
which used to treat chronic venous insufficiency, varicose
veins, and hemorrhoids, into a cholesterol skeleton (Ozcinar
et al. 2018), and endophytic fungal P. liquidambari from
Bischofia polycarpa can completely decompose cinnamic
acid (hepatoprotective agent) into CO, and H,0O, rendering it
impossible for plants to synthesize flavonoids, thus reducing
the active quality of medicinal plants (Xie and Dai 2015).
Endophytic fungi not only exhibit their degradation abil-
ity within the host plant but also display high degradation
activity outside the plant. Nine endophytic fungi isolated
from Plantago lanceolata, including Aspergillus niger,
Eurotium repens, Leptosphaerulina chartatum, A. nidu-
lans, E. amstelodami, Cladosporium pseudocladospori-
oides, Penicillium chrysogenum, Bipolaris sp., and Epico-
ccum nigrum, have been shown to be able to decompose
non-steroidal anti-inflammatory drugs, such as diclofenac,
diflunisal, ibuprofen, mefenamic, and piroxicam in vitro
(Gonda et al. 2016). Endophytic fungi with unique bio-
degradation capabilities benefit from various enzymes co-
evolved with host plants for a long time, particularly o-L-
rhamnohydrolase, f-N-acetylhexosaminidase, and urease,
which have industrial application values (Gramaje et al.
2020; Atmaca 2019). Many additives that are difficult to
treat in the industry, such as reactive dark blue, reactive
green, reactive turquoise blue, reactive brilliant red, reac-
tive brilliant orange, triclosan, and malachite green (listed
as a carcinogen by the Food and Drug Administration), are
considered as common pollutants in the aquaculture industry
(Zhou et al. 2018b). Three endophytic fungi, Myrothecium
verrucaria DJTU-sh7, Glomerella sp., and Talaromyces stol-
lii, isolated from Taxus chinensis can degrade reactive dark
blue, reactive green, reactive black, reactive turquoise blue,
reactive brilliant orange, and reactive brilliant red (refrac-
tory chemical dyes) (Hao et al. 2016). Klebsiella aerogenes
M2017452 from Cyperus rotundus can degrade malachite
green to nontoxic substances, e.g., N,N-dimethylaniline and
2-(4-dimethylamino-phenyl)-phenyl-methanone (Shang
et al. 2019). Triclosan can be degraded into detoxifying
metabolites, e.g., hydroquinone, (2Z,4E)-3-chloro-2,5-di-
hydroxyhexa-2,4-dienedioic acid, and (2Z,4E)-3-chloro-
2,5-dihydroxyhexa-2,4-dienedial by Penicillium oxalicum
FJ196840 isolated from Artemisia annua (Tian et al. 2018).
In addition, endophytic fungi can be used to degrade organic
substances, such as polycyclic aromatic hydrocarbon (Tardif
et al. 2016), triphenylmethane (Gao et al. 2020a), cyanide
(Al-Badri et al. 2020), azo compounds (Marzall-Pereira
et al. 2019), and phenols (Rusanova et al. 2019), in indus-
trial wastewater. For example, Trichoderma harzianum

PTA-10317 from Taraxacum officinale L. can completely
decompose phenanthrene (polycyclic aromatic hydrocarbon
pollutant) into CO, and H,O (Repas et al. 2017). Further-
more, endophytic fungus P. liquidambari from Oryza sativa
can degrade more than 10 small molecule organic chemi-
cal pollutants, such as bisphenol, chloroalkane, chloroalk-
ene, caprolactam, polyaromatic hydrocarbon, naphthalene,
chlorochlorochlorohexane, chlorobenzene, aminobenzoate,
styrene, fluorobenzoate, atrazine, dioxin, toluene, benzoate,
and ethylbenzene (Zhou et al. 2017).

Progress in the degradation of organic polymers
by endophytic fungi

Endophytic fungi have acquired the ability to decompose
the aging cell wall and breakthrough various plant barriers
in the process of establishing symbiosis with host plants
by evolution. These interactions are aimed towards the fun-
gus obtaining nutrients from the plant, but can also have
the consequence of eliminating host “waste” byproducts,
i.e., compounds that the plant cannot use, but may, in some
instances, accumulate within plant tissues leading to toxicity
(Suryanarayanan et al. 2012). In addition, fungal endoglu-
canases and cellobiohydrolases (endo- and exo-cellulases)
can degrade cellulose and hemicellulose of plant for their
invading or mutualistic symbiosis (Adamo et al. 2020). The
unique biodegradation process of organic polymers in endo-
phytic fungi often requires the assistance of redox system
enzymes, such as lytic polysaccharide monooxygenases,
ligninolytic peroxidases, laccase, and other enzymes pro-
duced by endophytic fungi, cellulose, and lignin as a major
component of cell wall aging, which can be transformed
into nutrients of endophytic fungi (Mathe et al. 2019). For
example, Rickenella mellea JGI 334,780 from Alloclavaria
purpurea can transform lignin, cellulose, hemicellulose,
and lignin-like polymers in plant aging cell walls into their
nutrients or help plant to dispose garbage (Korotkin et al.
2018). Endophytic fungi can produce endo-1,4-p-xylanase,
xylan a-glucuronidase, acetylxylan esterase, and xylan ace-
tylsterase to degrade xylan, while chitin can be degraded
into nutrients by chitinase, polysaccharide lyase, and
N-acetylglucosaminidase, all enzymes that can be produced
by various endophytic fungi (Aranda-Martinez et al. 2016).
For example, endophytic fungi Hymenoscyphus ericae and
Pochonia chlamydosporia can decompose chitin from other
invading microorganisms, fungal residual body, or soil into
N-acetylglucosamine, thus providing an organic nitrogen
source for plants (Kerley et al. 1995).

Endophytic fungal enzymes have been gradually used in
industrial production, and the production of amylase, cel-
lulase, laccase, lipase, protein, xylanase, pectinase, phytase,
and phenoxidase has been matured and industrialized (Cor-
rea et al. 2014). A summary of the latest research results on
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endophytic fungal enzymes in the last 5 years is shown in
Table 1.

With respect to industrial applications, a combination of
the decomposition ability of endophytic fungi with physical
and chemical pretreatment may reduce the loss of purely
physical and chemical pretreatment. For example, in the
sugar production industry, endophytic Ulocladium sp. from
Eucalyptus Globus and F. verticillioides from Andropogon
gayanus can be used to pretreat raw materials to improve
the yield of sugar (de Almeida et al. 2019). The endophytic
fungus Hypoxylon sp. CI-4 in T. distichum can transform
cellulose into 1-acetyl-2-(1-hydroxyethyl)-cyclohexene,
2,3-dimethoxy-naphthalene, 2,5-furandione dihydro-
3-methylene, and other organic substances with fuel value
(Maxwell et al. 2018). Notably, the endophytic Chaetomium
globosum CGMCC 6882 from a well-known folk medicinal
plant Gynostemma pentaphyllum can successfully transform
xanthan (a polymer containing f-1,4-glucosidic bond suc-
cessfully linked to the main chain and a trisaccharide side-
chain containing mannose, gluconic acid, and mannose) into
a low-molecular-weight xanthan (LW-XG; the composition
of LW-XG was glucose, mannose, and glucuronic acid at a
molar ratio of 1.63:1.5:1.0) with antioxidant, anti-arthritis,
anti-chondrocyte apoptosis, and anti-Staphylococcus aureus
(Hu et al. 2019). These fungi also have a commercial value
in environmental and industrial waste treatment. For exam-
ple, the serine hydrolase secreted by Guignardia mangiferae
E2702C and Zopfiella karachiensis E2719A can be used to
treat synthetic material polyester polyurethane under anaero-
bic conditions (Russell et al. 2011).

Research progress on the biosynthesis
of natural products by endophytic fungi

Endophytic fungi directly synthesize various natural
products in plants

The reciprocal relationship between endophytic fungi
and the host has been verified; however, many aspects of
the complex co-evolution mechanisms that mediate these
interactions remain unclear (Lu et al. 2019). Such co-
evolutionary adaptations have been selected for the ability
of endophytic fungi to produce signal substances that are
either similar or different from the host, and endophytic
fungi can provide new avenues for screening for efficient
synthetic drugs, compounds useful in agriculture (plant
growth promotion, protection from abiotic stress, protec-
tion from pathogens, etc.), food safety (harvest, post-har-
vest, storage), and other industrial applications (biofuels,
bioplastics, etc.).

Endophytic fungi can produce various phytohormones,
such as phytohormone indole-3-acetic acid, gibberellic acid,
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cytokinin, and phytoalexins, which were successively found
from the endophytic fungi Serendipita indica, F. fujikuroi
MI58289, and Piriformospora indica DSM11827 (Inaji et al.
2020; Niehaus et al. 2016; Li et al. 2016b). This finding
indicated that endophytic fungi can participate in host sig-
nal regulation and affect host physiological and metabolic
activities (Yuan et al. 2016; Bilal et al. 2018; Guarino et al.
2020).

Endophytic fungi can also synthesize some “simulated
secondary metabolites” similar to or the same as host plants
through “gene exchange” with host plants. The gene clusters
mediating the synthesis of some of these “shared” metabo-
lites have been proposed to be endophytic fungal origin,
having been transferred to host plants through their long
co-evolutionary history (Glenn et al. 2016). Currently, pacli-
taxel (an antineoplastic) (Shao et al. 2021), camptothecin
(for antitumor) (Kaur et al. 2020), cinchonine (for treatment
of malaria disease) (Maehara et al. 2011), and podophyl-
lotoxin (inhibit herpes virus) (Vasundhara et al. 2016) can
be synthesized by endophytic fungi and more than 90 high
medicinal value metabolites (Archana et al. 2021). How-
ever, in other cases, the biosynthetic pathway mediating
the synthesis of similar bioactive metabolites found in both
endophytic fungi and their plant hosts has been found to
be completely different. For example, the pathway for gib-
berellic acid (GA) biosynthesis of Gibberella fujikuroi IMI
58,289 is different from their host plants, and the fungal GAs
is synthesized from acetyl-CoA via mevalonic acid pathway,
but most plants, at least in the green parts, are predomi-
nantly produced by the methyl erythritol phosphate path-
way (Bomke and Tudzynski 2009). The taxol (anticancer
drug) biosynthetic pathway found in the endophytic fungus
A. nidulans has low homology to the one reported for plant
Taxus spp., suggesting that the taxol biosynthesis ability of
this endophytic fungi may have evolved independently of the
plant one (Elena et al. 2020).

Some compounds synthesized by endophytic fungi are
not made by host plant but are released into the tissues of
host plant and can cause changes in the chemical composi-
tion of the host plant. For example, fungal ergot alkaloid
and loline alkaloids can accumulate in plant tissues and
which are important toxic substances to livestock (Fig. 1).
These compounds were originally thought to be produced by
the plant, Lolium perenne, until they were discovered to be
exclusively produced by L. perenne endophytic E. festucae
and Epichloé fungal species (Katrin et al. 2020; Panaccione
et al. 2017). On the basis of these findings, scientists have
reinoculated L. perenne with genetically modified Epichloé
spp. as EAR! and EAR¥_in which production of the toxic
alkaloids has been abolished, and leading to the elimination
of the toxic substances in host plants, and improved qual-
ity of pasture production. These fungi are currently com-
mercialized in Australia, North America, and other places



Applied Microbiology and Biotechnology (2021) 105:7095-7113

7099

Table 1 Industrial application of enzyme from endophytic fungi in medicinal plants

No.  Plant Endophytic fungi Enzyme References
1 Allium cepa Beauveria bassiana MN544934 Xylanase, endoglucanase Amobonye et al. (2021)
2 Coffee plants Induratia sp. CML4013 Lipase, amylase, protease, phytase, pecti- Monteiro et al. (2020)

Vitis labrusca L.

3

4

5 Andropogon gayanus

6 Phoenix dactylifera L.
7 Simarouba glauca

8 Laguncularia racemosa
9 Rhizophora mangle

10 Cananga odorata

21 Terminalia mantaly

Diaporthe sp. KM362392
Fusarium culmorum KM362384
Fusarium verticillioides
Penicillium bilaiae TDPEF30
Phomopsis sp. KX49881
Aspergillus awamori
Aspergillus niger
Ampelomyces sp.
Chaetomium globosum
Colletotrichum fructicola
Diaporthe sp.

Fusarium equiseti

Fusarium oxysporum
Fusarium solani

Fusarium striatum
Guignardia mangiferae
Nectria rigidiuscula
Nigrospora oryzae
Cercospora chrysanthemi
Cercospora flagellaris
Cercospora olivascens
Cercospora sp.
Colletotrichum gloeosporioides
Corynespora cassiicola
Diaporthales sp.

Fusarium solani

Hypoxylon investiens
Nemania bipapillata
Nigrospora oryzae

Phoma microchlamydospora
Phomopsis phyllanticolla
Phomopsis sp.

Pleosporales sp.

Septoria sp.

Xylaria adscendens

Xylaria persicaria

Xylaria sp.

Xylariaceae sp.

nase, cellulase
Endoglucanase
Endoglucanase
Endoglucanase, cellobiase, cellulase
Protease (especially acidic protease)
Laccase
Endoglucanase, -glucosidase, xylanase
Endoglucanase, -glucosidase, xylanase
Cellulase
Amylase, cellulase
Amylase, cellulase, lipase
Amylase, cellulase, lipase
Amylase, cellulase, laccase
Amylase, cellulase, lipase
Amylase, cellulase, lipase
Amylase, cellulase, lipase
Amylase, lipase
Amylase, cellulase
Lipase
Amylase, cellulase, lipase
Cellulase, lipase
Amylase, lipase
Amylase, cellulase, lipase
Amylase, cellulase, lipase
Amylase, cellulase, lipase, laccase
Amylase
Amylase, cellulase
Amylase, cellulase, lipase
Amylase, Lipase
Amylase, cellulase, lipase
Amylase, cellulase, lipase
Amylase, cellulase, lipase
Amylase, cellulase, lipase
Cellulase
Lipase
Amylase, cellulase, lipase, laccase
Amylase, cellulase, lipase
Amylase, cellulase, lipase, laccase

Amylase, cellulase, lipase, laccase

Felber et al. (2019)

de Almeida et al. (2019)
Ben et al. (2019)
Navada et al. (2018)
Maroldi et al. (2018)

Toghueo et al. (2017)

@ Springer



7100

Applied Microbiology and Biotechnology (2021) 105:7095-7113

Table 1 (continued)

No.  Plant Endophytic fungi Enzyme References

41 Terminalia catappa Cercospora olivascens Amylase, cellulase, lipase

42 Cladosporium tenuissimum Amylase

43 Diaporthe sp. Amylase, cellulase

44 Fusarium decemcellulare Amylase, cellulase

45 Fusicoccum sp. Amylase, cellulase, lipase

46 Guignardia mangiferae Lipase

47 Hypoxylon investiens Amylase, cellulase, lipase, laccase

48 Lasiodiplodia theobromae Amylase, cellulase

49 Mycosphaerella thailandica Amylase

50 Ophioceras leptosporum Amylase, lipase

51 Paraconiothyrium variabile Amylase, cellulase, lipase

52 Penicillium chermesinum Amylase, cellulase

53 Penicillium parvum Amylase, cellulase, lipase

54 Pestalotiopsis sp. Cellulase, lipase, laccase

55 Phomopsis theicola Amylase, cellulase

56 Pseudocercospora sp. Amylase, lipase

57 Pseudofusicoccum kimberleyense Amylase

58 Xylaria apiculata Amylase

59 Xylaria castorea Amylase, cellulase, lipase

60 Xylaria sp. Amylase, cellulase, lipase

61 Piper hispidum Sw Bipolaris sp. JE767001 a-amylase Orlandelli et al. (2017)
62 Marasmius cladophyllus JF767003 a-Amylase

63 Phlebia sp. JF766997 a-Amylase

64 Phyllosticta capitalensis JE766988 a-amylase

65 Schizophyllum commune JF766994  «-amylase

66 Curcuma amada Talaromyces pinophilus KJ372306 L-Asparaginase Krishnapura et al. (2016)
67 Bacopa monnieri Pleosporales sp. Amylase Katoch et al. (2014)
68 Eutypella sp. E9901c Amylase

69 Fusarium oxysporum F1TK1 Amylase

70 Fomitopsis cf. Meliae KYO Cellulase

71 Eremophilia longifolia Preussia minima EL-14 a-Amylase Zaferanloo et al. (2014)

(Qawasmeh et al. 2015, 2012). Another well studied and
confirmed example is swainsonine, a toxin which can seri-
ously poison livestock, and it also is one of the main bio-
active chemicals in several Fabaceae plants, produced by
endophytic Undifilum spp. and Alternaria spp., which were
dominant fungal endophytes from Astragalus, Oxytropis,
and Swainsona of Fabaceae plants (Moodley et al. 2019;
Ren et al. 2017). A significant number of novel compounds
with diverse activities continues to be found in various endo-
phytic fungi, including flavonoids, alkaloids, and terpenoids
(with main finds summarized in Table 2).

Highly selective catalytic activities of endophytic
fungi

The use of endophytic fungi as a biocatalyst for the pro-
duction of high-yield and high-purity compounds in an
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environmentally friendly manner has attracted significant
research interest (Scalvenzi 2014). The catalysis and trans-
formation of endophytic fungi have been mainly used for
the following purposes: (i) overcoming the difficulties in
chemical synthesis; (ii) improving the activity or reducing
the toxicity of lead drugs; and (iii) assisting in the study of
the structure—activity relationship of drugs (Ozginar et al.
2018).

Endophytic fungi can selectively catalyze the synthesis
of O-glycoside and O-ether bonds. Endophytic Penicillium
sp. Q228238 from Polygonum cuspidatum can transform
resveratrol into pterostilbene, which shows more metabolic
stability and stronger anti-inflammatory and antioxidant
activities (Xu et al. 2020), Epicoccum nigrum from Salix
sp. can transform flavonoids into kaempferol-O-diglycide,
which shows anticancer and antioxidant activity (Harwoko
et al. 2019), and Neosartorya hiratsukae from Astragalus
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Fig. 1 Important intermediates

. HOWCOOH LolA H.PO /OWCOOH AsaDH O
and end product of the loline o K 27 AsaDH_
Asp4P

. o NH, Asp
alkaloid. (Asp, asparticacid; Asp

Asp4P, aspartic acid-4-phos-
phate; Asa, aspartyl-4-semi-
aldehyde; Hse, homoserine;
OAH, O-acetylhomoserine;
P5C, pyrroline-5-carboxylate;
Pro, proline; NL, norloline;
NML, N-methylloline; NFL,
N-formylloline). Double arrows
indicate additional, non-illus-
trated intermediates

angustifolius is able to transform neoruscogenin into
neoruscogenin-1-0-f-glucopyranoside, which is a potential
leading compound with anti-inflammatory and anti-tumor
activities (Ozginar et al. 2018). In addition, endophytic fungi
can catalyze the synthesis of N-glycoside and amide bonds
with high selectivity. For example, F. verticillioides from
Zea mays catalyzed the formation of the N-glycosidic bond
of carbamate to produce N-(2-hydroxyphenyl)-malonic acid
with anticancer and antioxidant activity, and P. brasiliensis
from Zea mays promoted the formation of an amide bond
between halogenated benzoic acid and amino acid (Fill et al.
2018; Schulz et al. 2016). The most commercial potential
of endophyte is highly regioselective oxidation to hydroxyl,
carbonyl, and epoxy groups. Four endophytic fungi, P. oxali-
cum FJ196840, F. oxysporum, G. cingulata, and Umbelopsis
isabellina FJI872076.1, from Senna spectabilis and Centella
asiatica can catalyze the formation of the benzene ring in
artemisinic acid (synthetic precursor of antimalarial drug
artemisinin), carbonylation, diterpene ketation, enantioselec-
tive hydroxylation of (-)-(S)-propranolol (medicine for treat-
ing arrhythmia, angina pectoris, and hypertension), and arte-
misinic acid (Hao et al. 2018; Monteiro et al. 2017; Borges
et al. 2009; Gao et al. 2015). Pestalotiopsis microspora
JF487784 in Huperzia serrata can hydroxylate ursolic acid
at special sites (Fu et al. 2011). In addition, similar biocon-
version effects have been reported by endophytic fungi; for
instance, Phomopsis sp. KY 113119 and Neofusicoccum sp.
MF276906 from Pinus sp. can efficiently catalyze (+)-(R)-
limonene to limonene-1,2-diol (Bier et al. 2017; Cecati
et al. 2018), and endophytic Nodulisporium sp. IN254790
from Panax notoginseng can convert the carbon—carbon
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double bonds of ginsenosides Re to dihydroxy, forming
a novel compound with antiplatelet aggregation activity,
vinaginsenoside R13 (Luo et al. 2013). F. oxysporum from
C. roseus can glycosylate vinblastine and finally produce
vincristine with antitumor activity (Kumar et al. 2013). The
redox reaction of endophytic fungi also has stereoselec-
tivity. For example, P. crustosum and A. fumigatus DSM
21,023 from Viguiera robusta and Juniperus communis can
catalyze highly enantioselective oxidation albendazole and
deoxypodophyllotoxin to (—)-albendazole sulfoxide (drug
for treating cerebral cysticercosis) and podophyllotoxin,
respectively (Carrao et al. 2011; Kusari et al. 2009). Four
endophytic fungi, namely, N. parvum from Illicium verum and
Bacillus megaterium, Pseudomonas sp., and P. chrysogenum
from Raphanus sativus, were used for the sterecoselective
catalytic reduction of carbonyl group and the catalyzation
of the reduction of acetophenone to (R)-1-phenylethanol
and (S)-1-phenylethanol (Li et al. 2016a; Rodriguez et al.
2015). They can even catalyze specific regional chemical
reactions. For instance, P. brasilianum from Melia azedar-
ach can catalyze the Baeyer Villiger reaction regiochemistry
of 1-indanone to produce two compounds: dihydrocoumarin
and (-)-(R)-3-hydroxy-1-indanone (Fill et al. 2012).

One of the most important scientific applications of endo-
phytic fungal catalytic activity is their use to assist in the
study of the drug structure—activity relationships. For exam-
ple, Penicillium sp. SWUKD4.1850 from the root of Aphe-
landra can catalyze the transformation of nigranoic acid
(drugs for preventing cerebral ischemia-reperfusion injury)
into new compounds with high biological activity (Qin et al.
2019). The endophytic Colletotrichum gloeosporioides and

@ Springer
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Fig.2 Endophytic fungus N.
hiratsukae 20131E2AR1-1 and A
A. eureka 20131E1BL1 catalyze

the transformation of cycloas-

tragenol and astragenol to new

compound with new bioactivity

N. hiratsukae 20131E2AR1-1

OH
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OH OH
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P. crustosum from Viguiera robusta, and Fusarium spp.
from V. arenaria can all transform diketopiperazine to pro-
duce several antitumor diketopiperazine derivatives, such
as (3R, 5aR, 65, 10aR)-6-hydroxy-3-(hydroxymethyl)-2-
methyl-3,10a-bis(methyl-thio)-2,3,5a,6,10,10a-
hexahydro-pyrazino[l,2-a]indole-1,4-dione and
6-hydr- oxy-3-(hydroxymethyl)-2-methyl-3-(methylthio)-
2,3,10,10a-tetrahydropy-razino[1,2-a]indole-1,4- dione
(Guimaraes et al. 2010). The unique habitat of endophytic
fungi makes them “micro-evolve” to some unique ability
to synthesize certain novel skeleton compounds. For exam-
ple, F. oxysporum ATCC MYA 4623 can catalyze hydrazine
to form novel skeleton compounds with anti-inflammatory
activity, 3-methyl-1,2,4-triazolo[3,4-a]phthalazine (Almeida
et al. 2018). Two endophytic fungi, A. eureka 20131E1BL1
and N. hiratsukae 20131E2AR1-1 from Astragalus sp., can
modify cycloastragenol and astragenol to produce new com-
pounds 1-5 (Fig. 2) that have telomerase inhibitory effects
and are expected to be used in anti-aging and anti-Alzhei-
mer’s disease (Ekiz et al. 2019).

Conclusion and future perspectives

Although much of the research on endophytic fungi is still
in its infancy, their biodegradation and biosynthesis capac-
ity is receiving increasing research attention. Results from
this research can have the potential to promote revolutionary
developments of industries ranging from food safety and
security to the discovery of novel biopharmaceutical com-
pounds to understanding basic aspects of organismal inter-
actions and evolution. However, some difficulties are still
encountered in studies on endophytic fungi. These include:

(1) Lack of culture conditions: given the operational com-
plexity of the plant internal environment and the often
unique habitats of medicinal plants, although a large num-
ber of endophytic fungi have been detected using high-
throughput sequencing, a significant number of endo-
phytic fungi still cannot be effectively cultured in vitro.

(2) In vitro passage affects fungal physiology: For those
fungi that can be cultured, in vitro passage often leads
to decreasing activities of desired biological processes.
Owing to the complexity of the interaction between endo-
phytic fungi and their host plants and current limitations
on the factors that mediate these interactions, in many
instances, the biotransformation activity, efficiency, and
desired product formation capabilities of many isolated
endophytic fungi gradually decrease with increasing gen-
erations of subculturing on synthetic media, thus limiting
potential commercialization efforts. As one example, the
ability to synthesize camptothecin gradually declines in
F. solani INFU/Ca/KF/3 because of the lack of its host
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C. acuminata continually providing stritosidine synthases
in vitro (Kusari et al. 2011). Increasing our understand-
ing and ability to manipulate these species interaction
mechanisms is necessary.

(3) Poor understanding of the networks that mediate
establishment and regulation of the fungal-plant interac-
tion. Our current understanding of the factors that medi-
ate host responses, fungal persistence, and (biochemical)
pathway interactions remains limited. For example, the
content of wihanolide A in Withania somnifera can be
increased by 147% when infected with Sarocladium kil-
iense F800957 compared with those not infected (Ramesh
et al. 2019). This regulatory mechanism also needs to be
further elucidated.

Future directions:

(1) Although a lot of biotransforming activities have been
found in plants, only a few of them are applied to mass
production in real life. Thus, the future efforts should
focus on strengthening the continuous industrial appli-
cation research in vivo and in vitro.

(2) Application of high-throughput “omics” to the fun-
gal endophyte-plant interactions. Use of high-throughput
sequencing technology including transcriptomics, cou-
pled to proteomics and metabolomics, should be applied
to gain mechanistic insights into the degree of integration
of fungal and plant genetic and biochemical networks.
The application of information networks, artificial intel-
ligence, and other disciplines, using network models to
simulate the signal and material exchange and sharing
of species interaction, should also be developed to study
the biotransformation mechanisms of endophytic fungi.
(3) Continued screening and isolation of fungal endo-
phytes and novel approaches at maintaining desired traits
during in vitro culturing should be encouraged.
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