
Vol.:(0123456789)1 3

https://doi.org/10.1007/s00253-021-11540-3

MINI-REVIEW

Antimicrobial peptides used as growth promoters in livestock 
production

Gisele Rodrigues1,2 · Mariana Rocha Maximiano1,2 · Octávio Luiz Franco1,2

Received: 21 April 2021 / Revised: 16 August 2021 / Accepted: 21 August 2021 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract 
Antibiotic growth promoters (AGPs) have been administered in livestock for decades to improve food digestion in grow-
ing animals, while also contributing to the control of microbial pathogens. The long-term and indiscrimate use of AGPs 
has generated genetic modifications in bacteria, leading to antimicrobial resistance (AMR), which can be disseminated to 
commensal and pathogenic bacteria. Thus, antimicrobial peptides (AMPs) are used to replaced AGPs. AMPs are found in 
all domains of life, and their cationic characteristics can establish electrostatic interactions with the bacterial membrane. 
These molecules used as growth promoters can present benefits for nutrient digestibility, intestinal microbiota, intestinal 
morphology, and immune function activities. Therefore, this review focuses on the application of AMPs with growth pro-
moting potential in livestock, as an alternative to conventional antibiotic growth promoters, in an attempt to control AMR. 

Key points   
• The long-term and indiscriminate use of AGPs in animal food can cause AMR.
• AMPs can be used as substitute of antibiotics in animal food suplementation.
• Animal food suplementated with AMPs can provied economic efficiency and sustainable livestock production.
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Introduction

Antibiotics have been of vast importance to human health and 
are also employed in farm animal health to control disease and 
as growth promoters. Antibiotic growth promoters (AGPs) 
have been administered in sub-therapeutic doses with the role 
of eradicating or inhibiting pathogenic bacteria (Hugues and 
Heritage 2004). AGPs are administered in livestock to improve 
the animals’ digestion, so that they get the highest benefit from 
foodstuffs and grow into strong and healthy individuals (NOAH 
2001; U.S. Food and Drug Administration 2015). Although the 

AGP mechanism of action is unclear, it is supposed that AGPs 
inhibit the sensitive populations of bacteria in the intestines, 
and decrease energy loss with fermentative processes (Jensen 
1998). AGPs also act in reducing the frequency and severity of 
subclinical infections (George et al. 1982; Brennan et al. 2003); 
they decrease microbial use of nutrients, and boost nutrient 
absorption, due to intestinal wall thinning (Snyder and Wost-
mann 1987; Feighner and Dashkevicz 1987; Knarreborg et al. 
2004; Huyghebaert et al. 2011). Thus, by regulating the micro-
bial population and controlling microbial nutrients, energy is 
transformed into animal growth (Hugues and Heritage, 2004).

AGPs have been employed to improve the development of 
farm animals since the 1950s (Jones and Ricke 2003; Brown 
et al. 2017; Ronquillo and Hernandez 2017). Over the years, 
several antibiotics have been administered in livestock as GPs 
(Table 1). This use helped to produce meat on an industrial 
scale (Van Boeckel et al. 2015). However, the indiscriminate 
use of AGPs for decades caused genetic modifications in bac-
teria and has led to antimicrobial resistance (AMR), which 
can be disseminated to commensal and pathogenic bacteria 
(Aslam et al. 2018; Founou et al. 2016; Innes et al. 2020; Li 
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et al. 2018). AGPs are therefore the subject of controversy 
associated with their risks and advantages.

Thus, antimicrobial peptides (AMPs) are being used to 
replace AGPs (Jenssen et al. 2006; Cheng et al. 2014; Zhao 
et al. 2016). AMPs are found in all domains of life, present 
chemical diversity and structure, and usually present cationic 
and amphipathic properties (Cardoso et al. 2020; Gomes et al. 
2018; Spohn et al. 2019; Brogden 2005; Jenssen et al. 2006). 
The cationic characteristics of AMPs can establish electrostatic 
interactions with the bacterial membrane, which is commonly 
composed of negatively charged phospholipids (Hancock and 
Chapple 1999; Shai 2002). AMPs can interact with the outer 
membrane, disturbing its physical integrity, and may also be 
translocated across the membrane and act on internal targets 
(Hancock and Sahl 2006). AMPs exhibit activity against bacte-
ria, fungi, viruses, and cancer (Cardoso et al. 2020; Hwang et al. 
2011; Oshiro et al. 2019; Rodrigues et al. 2019; Saido-Sakanaka 
et al. 2004). In addition, these peptides can act indirectly by 
stimulating the host’s immune system (Ageitos et al. 2017; Han-
cock 2001; Ward et al. 2013; Wang et al. 2016; WHO 2014). 
Therefore, this review summarized the application of AMPs as 
growth promoters with potential for livestock, as an alternative 
to traditional antibiotics, in an effort to control AMR.

Concern about growth promoters in livestock

As mentioned, the most common growth promoters applied 
in livestock are antibiotics (AGPs). However, the excessive 

use of antimicrobials has already contributed to the emer-
gence of global public health problems, such as antimicro-
bial resistance, hypersensitivity responses, and damage to 
normal bacterial biota (Ronquillo and Hernandez 2017; 
Bacanlı and Başaran 2019). Thus, concern about the risks 
associated with AGPs in livestock and the consequences for 
human health has been increasing (Hughes and Heritage 
2004; Marquardt and Li 2018; Tona 2018; Ma et al. 2020).

AMR development generally occurs through mutations 
(vertical AMR acquisition) and gene horizontal transfer 
(horizontal AMR acquisition) (Nadeem et al. 2020; Vidovic 
and Vidovic 2020). Occurrence of vertical AMR acquisition 
may be related with the exposure of bacterial populations 
to antibiotics, even in low concentrations. In this situation, 
any mutation that confers partial or full resistance against 
these antibiotics can be positively selected and transferred to 
subsequent generations, and this resistance may be against 
a specific antibiotic or a whole class (Tenover 2006; Davies 
and Davies 2010; Vidovic and Vidovic 2020). Horizontal 
AMR acquisition may occur by transference of resistant 
genetic elements such as plasmids or transposons, by 
horizontal transfer such as conjugation, transduction, or other 
mechanisms. Such processes can provide resistance against 
several antibiotic classes (Fig. 1) (Tenover 2006; Medina 
et al. 2020; Nadeem et al. 2020; Vidovic and Vidovic 2020).

Some studies estimated that approximately 90% of anti-
biotics applied in farm animals can be excreted by urine 
and/or feces. Furthermore, a number of antibiotics applied 

Table 1   Antibiotics employed 
as growth promoters in livestock

Adapted of Brown et al., 2017; Ronquillo and Hernandez, 2017

Class Antibiotic Spectrum Growth promotion

Aminoglycosides Neomycin Narrow spectrum Cattle
Gentamicin Broad spectrum Cattle, Swine
Spectinomycin Sheep
Streptomycin Chickens, Swine, Sheep, Cattle

Penicillins Penicillin G potassium Broad spectrum Chickens
Penicillin G procaine Chickens, swine

Ionophores Lasalocid sodium Broad spectrum Cattle
Salinomycin Cattle, Swine
Narasin Swine
Monesin Cattle

Macrolides Erythromycin Broad spectrum Chickens
Tylosin Broad spectrum Swine
Tilmicosin Narrow spectrum Chickens

Streptogramins Virginiamycin Broad spectrum Chickens, swine
Tetracyclines Oxytetracycline Broad spectrum Chickens, swine, sheep, cattle

Chlortetracycline
Β-lactam Amoxicillin Narrow spectrum Chickens, swine, sheep, cattle

Ampicillin Broad spectrum
Penicillin V Narrow spectrum Swine

Bacitracin Polypeptides Narrow spectrum Bovine
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in animals can be stored in tissues such as muscle, milk, 
eggs, and fat. These residues can be dispersed by water and 
waste-water systems, or by fertilizers that employ manure, 
and cause the contamination of soil and consequently affect 
the soil microbiota, water, and plants (Ronquillo and Her-
nandez 2017; Iwu et al. 2020). Humans can be contaminated 
by AGPs in different ways, by ingestion in food, including 
milk, eggs, and meat, or by consuming water with residues 
of AGPs (Ben et al. 2019; Kraemer et al. 2019).

In this context, regulatory agencies, such as the Euro-
pean Commission and the US Food and Drug Administra-
tion (FDA), have established limits for antibiotic residues in 
animal foods (European Commission 1998; FDA 2016; FAO 
2018). In 2006, the use of AGPs was completely banned 
in the European Union countries, and the use of antibiot-
ics is permitted only for veterinary purposes (ten Doeschate 
and Raine 2006). In recent years, countries such as Canada, 
India, China, and Malaysia have restricted the use of AGPs 
in livestock, but many countries do not present any formal 
restrictions on AGPs (Brown et al. 2017; Ronquillo and Her-
nandez 2017; Salim et al. 2018; Bacanlı and Başaran 2019; 
Ben et al. 2019).

Thus, in recent years, the use of AGPs has been reduced 
and gradually replaced by effective dietary supplements, 
such as probiotics and/or prebiotics, enzymes, and novel 
antimicrobial peptides. In addition, the application of anti-
biotics in livestock requires control and prudence (Ma et al. 
2020; Magnusson 2020; Patel et al. 2020).

Antimicrobial peptide growth promoters

Antimicrobial peptides (AMPs) display a broad spectrum 
of activity against bacteria, fungi, viruses, and cancer, and 
these characteristics have already been widely discussed 
(Cardoso et al. 2020; Hwang et al. 2011; Rodrigues et al. 
2019; Saido-Sakanaka et al. 2004). Normally, the activity 
of AMPs can be related to bacterial membrane interaction. 
This interaction can occur associated with ion channel/
pore formation and/or detergent-like effect, indicating the 
molecular basis of their attraction to membranes (Brogden 
2005; Nguyen et al. 2011). Furthermore, AMPs display dif-
ferent modes of action, like membrane disruption, increased 
membrane permeability, and/or disturbances in key cellular 
processes by interacting with intracellular targets (Yeaman 
and Yount 2003; Nguyen et al. 2011; Wimley and Hristova 
2011; Sani and Separovic 2016). Besides, the use of AMPs 
as a growth promoter has demonstrated beneficial effects 
on nutrient digestibility, the intestinal microbiota, intestinal 
morphology, and immune function activities (Fig. 1) (Liu 
et al. 2008; Xiao et al. 2015; Gadde et al. 2017).

In this regard, studies using lactoferricin-lactoferrin 
(LF-chimera) were used to supplement piglet feed. The 
results demonstrated an increase in body weight and in the 
average daily gain (ADG) of 13.3 and 29.3%, respectively, 
compared with pigs fed control diets (Tang et al. 2012). 
Other studies tested the growth and digestive capacity 
after administering AMPs in poultry and pigs (Wang et al. 
2016). The use of synthetic AMPs, such as AMP-A3 and 
AMP-P5 (both derived from the amino acid substitution 
of Helicobacter pylori-HP and cecropin-magainin2 fusion, 

Fig. 1   Mechanism of action 
of antibiotics and antimicro-
bial peptides used as growths 
promoters
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respectively), increased the efficiency of gain of wean-
ling pigs and broilers, with additional benefits concerning 
nutrient uptake and intestinal morphology. The maximal 
AMP concentrations tested were 90 and 60 mg kg−1 for 
AMP-A3 and AMP-P5, respectively. The results showed 
the effect for both body weight increases and intestinal 
injury reduction (Choi et al. 2013; Yoon et al. 2012, 2013, 
2014). Another study evaluated the response of pig anti-
bacterial peptides (PABP) in growth performance and 
small intestine mucosal immune responses in broilers. 
The authors reported that this PABP added to drinking 
water (20 and 30 mg/L) or supplemented in feed (150 
and 200 mg/kg) can enhance growth performance, raise 
the intestinal ability to absorb nutrients, and improve the 
mucosal immunity of the intestine (Bao et al. 2009).

A different group used the AMP Epinephelus lanceo-
latus piscidin (EP), heterologously expressed and used as 
a dietary supplement for Gallus gallus domesticus. Treat-
ment groups included control, and EP supplemented the 
diet at different doses (0.75, 1.5, 3.0, 6.0, and 12%). The 
results indicated that EP supplementation increased G. 
domesticus weight gain, feed efficiency, IL-10, and IFN-γ 
production, when compared to control (Tai et al. 2020). 
The pediocin A from Pediococcus pentosaceus FBB61 
was tested by Grilli et al. (2009) as feed supplementa-
tion, and also tested against the Clostridium perfringens 
proliferation in broilers. The authors used a control group 
and another group where 80 AU.g−1 of pediocin A was 
added to the feed. The broilers were fed for 21 days, and 
they were challenged with culture of C. perfringens type 
A, which was administered by mouth on days 14, 15, and 
16, twice daily (106 cfu/broiler). According to the authors, 
supplementation with pediocin A increased broiler growth 
performance during the challenge with C. perfringens 
(Grilli et al. 2009).

AMPs can also be used as AGPs in aquaculture, as 
described by Gyan et al. (2020). The application of AMPs 
can enhance the innate immune system, and boosts growth 
performance and disease resistance in Pacific white leg 
shrimp. In this study, different concentrations of AMP were 
tested in feed supplementation (0% until 1%). The results 
demonstrated the optimum concentration of AMP is 0.4% 
(400 g/kg). Researchers also observed that excess AMP in 
supplementation negatively affected the growth performance 
and immune system of the shrimp. Other studies which dem-
onstrate efficient results using AMPs as growth promoters in 
livestock are shown in Table 2.

Concluding remarks and prospects

In the last 70 years, AGPs have been synonymous with 
productivity in livestock farming. However, the extensive 
use of these growth promoters has contributed to the devel-
opment of bacterial strains with antimicrobial resistance. 
Antimicrobial resistance represents a worldwide problem 
and is treated with concern by the WHO. Hence, the Euro-
pean Union and the USA have limited the use of antibiotics 
in animal production. In an attempt to maintain livestock 
production, studies using AMPs as growth promoters have 
taken place, showing effective results in animal weight 
gains, and in some cases improving host immunity.

AMPs can therefore be an excellent way to substitute anti-
biotics due to characteristics such as a lower risk of inducing 
antimicrobial resistance, good inhibitory effects, and ease 
of degradation. Further studies using AMPs will allow a 
better understanding of the effects on the gastrointestinal 
ecosystem, and this will enable the best use of antimicrobial 
peptides for economic efficiency and sustainable livestock 
production.

Table 2   Antimicrobial peptides as growth promoters

AMP Source Target bacteria Animal Reference

Microcin J25 Escherichia coli E. coli, Salmonella sp. Broilers Wang et al. 2020
Pediocin A Pediococcus pentosaceus Clostridium perfringens Broilers Grilli et al. 2009
Plectasin Pseudoplectania nigrella E. coli, Salmonella sp. Broilers Ma et al. 2019
RSRP Oryctolagus cuniculus-sacculus 

rotundus
E. coli Broilers Aguirre et al. 2015

Lactoferrin (bLf) Bos taurus E. coli, Salmonella sp. Broilers Cao et al. 2007; 
Tang et al. 2012; 
Messaoudi 
et al.2012

SMXD51 Lactobacillus salivarius Campylobacter jejuni Poultry Ceotto-Vigoder 
et al. 2016; 
Kogut et al. 2013

BT Brevibacillus texasporus Salmonella enterica serovar 
Enteritidis

Neonatal poultry Kogut et al. 2012
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