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Abstract
Gut microbiota have a significant impact on host physiology and health, and host genetics and diet are considered as two
important factors, but it is difficult to discriminate the influence of each single factor (host or diet) on gut microbiota
under natural conditions. Moreover, current studies of avian microbiota mainly focus on domestic or captive birds, and it
is still uncertain how host and diet take part in changing avian gut microbiota composition, diversity, and function in the
wild. Here, high-throughput sequencing of 16S rRNA was used to identify the gut microbiota communities for sympatric
wintering Great Bustards and Common Cranes at different diets. The results showed that 8.87% operational taxonomic
units (OTUs) were shared among all sampling birds; in contrast, 39.43% of Kyoto Encyclopedia of Genes and Genomes
(KEGG) functional pathways were common among all individuals, indicating the existence of gut microbiota conser-
vatism both in microbiota structure and function. Microbiota abundance and diversity differed between Great Bustards
and Common Cranes in a specific wintering site, and microbiota variation was detected for the same host species under
two different sites, suggesting that the change of gut microbiota was induced by both host and diet. Furthermore, we
found that changes of both microbial communities and functional pathways were larger between hosts than those
between diets, which revealed that host might be the dominant factor determining microbiota characteristics and func-
tion, while diet further drove the divergence of gut microbiota. Gut microbiota functions appeared to be more conserved
than bacterial community structure, indicating that different bacteria may function in a similar way, while microbiota
OTU diversity might not be necessarily associated with functional diversity. With diet shifting, gut microbiota changed
both in terms of microbial communities and functional pathways for the sympatric birds, which implies that avian
habitats and their physiological microbiota would be influenced by different farmland management regimes.

Key points
• Gut microbiota can be shaped by both diets and hosts in sympatric species.
• Host was the dominant factor shaping the gut microbiota communities and functional pathways.
• Gut microbiota were conservative both in structure and in function, but more conservative in function.
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Introduction

Gut microbiota have a significant impact on host physiology
and health among a variety of animals. Microbes can inter-
vene in digestion, metabolism, pathogen protection, immuni-
ty, and even organ development (Al-Asmakh et al. 2014;
AlHilli and Bae-Jump 2020; Xue et al. 2020). For birds, the
composition and characteristics of gut microbiota are different
from other animals due to their unique and complex diets,
physiological traits, and migration strategies (Song et al.
2020). The study of microbial diversity and function contrib-
utes to understanding of avian physiology and adaptive
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capacity to variable environments (McWhorter et al. 2009),
and there is a growing shift towards understanding
microbiome variation in wild animals.

Gut microbial structure and function are determined by
variable factors. Human activities, sex, age, habitat environ-
ment, diet, host, season, and even migration can impact bac-
terial composition and function (Bermingham et al. 2018;
Chang et al. 2016; Hu et al. 2018; Luo et al. 2017; Wu et al.
2018). In addition, researchers have found that land use
change has host-specific effects on gut microbial communities
among six avian species due to the interaction between diet
changes and hosts (San Juan et al. 2020). In some studies, host
genetics is the most key factor influencing host bacterial com-
position, while geographic distribution has little impact (Hird
et al. 2015), and gut microbiota has more strong response on
host species than habitat type (San Juan et al. 2020).

Foraging habitats and niches are similar or dissimilar
among sympatric animals, which exist in the same region.
Although sympatric species consume common diet resources,
their gut microbiota are quite different both in communities
and diversity (Perofsky et al. 2019; Xiang et al. 2019). The
divergence of bacterial communities in sympatric
overwintering birds caused by diets and hosts was found in
Grus monacha and Anser anser domesticus (Fu et al. 2020b).
By investigating the gut microbiota of sympatric animals, it
will help to control interfering factors (e.g., host, diet, season,
habitat) and facilitate differentiating impacts for a given
factor.

Eastern population of Great Bustard (Otis tarda dybowskii)
is a typical steppe bird, as well as a long-distance migration
bird, flying 2000 kilometers from Mongolia to China for
overwintering (Kessler et al. 2013). The population size of
eastern Great Bustard is approximately 1600–2200 (Liu
et al. 2017) and is still struggling to survive with a decreasing
trend (Alonso and Palacin 2010; Collar et al. 2017). Almost all
eastern Great Bustards winter in northern and central China
and spend 4 months of their history life in scattered wintering
habitats (Kessler et al. 2013; Mi et al. 2014). A percentage of
40.55% eastern Great Bustards feed and roost in the farmland
(Li et al. 2021), meaning they largely dependent on farmland,
and a series of potential risks influence their wintering secu-
rity, including crop planting uncertainty, pesticide residues,
poor concealment of overwintering grounds, reduced food
diversity, and even nutritional stress, as well as power line
collisions and irregular human interference near overwintering
grounds (Jiang 2004; Liu et al. 2018; Tian and Zhang 2006).

Besides those threatening factors, eastern Great Bustards
have to compete with sympatric birds for space and food, and
the obvious competitor is Common Cranes (Grus grus) during
the wintering season, where it can be often seen that Great
Bustards and Common Cranes feed together in the same farm-
land (Fig. 1). Common Cranes are widely distributed, with a
population size of 21,632 to 22,401 in China, and conduct an

enormous distance migration in eastern China (Kanai et al.
2002; Youhui and Hong 2003). Although Common Cranes
are wetland birds, they also have to rely on farmlands for food
because of severe wetland loss and degradation (Li et al.
2020). Both Great Bustards and Common Cranes rely heavily
on farmlands to overwinter by consuming the agricultural
food and roosting in the farmland habitats (Liu et al. 2018;
Mi et al. 2016; Yu et al. 2008; Zhan et al. 2007). Migrating
birds are able to adapt to the local environment by regulating
their gut microbiota in response to the diet variations follow-
ing their arrival to the wintering grounds (Davidson et al.
2020a; Wang et al. 2019; Wu et al. 2018); however, how the
sympatric overwintering birds respond in gut microbiota is
well worth exploring.

In this study, we aimed to analyze the composition and
diversity of gut microbial communities of sympatric
overwintering Great Bustards and Common Cranes, and fur-
ther tested the impacts of diet and host on the gut microbiota of
both farmland-dependent birds. Finally, the metabolism and
function profiles of the gut microbiome were investigated for
each species at different diets, and the relationship between
microbiota structure changes and function alterations has been
examined.

Materials and methods

Study area and sample collection

Fecal samples of Great Bustards and Common Cranes
were gathered from wintering sites in the Jinzhou,
Liaoning province, and Xinxiang, Henan province, in
December 2017 (Fig. 1). In the Jinzhou wintering area,
peanut and rice farmlands provide the main food for Great
Bustards and Common Cranes, while in the Xinxiang
wintering area, wheat seedlings and corn are the main
food. The food composition and structure were kept stable
across patches of farm fields in each specific sampling
region. According to the wintering survey of bird popula-
tion size, there were 52 and 285 Great Bustards in Jinzhou
and Xinxiang, respectively, and 51 and 2000 Common
Cranes in Jinzhou and Xinxiang, respectively. The fresh
fecal samples were collected after the birds flew away,
and only fecal samples with a minimum distance interval
of 5 m were collected in order to avoid recollecting fecal
samples from the same individual. We only focused on
the same bird flock and collected the fecal samples from
individuals living in the same flock. In addition, we only
collected the aboveground part of feces in order to avoid
collecting the soil and shedding leaves on the ground,
which might be potential environmental sources of bacte-
ria. For individuals, we classified the sample type by host
and diet, for example, Great Bustard with wheat diet
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(GB_W), Great Bustard with peanut diet (GB_P),
Common Crane with wheat diet (CC_W), and Common
Crane with peanut diet (CC_P). Notably, agricultural
grains in harvested farmlands are the main and stable food
for them to overwinter, though they also eat other wild
grasses (Liu et al. 2018). Forty-eight fecal samples were
collected in total, and each group had twelve samples. All
samples were immediately frozen and stored at −20°C in
the wild and later stored at −80°C in the laboratory.

DNA isolation, amplification, and sequencing

Fecal DNA isolation was carried out using the QIAamp DNA
Stool Mini Kit (Valencia, Germany). Two blank DNA extrac-
tions were included to detect cross-contamination during the
DNA isolation process. The highly variable V3-V4 region of
bacterial 16S rRNA was chosen and amplified using primers
515F (5’- GTGCCAGCMGCCGCGGTAA -3’) and 806R
(5’- GGACTACHVGGGTWTCTAAT -3’) (Caporaso et al.

Fig. 1 a Sampling sites of Great Bustard and Common Crane in Jinzhou, Liaoning province, and Xinxiang, Henan province. b Great Bustards and
Common Cranes overwinter together in farmland
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2012). The polymerase chain reaction (PCR) reactions were
performed in a total of 50 μl volume, using 0.5 μl AmpliTaq
Gold DNA Polymerase (Waltham, MA, USA) and 3 μl of
DNA template. The PCR cycling conditions were set as fol-
lows: firstly, an initial denaturing at 95°C for 5 min; then
followed by 30 cycles of 95°C for 35s, 56°C for 30s, and
72°C for 35s; and finally finished with an extension of 72°C
for 10 min. After quantifying the PCR products using
NanoDrop 2000 (Waltham, MA, USA), PCR products were
pooled in equal-molar concentrations, and purified PCR prod-
ucts were sequenced using the Illumina MiSeq sequencing
platform (San Diego, CA, USA) at Shanghai Sangon
Biotech Co. Ltd (Shanghai, China).

Statistical analysis

Reads quality checking, filtering, and demultiplexing were
done using the standard operating procedure with QIIME ver-
sion 2 (Bolyen et al. 2019). UCHIME2 was used to remove
amplicon sequencing chimeras (Edgar et al. 2011). The clean
sequences were clustered into operational taxonomic units
(OTUs) with a sequence similarity threshold of 97% and
assigned to taxa using the SILVA v132 bacterial taxonomy
database (Quast et al. 2013). By checking the taxonomy as-
signment results, OTUs identified as chloroplasts, mitochon-
dria, or archaea were removed from the dataset.

In order to examine the sequencing effectiveness, rarefac-
tion curves were made with observed unique amplicon se-
quencing variants and Shannon index for each sample in R
package BiodiversityR (Kindt and Kindt 2019). Three indica-
tors of microbiome diversity and richness, Shannon index,
inverse Simpson index, and Chao1 index (Chao 1984;
Magurran 1988; Simpson 1949), were calculated, and the dif-
ference was tested between hosts for a given diet using
phyloseq (McMurdie and Holmes 2013) and ggplot2
(Ginestet 2011). The standard deviation of each indicator
was shown. For indicators that did not follow the normal dis-
tribution after a Kolmogorov-Smirnov test (p < 0.05), the non-
parametric Kruskal-Wallis test was conducted in the R pack-
age ggpubr (Kassambara 2020). Based on relative abundance,
the Mann-Whitney test was applied to test the abundance dif-
ference of core phyla between groups in SPSS version 21 (Cor
2012).

Hierarchical clustering heatmap was built with the Ward
clustering algorithm based on Bray-Curtis distance for the top
100 genera. To measure inter-sample diversity, beta diversity
was analyzed between samples based on the Bray-Curtis dis-
tance using Microbiome (Ernst et al. 2020) and phyloseq
(McMurdie and Holmes 2013). Statistical significance of host
and diet differences was assessed through analysis of similar-
ities (ANOSIM) with R package vegan (Oksanen et al. 2013).
In order to visualize the gut microbiota profile between hosts
and between diets, principal coordinates analysis (PCoA) was

performed using Microbiome Analyst (Chong et al. 2020;
Dhariwal et al. 2017).

The core microbiota shared by most samples were identi-
fied using Microbiome (Ernst et al. 2020). The core microbi-
ota was dominant OTUs at over 1% relative abundance level
and shared among at least 25% of the samples. Venn diagrams
were plotted using VennDiagram to visualize the amount of
OTUs shared by groups and associated with host and diet
(Shade and Handelsman 2012).

Microbiota taxa significantly associated with host and diet
was also tested using Linear discriminant analysis Effect Size
(LEfSe) (Segata et al. 2011) within Microbiome Analyst
(Chong et al. 2020; Dhariwal et al. 2017), which applies both
the factorial Kruskal-Wallis test and linear discriminant anal-
ysis (LDA) to estimate effect size (Thorsen et al. 2016). Alpha
value for the test among classes was set as 0.05, and threshold
on the logarithmic LDA score for discriminative features was
set as 2.0, which can be interpreted as the degree of consistent
difference in relative abundance between features in the two
classes of analyzed microbial communities (Segata et al.
2011).

The molecular functions of each OTU were predicted by
identifying gene copy numbers using PICRUSt (Langille et al.
2013). Metabolism and functions of the avian gut microbiome
were annotated based on the KEGG database, which was used
to inform the biological system and comprehend the
microbiome functions (Kanehisa et al. 2014). Molecular func-
tions were predicted and summarized into KEGG pathway
functions and 41 level II pathway categories. Based on
KEGG pathway functions, the alpha diversity and its signifi-
cance (Mann-Whitney test) between groups were calculated
by using phyloseq (McMurdie and Holmes 2013) and ggplot2
(Ginestet 2011). To observe the difference between groups,
hierarchical clustering heatmap was made with theWard clus-
tering algorithm for level II pathway categories and statistical
significance was also assessed through ANOSIM analysis by
using R package vegan (Oksanen et al. 2013).

Results

Gut bacterial communities and relative abundance

The total abundance was 1,913,151 across all 48 samples
occupying all OTUs, with 39,857 reads per sample on aver-
age. A total of 7063 OTUs were identified and assigned, be-
longing to 25 phyla, 49 classes, 74 orders, 175 families, and
462 genera. Great Bustards had 22 phyla, 40 classes, 66 or-
ders, 143 families, and 329 genera, and Common Cranes
contained 22 phyla, 47 classes, 71 orders, 168 families, and
372 genera. The rarefaction curves uncovered that the se-
quencing depth of each sample reached saturation, meaning
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the microbiome communities were well represented
(Supplemental Fig. S1).

Venn diagram showed that 27.60% OTUs were shared by
CC_P and CC_W, followed by 23.86%OTUs between GB_P
and CC_P, 23.37% OTUs in GB_W and CC_W, and 21.57%
OTUs in GB_P and GB_W (Fig. 2a). Based on the flower
diagram, the percentages of unique OTUs belonging to
GB_P, GB_W, CC_P, and CC_W were 11.27% (796),
7.28% (514), 21.21% (1498), and 16.52% (1167), respective-
ly, with an average percent of 14.07% (Fig. 2b). All groups
shared 626 OTUs (8.87%), including the generaAkkermansia,

Lactobacillus, Planococcus, Pseudomonas, Rhizobium,
Alistipes, Subdoligranulum, Barnesiella, Gemmiger, and
Coprococcus. Based on the threshold of prevalence (25%)
and detection (0.1%), the 61 most frequent core OTUs were
identified and shared among four groups, including the five
phyla Firmicutes (49.15% OTUs), Proteobacteria (20.34%
OTUs), Verrucomicrobia (10.17% OTUs), Bacteroidetes
(6.78% OTUs), and Actinobacteria (5.08% OTUs).

At the phylum level, 20, 19, 20, and 20 phyla were identi-
fied in GB_P, GB_W, CC_P, CC_W, respectively.
Firmicutes, Proteobacteria, Verrucomicrobia, and

Fig. 2 a The Venn diagram of the OTUs in all samples among four
groups. b The unique OTUs belonging to each group. c The boxplot of
phylum composition based on relative abundance among four groups.

CC_P, Common Crane with peanut diet; CC_W, Common Crane with
wheat diet; GB_P, Great Bustard with peanut diet; GB_W, Great Bustard
with wheat diet
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Actinobacteria were the dominant phyla in all groups, occu-
pying 84.74–97.37% of the overall bacterial community (Fig.
2c). Furthermore, the three enriched phyla were Firmicutes,
Proteobacteria, and Verrucomicrobia in Great Bustards, while
in Common Cranes, they were Firmicutes, Proteobacteria, and
Actinobacteria. No significant difference was found in
Firmicutes to Bacteroidetes ratio between diets for any spe-
cies; however, Great Bustard had a significantly lower
Firmicutes to Bacteroidetes ratio (7.60) than Common
Cranes (82.11) (N = 48, Z = −5.938, p = 0.000) (Table 1).
The relative abundance of Verrucomicrobia differed both be-
tween hosts and between diets, and it was higher in Great
Bustard (26.97%) than that in Common Crane (2.00%) (N =
48, Z = −5.918, p=0.000), and higher in peanut (21.11%) than
that in wheat (7.86%) (N = 48, Z = −2.103, p=0.035).

At the genus level, 462 genera were found across 48 sam-
ples, and genus composition was dissimilar among four
groups. The abundant genus Akkermansia was significantly
decreased in GB_W (13.82%) compared to that in GB_P
(39.65%) (N = 24, Z = −3.406, p=0.001). In contrast, the
dominant genus Lactobacillus was not significantly higher
in CC_W (40.69%) than that in CC_P (19.54%) (N = 24, Z
= −1.386, p = 0.166). GB_P and GB_W had 304 and 242
genera, only 24 (7.89%) and 28 (11.57%) genera with a rela-
tive abundance larger than 0.005; however, CC_P and CC_W
harbored 315 and 287 genera, with 18 (5.7%) and 15 (5.2%)
genera having a relative abundance larger than 0.005. The top
50 genera with the highest abundance uncovered a large var-
ious microbial composition in each group, ranging from 75.81
to 85.74%, and common genera shared by all groups were
Lactobacillus, Akkermansia, and Catellicoccus.

Effects of host and diet on microbiota diversity

Alpha diversity revealed that the microbiota diversity varied
between different diets even for the sympatric species (Fig. 3a,

Table 2). In Great Bustards, higher inverse Simpson was
yielded in wheat diet (30.78 ± 11.86) compared to that in
peanut diet (9.18 ± 7.18) (p = 0.0001), and Shannon index
showed the consistency (wheat: 4.26 ± 0.30, peanut: 3.15 ±
0.81, p = 0.0001), but no significant difference was observed
for Chao1 index. However, it was almost the opposite in
Common Cranes, with wheat diet being significantly lower
than peanut diet in inverse Simpson (CC_W: 3.24 ± 1.48,
CC_P, 6.72 ± 3.41, p = 0.0001), Shannon (CC_W: 1.98 ±
0.38, CC_P, 3.04 ± 0.40, p = 0.0001) and Chao1 index
(CC_W: 794.55 ± 227.08, CC_P, 1324.11 ± 142.08, p =
0.0001). For a given wheat diet, Great Bustards had higher
Shannon (4.26 ± 0.30) than Common Cranes (1.98 ± 0.38) (p
= 0.0001), and inverse Simpson index showed a similar trend
(GB_W: 30.78 ± 11.86, CC_W, 3.24 ± 1.48, p = 0.0001), but
no difference was observed for Chao1 index. On the other
hand, no difference was found in the inverse Simpson index
between Great Bustards and Common Cranes for peanut diet,
but the Chao1 index was significantly lower in GB_P (848.97
± 174.85) compared to that in CC_P (1324.11 ± 142.08) (p =
0.0001).

The ANOSIM analysis showed significant clustering of
samples according to both host and diet, with a relatively
higher difference between hosts for any diet than between
diets for any host (Table 3). In agreement, PCoA based on
Bray-Curtis distance revealed that different bacterial compo-
sition was characterized by host and diet (Fig. 4). PCoA1 and
PCoA2 explained 29.8% and 13.8% of the total variation.
Furthermore, the heatmap (based on Bray-Curtis distance)
within the top 100 genera supported the gut microbial com-
munity was separated between host groups, and then divided
by different diets (Supplemental Fig. S2).

Specific gut bacterial taxa related to host and diet were
identified based on LEfSe analysis. Great Bustards were sig-
n i f ican t ly assoc ia ted wi th 4 phylum- leve l taxa
(Verrucomicrobia, Firmicutes, Bacteroidetes, and

Table 1 The significant difference between host and diet in dominate phyla (Mann-Whitney test)

GB_P/GB_W CC_P/CC_W GB_P/CC_P GB_W/CC_W Great Bustards/Common Cranes Peanut/wheat

Firmicutes to Bacteroidetes ratio N = 24 N = 24 N = 24 N = 24 N = 48 N = 48

Z = −0.577 Z = −0.520 Z = −4.157 Z = −4.157 Z = −5.938 Z = −0.021
p = 0.564 p = 0.603 p = 0.000 p = 0.000 p = 0.000 p = 0.984

Verrucomicrobia N = 24 N = 24 N = 24 N = 24 N = 48 N = 48

Z = −3.406 Z = −2.483 Z = −4.157 Z = −4.099 Z = −5.918 Z = −2.103
p = 0.001 p = 0.013 p = 0.000 p = 0.000 p = 0.000 p = 0.035

Proteobacteria N = 24 N = 24 N = 24 N = 24 N = 48 N = 48

Z = −1.501 Z = −0.173 Z = −0.404 Z = −0.462 Z = −0.557 Z = −1.423
p = 0.133 p = 0.862 p = 0.686 p = 0.644 p = 0.578 p = 0.155

CC_P, Common Crane with peanut diet; CC_W, Common Crane with wheat diet; GB_P, Great Bustard with peanut diet; GB_W, Great Bustard with
wheat diet
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Table 2 Mean and standard
deviation of alpha diversity
indexes based on OTUs among
four groups

Group Inverse Simpson Index Shannon Index Chao1 Index

Mean Standard deviation Mean Standard deviation Mean Standard deviation

GB_P 9.18 7.18 3.15 0.81 848.97 174.85

GB_
W

30.78 11.86 4.26 0.30 821.72 126.84

CC_P 6.72 3.41 3.04 0.40 1324.11 142.08

CC_W 3.24 1.48 1.98 0.38 794.55 227.08

CC_P, Common Crane with peanut diet; CC_W, Common Crane with wheat diet; GB_P, Great Bustard with
peanut diet; GB_W, Great Bustard with wheat diet

Fig. 3 a The boxplot of three alpha niches about four groups based on
OTUs. b The boxplot of alpha diversity based on KEGG pathway
functions. The asterisk (*) on the top means the significance between
groups (****p = 0.0001, ***p = 0.001, **p = 0.01, *p = 0.05, NS.

indicates no significance, Mann-Whitney test). CC_P, Common Crane
with peanut diet; CC_W, Common Crane with wheat diet; GB_P, Great
Bustard with peanut diet; GB_W, Great Bustard with wheat diet
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Synergistetes) and 8 class-level taxa (Clostridia,
Verrucomicrobiae, Bacteroidia, Betaproteobacteria,
Synergist ia , Negativicutes, Erysipelotrichia, and
Deltaproteobacteria), while 2 phyla (Proteobacteria and
Actinobacteria) and 5 classes (Bacilli, Gammaproteobacteria,
A l p h a p r o t e o b a c t e r i a , A c t i n o b a c t e r i a , a n d
Epsilonproteobacteria) were characterized significantly asso-
ciated with Common Cranes. Bacteria in 3 phyla
(Verrucomicrobia, Actinobacteria, and Synergistetes) and 7
classes (Bacilli, Verrucomicrobiae, Alphaproteobacteria,
Actinobacteria, Betaproteobacteria, Synergistia, and
Deltaproteobacteria) were significantly related to peanut diet,
while wheat diet was significantly linked to 3 phyla
(Proteobacteria, Firmicutes, and Bacteroidetes) and 6 classes
(Clos t r id ia , Gammaproteobac te r ia , Bac te roid ia ,
Epsilonproteobacteria, Negativicutes, and Erysipelotrichia)
(Supplemental Fig. S3).

Effects of host and diet on gut microbiome functions

A total of 6909 KEGG pathway functions were identified
based on the KEGG database, ranging from 6262 in CC_P
to 5197 in GB_W. Of these KEGG pathways, 2469
(39.43%) were shared in all groups. At level II KEGG
functional category, the dominant functional categories
identified included membrane transport (13.61%), carbo-
hydrate metabolism (10.49%), and amino acid metabolism
(9.86%).

Significantly different abundances of KEGG functional
pathways were observed in gut metagenomes of Great
Bustards and Common Cranes (p = 0.001). For the same
species, diet has a significant effect on the abundance of
KEGG functional pathways (p = 0.029) (Table 4). By com-
paring the functional diversity between hosts or between
diets, neither inverse Simpson nor Shannon index showed
a significant difference between diets, revealing no func-
tional diversity change due to diet shift (Fig. 3b). In con-
trast, a significant difference in functional diversity was
found between hosts in terms of the same diet (Fig. 3b).
The heatmap of the 41 level II KEGG pathway categories

showed that the metabolic pathways were different among
groups (Fig. 5). In particular, compared with the GB_P
group, the GB_W group was more significantly enriched
in the digestive system, and the CC_P was significantly
abundant in cardiovascular diseases, cell communication,
cellular processes, and signaling, digestive system, sensory
system, and xenobiotics biodegradation and metabolism
(Fig. 5; Supplemental Table S1). Such functional pathway
separation by host and diet was also supported by
ANOSIM analysis, revealing that 80.49% level II pathway
categories were significantly different between Great
Bustards and Common Cranes for peanut diet, and
92.68% for wheat diet, and only 63.41% level II pathway
categories were significantly different between peanut and
wheat diets (Supplemental Table S1). Specifically, CC_P
and CC_W differed significantly in amino acid metabolism
(p = 0.008), and energy metabolism (p = 0.002), but not
between GB_P and GB_W (Supplemental Table S1). In
contrast, GB_P was significantly different from GB_W
with regard to the signaling molecules and interaction (p
= 0.002) and lipid metabolism (p = 0.001). The results
indicated that specific KEGG metabolic pathways were
related to both host and diet (Supplemental Table S1).

Table 3 The ANOSIM analysis
of OTUs based on Bray-Curtis
between groups

Comparison ANOSIM statistic R p value Permutations Set seed

GB_P/GB_W 0.564 0.001 999 8000

GB_P/CC_P 0.994 0.001 999 8000

GB_W/CC_W 1 0.001 999 8000

CC_P/CC_W 0.387 0.001 999 8000

CC_P/CC_W/GB_P/GB_W 0.792 0.001 999 8000

CC_P, Common Crane with peanut diet; CC_W, Common Crane with wheat diet; GB_P, Great Bustard with
peanut diet; GB_W, Great Bustard with wheat diet

Fig. 4 Principal coordinates analysis (PCoA) based on Bray-Curtis dis-
tance. CC_P, Common Crane with peanut diet; CC_W, Common Crane
with wheat diet; GB_P, Great Bustard with peanut diet; GB_W, Great
Bustard with wheat diet
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Discussion

Exploring the microbiota difference of sympatric host species
would help discriminate the effects of environmental factors,
such as diet or geographical location. In previous studies,
some have focused on a single species in multiple habitats
(Davidson et al. 2020a, b; Liu et al. 2020) or different species
in varied environments (Risely et al. 2018). However, the
similarity of foraging preferences could result in the microbi-
ota similarity for species inhabiting in different environments,
which means the environmental effects might be masked (Fu
et al. 2020a; Mikaelyan et al. 2015). In this study, the micro-
biota profiles and functional pathways were explored in sym-
patric wintering Great Bustards and Common Cranes for the
first time.

The results revealed that 8.87%OTUswere shared by sym-
patric wintering Great Bustards and Common Cranes (Fig.
2a, b), and this percentage was almost consistent with other
microbiome studies in the avian species (Grond et al. 2017;
Hird et al. 2015; Liu et al. 2020), supporting the existence of
microbiota conservatism. At the phylum level, Firmicutes,
Proteobacteria, Verrucomicrobia, and Actinobacteria were
the dominant phyla among all four groups, accounting for
84.74–97.37% of the overall bacterial community (Fig. 2c),
which was in accordance with studies on other birds, includ-
ing turkeys (Wilkinson et al. 2017), great tits (Davidson et al.
2020b), neotropical birds (Hird et al. 2015), and 74 bird spe-
cies from Equatorial Guinea (Capunitan et al. 2020). The mi-
crobiota conservatism among birds was also supported in
Grus monacha and Anser anser domesticus (Fu et al.
2020b), Anser cygnoides (Wu et al. 2018), Dumetella
carolinensis (Lewis et al. 2016), and some neotropical birds
(Hird et al. 2015). This might be a long-term evolutionary
consequence of microbiota and host species, because these
microbiota communities play an important role in digestion,
energy intake, and other vital functions (Flint et al. 2008;
Fujio-Vejar et al. 2017; He et al. 2019; Speirs et al. 2019).

Microbiota diversity was different within sympatric species
between diets, as well as being different between hosts,

suggesting that both host and diet took part in shaping micro-
biota diversity. The ANOSIM analysis indicated both host and
diet significantly affected microbiota relative abundance, and
the statistic R was higher for host compared to that for diet
(Table 3), suggesting host is the dominant factor influencing
microbiota communities, and diet promoted a further diver-
gence based on the diet niche difference for the sympatric
species. This finding was further supported by PCoA and
heatmap of the gut microbial community of the top 100 genera
(Fig. 4 and Supplemental Fig. S2). However, it did not show
the same pattern in OTU diversity and richness. Compared to
the significance between other groups (p = 0.0001), lower
significance of inverse Simpson (p > 0.05) and Shannon index
(p = 0.01) was found between hosts with peanut diet. In addi-
tion, the trends of the two indexes (inverse Simpson and
Shannon index) between hosts are completely opposite
(Great Bustard: wheat diet was significantly higher than pea-
nut diet; Common Cranes: peanut diet was significantly
higher than wheat diet, p = 0.0001). Chao1 index changes
showed no consistency between hosts and between diets (only
those of Common Cranes and peanut diet were significant, p =
0.0001) (Fig. 3a). These results revealed that changes in intes-
tinal microbiota diversity and richness were diverse among
hosts, implying that peanut and wheat diets have different
effects on the intestinal microbiota of different hosts, and it
may be caused by the various adaptations of different hosts to
different diets.

Firmicutes to Bacteroidetes ratio was significantly lower
for Great Bustards (7.60) than that for Common Cranes
(82.11), suggesting a dissimilar adaption to the environment
for Great Bustards and Common Cranes. Firmicutes to
Bacteroidetes ratio contributed to absorb calories efficiently
and defend intestinal pathogens (He et al. 2019), and the in-
creased ratio was associated with gut dysbiosis (De Angelis
et al. 2015). The species-specific adaptive strategy to the en-
vironment was also supported by the KEGG functional path-
ways, with Great Bustards having higher abundance of envi-
ronmental adaptation pathway than Common Cranes (p <
0.01), but this situation was not found between diets

Table 4 The ANOSIM analysis
of KEGG pathway functions
based on Bray-Curtis

Comparison ANOSIM statistic R p value Permutations Set seed

GB_P/GB_W 0.323 0.001 999 8000

GB_P/CC_P 0.839 0.001 999 8000

GB_W/CC_W 0.585 0.001 999 8000

CC_P/CC_W 0.321 0.001 999 8000

CC_P/CC_W/GB_P/GB_W 0.566 0.001 999 8000

Great Bustards/Common Cranes 0.675 0.001 999 8000

Peanut/wheat 0.079 0.029 999 8000

CC_P, Common Crane with peanut diet; CC_W, Common Crane with wheat diet; GB_P, Great Bustard with
peanut diet; GB_W, Great Bustard with wheat diet
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(Supplemental Table S1) (Fig. 5). Moreover, the
Verrucomicrobia phylum was enriched in Great Bustards
(Supplemental Fig. S3a) and higher abundance of the
Akkermansia genus (belonging to Verrucomicrobia) was ob-
served in Great Bustards (N = 48, Z = −5.918, p = 0.000),
which indicated Great Bustards had healthier guts than
Common Cranes (Fujio-Vejar et al. 2017). The results sug-
gested that Common Cranes might develop different defense
abilities from Great Bustards, and diet cannot change host
pathogen resistance. Additionally, Great Bustards had health-
ier bacterium and stronger environmental adaptation than
Common Cranes. One reason for this may be the fact that

Great Bustards had overwintered in farmland for centuries
because of the destruction of grassland, while Common
Cranes had not been overwintering in farmland for long
(Palacín et al. 2012; Yan 1982).

The KEGG pathway categories heatmap, not strictly divid-
ed by hosts, was different from that based on the top 100
genera (Fig. 5, Supplemental Fig. S2, and Supplemental Fig.
S4), indicating that functional communities were more stable
than microbiota abundance and diversity. Such a disparity
may have resulted from the fact that different OTUs perform
similar or identical functions. In addition, functional differ-
ences were also related to diet. Peanuts have higher lipid

Fig. 5 Heatmap of KEGG
pathway categories based on
Bray-Curtis distance among
groups. CC_P, Common Crane
with peanut diet; CC_W,
Common Crane with wheat diet;
GB_P, Great Bustard with peanut
diet; GB_W, Great Bustard with
wheat diet
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content than wheat, while wheat is richer in carbohydrate than
peanuts (Zhao 2020; Zhou et al. 2020). Functional pathway
abundance, such as amino acid metabolism, metabolism of
other amino acids, energy metabolism, and lipid metabolism,
was significantly higher for peanut diet than that for wheat diet
in Common Cranes; in contrast, it was significantly lower in
glycan biosynthesis and metabolism. The ANOSIM analysis
based on level II pathway categories suggested 53.66% level
II pathway categories were significantly different between di-
ets, but 75.61% between hosts (Supplemental Table S1), to
some extent suggesting host might pose a stronger influence
on bacterial functions than diet. However, it cannot be ignored
that some pathwayswere not significant in specific diet or host
(e.g., amino acid metabolism, infectious diseases, lipid metab-
olism), which suggested specific diet and host may have week
impacts on specific functions, indicating researchers may need
to carefully balance the importance and effect of diet and host
on specific physiological function both in the wild and in the
lab. For migratory birds, life history characteristics at different
stages may pose selection pressures on the gut microbiota
(Turjeman et al. 2020), and the intrinsic and extrinsic factors
impacting gut microbiota need to be investigated in the future.

In conclusion, the effects of host and diet on gut microbiota
abundance, diversity, and functional pathways were investi-
gated in sympatric wintering Great Bustards and Common
Cranes. The effect of host has been discriminated to some
extent from diet, suggesting host is the dominant factor deter-
mining the microbiota communities, and diet is another driver
to further cause gut microbiota difference. The microbiota
function appeared to be more conserved than OTU communi-
ty compositions, and different bacteria may achieve the same
function in a similar way, while microbiota OTU diversity
might not be necessarily associated with functional diversity.
The effects of land use–type change on wildlife are still diffi-
cult to be measured because diet did not show a strong influ-
ence on gut microbiome function, though bacterial communi-
ty alterations were significantly different. The sympatric
overwintering birds, Great Bustards and Common Cranes,
have similar migratory routes and feeding habits; however,
the response of gut microbiome to diet change was different,
and it can be inferred that species-specific defense ability to
intestinal pathogens may be developed.
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