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Abstract
Biorefineries are core facilities for implementing a sustainable circular bioeconomy. These facilities rely onmicrobial enzymes to
hydrolyze lignocellulosic substrates into fermentable sugars. Fungal co-cultures mimic the process of natural biodegradation and
have been shown to increase certain enzyme activities. Trichoderma reesei and its many mutant strains are major cellulase
producers and are heavily utilized as a source of carbohydrate-active enzymes. Several reports have demonstrated that T. reesei
co-cultures present higher enzyme activities compared with its monocultures, especially in the context of β-glucosidase activity.
The performance of T. reesei during co-culturing has been assessed with several fungal partners, including Aspergillus niger, one
of the most recurrent partners. Various aspects of co-cultivation still need further investigation, especially regarding the molecular
interactions between fungi in controlled environments and the optimization of the resulting enzyme cocktails. Since plenty of
genetic and physiological data on T. reesei is available, the species is an outstanding candidate for future co-culture investiga-
tions. Co-cultures are still a developing field for industrial enzyme production, and many aspects of the technique need further
improvement before real applications.

Key points
• T. reesei co-cultures are an alternative for producing lignocellulolytic enzymes.
• Several reports suggest an increase in certain enzyme activities in co-cultures.
• More in-depth investigations of co-cultures are necessary for advancing this field.
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Introduction

As awareness of environmental problems caused by the linear
fossil-based economy grows, society is slowly moving to-
wards a more circular bioeconomy. Lignocellulosic
biorefineries are core facilities for this new model, utilizing
lignocellulosic residues to produce new biotechnological
products in a sustainable manner (Silva et al. 2017).
Biorefineries rely on enzymes to decompose plant residues
into fermentable sugars. Such enzymes generally come from
microbial sources, such as bacteria and fungi (Adrio and
Demain 2014). The fungus Trichoderma reesei is a major

workhorse in the carbohydrate-active enzyme industry. The
industrial strain T. reesei RUT-C30 is utilized for its outstand-
ing production of cellulases, sometimes yielding approximate-
ly 100 g L−1 of protein in submerged cultures (Bischof et al.
2016).

Cellulases are a generic denomination for enzymes special-
ized in deconstructing cellulose, the major component of plant
cell walls, and thus, the major component of lignocellulosic
feedstocks (LCFs). These lignocellulosic materials are the
most suitable substitutes for fossil fuels because of their ver-
satility and sustainability. A great challenge in the new
bioeconomy is the conversion of lignocellulosic biomass into
fermentable sugars, which in turn can be converted into
biofuels and other bioproducts. This objective is, however,
often hindered by the cost of the enzymes.

Not even T. reesei and its many mutant strains are perfect
cellulose degraders. It is well known that the production of β-
glucosidase, the enzyme responsible for hydrolyzing
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cellobiose into two glucose monomers, is low in this fungus
(Bischof et al. 2016; Grous et al. 1985; Okeke 2014). The
imbalance betweenβ-glucosidase and the other cellulases cre-
ates a bottleneck at the end of the hydrolysis chain due to
feedback inhibition of cellobiose over other cellulases
(Sørensen et al. 2013).

Several approaches can be employed to improve enzyme
cocktails. At the strain level, modifications, such as random
mutagenesis (Bischof et al. 2016) and genetic engineering
(Chen et al. 2020), have been employed to improve T. reesei
enzyme expression. The carbon source can also be modified
by pre-treatment (Kumar and Sharma 2017) and liquefaction
(Cunha et al. 2014) techniques, increasing the enzyme pro-
duction and improving enzymatic access to the substrate.

Another alternative for improving enzyme cocktails is to
cultivate two or more fungi with complementary enzyme ac-
tivities to create a more diverse and robust enzyme pool. This
technique is referred to as a co-culture. There are still very few
investigations addressing fungal co-cultures; some of them
show promising results. In this review, co-cultures of
T. reesei, the major cellulase producer, have been discussed,
highlighting culture partners, major findings, and future chal-
lenges of this largely unmapped field.

Lignocellulose degradation and co-cultures

Lignocellulose is a complex network of carbohydrates
and lignin and is composed of three major components:
cellulose, hemicellulose, and lignin. Cellulose is com-
posed of glucose monomers linked together by linear
β-1,6 glycosidic bonds (Cosgrove 2014). Hemicellulose
is a heterogeneous compound with a myriad of carbo-
hydrate polymers, such as xylans, xyloglucans, and
mannan (Moreira and Filho 2008; Scheller and
Ulvskov 2010). Lignin is a complex polyphenolic net-
work and is one of the major causes of recalcitrance of
the plant cell wall owing to its non-repetitive structure
(Espiñeira et al. 2011). Further, the presence of pectin, a
gel-like structure composed of galacturonic acid poly-
mers, helps keep all the aforementioned constituents to-
gether (Daher and Braybrook 2015). Due to its com-
plexity, lignocellulose degradation is not efficiently ac-
complished by a single organism in nature. It is actually
a long process involving many organisms across space
and time. Different microorganisms are specialized in
degrading different portions of the lignocellulosic mate-
rial. For example, T. reesei is a good cellulose degrader,
but lacks enzymes responsible for lignin degradation,
which are present in white rot fungi (Kong et al. 2017).

Saprophytic fungi compete over space in decaying ligno-
cellulosic substrates when multiple species are present simul-
taneously. While doing so, they employ several strategies,

such as secretion of inhibitory volatile and diffusible organic
compounds (Hiscox et al. 2018; Siddiquee 2014), to outcom-
pete other fungi (Fig. 1). They may also increase the expres-
sion of oxidative stress-related (Igarashi et al. 2018; Ujor et al.
2018), lignin-modifying, and carbohydrate-active (Igarashi
et al. 2018) enzymes. The latter strategy is of special biotech-
nological interest, since it could potentially improve the pro-
duction of commercially important enzymes.

Since lignocellulosic degradation is a slow process, differ-
ent species of fungi can colonize the same material over time.
In such cases, the first colonizer modifies the substrate, creat-
ing either a suitable or an inhibitory environment for other
species (Ottosson et al. 2014). This relationship creates a suc-
cession of different species over time on the same lignocellu-
losic substrate, depending on the microbial community pres-
ent (Ottosson et al. 2014).

As stated, nature rarely utilizes a single organism to per-
form a certain task. This concept of co-culturing a microbial
consortium can be applied to industrial microbiology and is
already being used in the food and beverage industry
(Bokulich et al. 2014; Hymery et al. 2014). It can also be
applied to the production of lignocellulosic enzymes by co-
culturing more than one fungus to obtain enzyme cocktails
that differ from their monoculture counterparts (Sperandio
and Filho 2019).

Fig. 1 a A hypothetical fungal interaction between Trichoderma reesei
(green) and another fungus on a decaying tree trunk. During fungal inter-
actions, the participants secrete a myriad of diffusible and volatile organic
compounds (DOCs and VOCs, respectively) in order to outcompete the
other species. The fungi also secrete more enzymes to better utilize the
available substrate and harvest sugars to fuel their growth and combative
metabolism. b The combination of fungal enzymes achieves a more com-
plete degradation of the lignocellulosic substrate. Green and red geomet-
ric shapes represent T. reesei and other fungal enzymes, respectively,
acting on lignocellulosic fibers. Empty circles represent the carbohydrate
portion, whereas the brown straight line represents lignin
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T. reesei and its co-cultures with Aspergillus
niger

T. reesei was first isolated during World War II as a fungus
known to degrade US military equipment in the South Pacific
(Do Vale et al. 2014). The first strain was denominated as
“QM6a,” and all the hypercellulolytic mutants available today
are derived from it (Bischof et al. 2016). Currently, the mutant
T. reesei RUT-C30 is the standard strain used for cellulase
production.

T. reesei is a reasonable choice for using in a co-culture. It
has an outstanding ability to produce cellulases and has a low
β-glucosidase activity (BGA), the disadvantage that has to be
mitigated (Rana et al. 2014). Among the studies already con-
ducted with T. reesei, one of the most common partners in the
co-culture is A. niger.

A. niger is an ascomycete belonging to the black Aspergilli
group (Abarca et al. 2004). This species is commonly found in
soil and is also a frequent food contaminant (D’hooge et al.
2019). A. niger has a worldwide distribution, and some spec-
imens have even been isolated from the International Space
Station (Abarca et al. 2004; Romsdahl et al. 2018). Several

industrial applications, such as the production of organic
acids, foods, pharmaceuticals, and enzymes, rely on A. niger
strains (Abarca et al. 2004; D’hooge et al. 2019; Papagianni
2007), many of which possess theGenerally Regarded As Safe
(GRAS) title.

A. niger is a rational co-culture choice for T. reesei consid-
ering its secretion of β-glucosidases (Ahamed and Vermette
2008; van Munster et al. 2014). Theoretically, A. niger could
provide the final enzyme cocktail with higher BGA, while
avoiding many other costs, such as double fermentation struc-
ture, downstream processing of enzymes, and mixing of two
independent cocktails. Many positive results in this regard
have already been obtained and have been compiled in
Table 1. However, loss in the activity of certain enzymes, such
as reduction in endoglucanase activity (EGA) by 49%
(Rabello et al. 2014) and 30% (Kolasa et al. 2014), has also
been reported.

Reduction in the activity of certain enzymes is one of the
known challenges of co-cultivation. This can occur due to
different culture conditions that may not be suitable for all
the organisms involved. In the T. reesei/A. niger co-culture,
the latter strongly acidifies the medium when inoculated

Table 1 Summary of co-culture reports utilizing Trichoderma reesei in combination with Aspergillus niger, including type of culture and carbon
source

T. reesei strain A. niger strain Type of culture and C-source Enzyme activitya Reference

Recombinant T. reesei RUT-C30 A. niger NL02 SmF with steam-exploded corn stover + 34% FPA
+ 10% CBA
+ 40% EGA
+ 739% BGA

Zhao et al. (2018)

T. reesei RUT-C30 A. niger SsF with wheat bran − 49% EGA
+ 1550% BGA
+ 129% XA

Rabello et al. (2014)

T. reesei RUT-C30 A. niger SsF with wheat bran + 1650% BGA
− 3.2% CBA
− 30% EGA

Kolasa et al. (2014)

T. reesei RUT-C30 A. niger NL02 SmF with steam-exploded corn stover + 30% FPA
+ 300% BGA

Fang et al. (2013)

T. reesei LM-UC4 A. niger ATCC 10864 SmF with lactose + 200% FPA
+ 250% protein

secreted

Gutiérrez-correa and
Villena (2012)

T. reesei RUT-C30 A. niger BC-1 SsF with rice straw + 9.5% FPA
+ 27.2% EGA
+ 78.2% BGA
+ 65.1% XA

Dhillon et al. (2011)

T. reesei M (QM 9414 mutant) A. niger SsF with wheat bran + 169% FPA
+ 200% BGA

Deshpande et al. (2008)

T. reesei Qm-9123 A. niger SsF with paper-mill sludge + 178% substrate
utilization

+ 500% EGA
+ 600% BGA

Maheshwari et al. (1994)

Some of the calculations were extracted from Sperandio and Filho (2019)

SmF submerged fermentation, SsF solid-state fermentation, BGA β-glucosidase activity, CBA cellobiohydrolase activity, EGA endoglucanase activity,
FPA filter paper activity, LA laccase activity, LiP lignin peroxidase activity, MnP manganese peroxidase activity, XA xylanase activity
a Approximate percentage of increase/decrease in enzyme activity, protein secreted, or substrate utilization compared to T. reesei monoculture
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before the former, thus, creating suboptimal conditions for the
former (Maheshwari et al. 1994). To better understand such
relationships, studies regarding the order and ratios of inocu-
lation for each participant are extremely relevant (Kolasa et al.
2014; Ma and Ruan 2015).

Results of co-cultures may vary greatly even when the
same species are utilized, as can be seen in Table 1. In case
of A. niger, apart from the culture conditions, one of the pos-
sible factors contributing to this variation is the misidentifica-
tion of the microorganism. Many Aspergilli in the section
Nigri are morphologically similar; thus, solely relying onmor-
phological identification can be misleading (D’hooge et al.
2019). Molecular identification of strains is highly recom-
mended, when possible, to confirm the identity of A. niger.

Proteomic analysis is another crucial tool to understand the
interaction between A. niger and T. reesei. Florencio et al.
(2016) investigated the secretome of both fungi and monocul-
tures, under submerged and sequential cultivation, using sug-
arcane bagasse as a carbon source. They found that only 27%
and 29% of total proteins are common between the two culti-
vation methods for T. reesei and A. niger, respectively. If
changing the cultivation method has such an impact on the
secretome content, it is very likely that co-cultivation will also
have the same impact. The secretome of both fungi has been
studied elsewhere (Borin et al. 2015; di Cologna et al. 2018),

but never as co-cultures. The data already available for
A. niger and T. reesei secretomes will undoubtedly facilitate
future comparisons, once co-culture studies of this nature are
published.

T. reesei co-cultures with other fungi

Apart from A. niger, other Aspergilli have been co-cultured
with T. reesei. Brijwani et al. (2010) co-cultured T. reeseiwith
A. oryzae using solid-state fermentation (SsF), with soybean
hulls and wheat bran as carbon sources. They obtained a
64.6% increase in filter paper activity (FPA) and a 70% higher
BGA in comparison to T. reesei monocultures. Kolasa et al.
(2014) found an impressive increase of more than 1000% in
BGA upon co-cultivating T. reesei RUT-C30 and
A. saccharolyticus under SsF, with wheat bran as the carbon
source. Influence of the order of inoculation of the participants
on the final enzyme activity was also observed in the study.
Simultaneous inoculation of both T. reesei RUT-C30 and
A. saccharolyticus resulted in an almost 2-fold increase in
BGA compared to cultures with a 48-h delay in Aspergillus
inoculation. However, for EGA, the same 48-h delay yielded
almost three times better results. Findings of the

Table 2 Summary of co-culture reports utilizing Trichoderma reesei as a participant, including type of culture and carbon source

T. reesei strain Fungal partner(s) Type of culture and C-source Enzyme activitya Reference

T. reesei Monascus purpureus SsF with wheat straw + 20% FPA
+ 20% EGA
Same XA

Fatma et al. (2020)

T. reesei QM 9414 Aspergillus fumigatus M51 SmF with sugarcane straw − 33% XA
− 90% FPA

Campioni et al. (2020)

T. reesei Coprinus comatus SmF with corn
Stover, corn cobs and wheat bran

Same EGA
− 44% XA
+ 21% LAb

Ma and Ruan (2015)

T. reesei RUT-C30 Aspergillus saccharolyticus SsF with wheat bran + 1025% BGA
+ 29% CBA
− 15% EGA

Kolasa et al. (2014)

T. reesei RUT-C30 Phanerochaete chrysosporium
Burdsall

SmF with pumpkin residues + 92% BGA
+ 66% EGA
+ 110% CBA
+ 37% LiPb

+ 110% MnPb

Yang et al. (2013)

T. reesei LM-UC4 Aspergillus phoenicis QM329 SmF with lactose + 136% FPA
+ 150% protein secreted

Gutiérrez-correa and
Villena (2012)

T. reesei (ATCC26921) Aspergillus oryzae (ATCC 12892) SsF with soybean hulls and
wheat bran

+ 64.6% FPA
+ 70% BGA
+ 67.3% EGA
− 2.1% XA

Brijwani et al. (2010)

Some of the calculations were extracted from Sperandio and Filho (2019)

SmF submerged fermentation, SsF solid-state fermentation, BGA β-glucosidase activity, CBA cellobiohydrolase activity, EGA endoglucanase activity,
FPA filter paper activity, LA laccase activity, LiP lignin peroxidase activity, MnP manganese peroxidase activity, XA xylanase activity
a Approximate percentage of increase/decrease in enzyme activity or protein secreted compared to the T. reesei monoculture bApproximate percentage
of increase/decrease in enzyme activity compared to the other fungus
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aforementioned studies and more examples of co-cultures be-
tween T. reesei and other fungi have been compiled in
Table 2.

Cases where the monocultures performed better than their
co-cultures have also been reported. Campioni et al. (2020)
co-cultured T. reesei QM 9414 with T. harzianum and two
strains of A. fumigatus in submerged fermentation (SmF),
using sugarcane straw as the carbon source, and all combina-
tions had lower xylanase and cellulase activities compared to
T. reesei QM 9414 cultured alone (Table 2). T. reesei QM
9414 and A. fumigatus M51 co-culture resulted in 90% and
33% reduction in FPA and xylanase activity, respectively,
compared to the monoculture of the former (Campioni et al.
2020).

Another recurrent strategy is to co-culture T. reesei strains
with white-rot fungi, basidiomycetes capable of secreting
lignin-degrading enzymes (Alfaro et al. 2014). As a defense
mechanism, white-rot fungi can secrete more lignin-degrading
enzymes, such as laccases and manganese peroxidase, when
cultivated with other fungi compared to their monocultures
(Igarashi et al. 2018; Mali et al. 2017). Mixing the capacity
to produce such enzymes with the cellulolytic capabilities of
T. reesei could, theoretically, create an enzyme cocktail that
fully degrades all lignocellulose components. Yang et al.
(2013) co-cultured T. reesei RUT-C30 with Phanerochaete
chrysosporium, a white-rot fungus, under SmF, utilizing
pumpkin residues as the carbon source. The study reported
an increase in the activity of all carbohydrate-active enzymes
analyzed in the co-culture compared to T. reeseimonoculture,
as well as higher lignin-degrading activities compared to
P. chrysosporium monoculture (Table 2).

As reported by Ma and Ruan (2015), co-cultivation of
T. reesei with Coprinus comatus under SmF, with a complex
lignocellulosic mixture as the carbon source (Table 2), result-
ed in the same EGA as T. reesei alone. There was also a 44%
decrease in xylanase activity compared to T. reesei monocul-
tures. However, this co-culture achieved a 21% increase in
laccase activity in relation to C. comatus monoculture.

Conclusion

Natural biodegradation of lignocellulosic residues is achieved
in nature by microbial co-cultures. From a biotechnological
perspective, T. reesei co-cultures with both A. niger and other
fungi have shown an improvement in the activity of certain
enzymes, especially β-glucosidase, which T. reesei is defi-
cient in. Thus, the technique is a promising alternative for
producing new enzymatic cocktails for biorefineries,
expanding the frontiers of the new bioeconomy.

To date, co-culturing is a trial-and-error exercise, with lim-
ited predictability. Lack of information about the molecular
interactions between the participants hinders any rational

design of co-cultures. This is a challenge for all co-cultures,
and not just for those utilizing T. reesei. Future studies must
focus on utilizing omics approaches to unveil the molecular
interactions between fungi in industrial cultivation environ-
ments. In addition, the evaluation of co-cultures in large-
scale experiments is necessary before this technique can be
effectively employed in real biorefineries.

Co-culturing filamentous fungi for enzyme production still
poses many challenges and unanswered questions that must
be addressed in order to fully harness the potential of this
technique. It is very likely that major advances in co-cultures,
especially those utilizing T. reesei, will be achieved in the
coming years. Co-cultures show promising results as an inex-
pensive and effortless way of obtaining enzymes and should
be further investigated as a new source of enzymes for
biorefineries.
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