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Abstract
In recent years, extracellular vesicles have gained more attention. However, studies on membrane vesicles in Gram-positive
bacteria were carried out relatively late because of the thick bacterial wall and the low production of membrane vesicles. Thanks
to the research in recent years, the cognition of the composition and function of the membrane vesicles of Gram-positive bacteria
has made significant progress. Membrane vesicles are spherical in shape comprising bilayer membranous structures with a
diameter of 20–400 nm. Components of membrane vesicles are diverse, including proteins, nucleic acids, lipids, and metabolites.
It also has been reported that membrane vesicles are involved in various pathophysiological processes and serve as communi-
cation tools in pathophysiological activities between the bacteria and the host. This review provided the current understanding of
components and functions of membrane vesicles in Gram-positive bacteria. The findings might facilitate further research in the
emerging field of membrane vesicles in Gram-positive bacteria.

Key points
•Membrane vesicles in Gram-positive bacteria contain proteins, nucleic acids, lipids, and metabolites, suggesting their biolog-
ical significance.
• Membrane vesicles in Gram-positive bacteria are thought to be involved in stress response, biofilm formation, immune
regulation, and so on.
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Introduction

In recent years, extracellular vesicles (EVs) have gained more
attention (El Andaloussi et al. 2013; van Niel et al. 2018). EVs
were first discovered in eukaryotes as vesicles derived from
the plasma membrane carrying proteins, nucleic acids, and
lipids. They are mainly divided into three categories according
to their size: exosomes, microvesicles, and apoptotic bodies
(Raposo and Stoorvogel 2013). Then, EVs were also found in
prokaryotes such as bacteria (Brown et al. 2015). Bacteria are

divided into Gram-negative and Gram-positive bacteria ac-
cording to their membrane structure. The Gram-negative bac-
teria have two membrane layers separated by the periplasm.
The membrane in Gram-positive bacteria is very different
from that in Gram-negative bacteria with only one membrane
and one thicker layer of peptidoglycan. The EVs in Gram-
negative bacteria are called outer membrane vesicles
(OMVs), while EVs in Gram-positive bacteria are called
membrane vesicles (MVs) (Avila-Calderón et al. 2015).
Both OMVs and MVs are subclasses of microbial EVs.
Research on OMVs has been extensive, with many reviews
highlighting their functions (Jan 2017; Tan et al. 2018). Many
people have questioned the production of vesicles in Gram-
positive bacteria in the past because it is relatively low.
However, in the last decade, a great deal of research has been
conducted on the role of Gram-positive MVs.

MVs have been observed in all pathogenic and nonpatho-
genic Gram-positive bacteria under different growth condi-
tions and different natural environments. The secretion of
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MVs is a universal and widespread phenomenon (Toyofuku
et al. 2019). With the increase in the number of studies on
Gram-positive bacteria, such as Staphylococcus aureus,
Bacillus anthracis, and Streptococcus mutans, it was found
that MVs in Gram-positive bacteria had a 20- to 400-nm bi-
layer spherical structure (Jeon et al. 2016; Liao et al. 2014;
Rivera et al. 2010).

In this review, the current knowledge on content character-
ization and functions of MVs in Gram-positive bacteria was
discussed (Fig. 1).

Composition of MVs

The mechanism of MV biogenesis in Gram-positive bacteria
has been reviewed in some studies (Briaud and Carroll 2020;
Brown et al. 2015). A few genes found in certain bacteria have
been reported to regulate MV biogenesis. For example, the
transcription factor σB regulates MV formation in Listeria
monocytogenes (Lee et al. 2013). A two-component regulator
CovRS impacts MV production in Group A Streptococcus
(Resch et al. 2016). However, a unified gene that can be ap-
plied to all Gram-positive bacteria is still lacking. MVs in
Gram-positive bacteria are produced when a section of the
cytoplasmic membrane protrudes and buds off selectively en-
capsulating various components, and then passes through the
cell wall. Therefore, the whole process of MV biogenesis is
affected by many pathways. Turgor pressure, protease

enzymes, and protein channels are proposed hypotheses that
explain how MVs traverse thick cell walls (Brown et al.
2015). In summary, all these studies showed that MV produc-
tion is regulated by a complex gene network. Whether Gram-
positive bacteria share a conserved general mechanism for
MV biogenesis is currently unknown.

For MV composition analysis, sample concentration is crit-
ical. The separation of purified MVs is the key to mass spec-
trometry. MVs can be isolated from bacterial cultures or
biofilms. Generally speaking, MVs can be obtained by ultra-
centrifugation after the supernatant culture is filtered through a
filter with a pore diameter of 0.22–0.45 μm (Chutkan et al.
2013). It is worth noting that a typical filter with 0.22-μm
diameter might lower the yields up to approximately 50%
when the actual size of MVs is more than 200 nm under a
certain environment (Gorringe et al. 2005). However, ultra-
centrifugation is not sufficient to purify MVs from protein
aggregates or membrane fragments (Choi et al. 2013).
Larger macromolecules such as fimbriae and flagella should
be included in the MV pellet during the ultracentrifugation
method. In addition, sucralose concentration ultracentrifuga-
tion can also be used to extract bacterial MVs, but sucrose
does not fully preserve the size of MVs in the gradient. In
short, the aforementioned methods cannot remove pollutants
other than MVs. To characterize a pure population, density
gradient ultracentrifugation is one of the best methods to iso-
late bacterial MVs (Chutkan et al. 2013; Klimentova and
Stulik 2015). At present, a procedure for isolating MVs,

Fig. 1 Model of the function of Gram-positive MVs
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consisting of multiple centrifugation, filtration, and density
gradient ultracentrifugation, has replaced original methods
such as gel filtration and is used to guide the separation of
bacterial MVs (Klimentova and Stulik 2015).

With the development of omics technology, various con-
tents have been discovered, indicating the diversity of vesicle
functions. Studies on different bacteria under different condi-
tions have shown that MVs in Gram-positive bacteria contain
proteins, genetic material, lipids, and metabolites (Coelho
et al. 2019; Rivera et al. 2010). The following sections discuss
the current understanding of the components of MVs.

Proteins

Experiments have shown similarities and differences in pro-
tein components between bacteria and MVs. For example, the
analysis of the protein composition of Listeria monocytogenes
found that 296 proteins were present in both whole cells and
16 proteins were present only in the MVs, including PI-PLC,
autolysin, uncharacterized protein yabE, competence protein
ComEC/Rec2, flagellar proteins, and other uncharacterized
proteins (Karthikeyan et al. 2019). Protein localization
showed differences in the sources of vesicles. PSORTb 3.0
software was commonly used for protein localization, and the
composition of the protein localization was found to be dif-
ferent from that of Gram-positive bacteria. Most MV-related
proteins were predicted as cytoplasmic or plasma membrane
proteins, while a few were predicted as cell wall or extracel-
lular binding proteins (Rivera et al. 2010). The unique protein
composition that MVs have proteins which were only present
in MVs and that MVs can selectivity enriched with certain
proteins suggested that MVs had special functions.

MVs allow the bacteria to disperse bacterial products into
the surrounding environment. For pathogenic Gram-positive
bacteria, many MV proteins are virulent factors and toxins,
which help the bacteria exert their actions. MV-related viru-
lence factors vary according to the bacteria. For example, the
virulence factor of L. monocytogenes MVs is a toxin that can
interact with host cells and contribute to the pathogenesis of
L. monocytogenes during infection (Karthikeyan et al. 2019).
Th e v i r u l e n c e f a c t o r s o f S . mu t an s MVs a r e
glucosyltransferases, which help S. mutans colonize (Rainey
et al. 2019). For nonpathogenic Gram-positive bacteria, for
example, MV proteins have a variety of protective effects as
probiotics. In the study of Lactobacillus casei, researchers
identified MV proteins as mediators of probiotic effects of
L. casei, which are involved in the bacteria–gastrointestinal
cell interface (Dominguez Rubio et al. 2017).

The composition of MV proteins in Gram-positive bacteria
is different in different strains and environments. Many re-
searchers have performed the proteomic analysis of different
clinical strains under different culture conditions and found
that the composition of MV proteins had many common and

unique characteristics (Wagner et al. 2018). The growth me-
dium affects gene expression in bacteria, thereby altering the
number and/or content of MVs.

Nucleic acids

In Gram-negative bacteria, DNA of OMVs can be horizontal-
ly transferred between the same and different species, leading
to the transmission of bacterial resistance (Domingues and
Nielsen 2017). The related studies on Gram-positive bacteria
were carried out late. Previous studies showed that genetic
materials, including DNA and RNA, were present in MVs
isolated from Gram-positive bacteria.

DNA in Gram-positive bacteria was first reported in cellu-
lolytic Ruminococcus spp. The study reported that MVs from
wild-type bacteria could continuously “rescue” the mutants
and cause them to degrade crystalline cellulose (Klieve et al.
2005). Further studies found thatClostridium perfringens also
contained partial gene-fringed DNA (Jiang et al. 2014). In
addition, S. mutans released MV-related eDNA to improve
biofilm formation (Liao et al. 2014; Senpuku et al. 2019).

The differentially enriched intragenic RNAs inMVs, most-
ly rRNAs and tRNAs, were first reported in Group A
Streptococcus (Resch et al. 2016). However, no studies ex-
plored the possibility of RNA-level transfer mediated byMVs
in Gram-positive bacteria, which was contrary to the RNA
content of mammalian exosomes.

Lipids

Lipids are important components of MVs. The identification
of key lipid biomarkers in metabolic regulation can reveal the
mechanism underlying various life activities.

Studies have shown that MVs contain lipids, but they also
show some specific aggregation. For example, the lipids iden-
tified from Bacillus anthracis and MVs were mainly palmitic
acid and stearic acid, but considerable differences were detect-
ed in the composition of secondary lipid components. MVs
were rich in myristic and palmitic acids (Rivera et al. 2010).
The study on Streptococcus pneumoniae found that MVs had
a different fatty acid composition and were enriched in short-
chain saturated fatty acids (Olaya-Abril et al. 2014). The study
on L. monocytogenes found that unsaturated fatty acids such
as phosphatidylethanolamine and sphingolipids were more
abundant in MVs (Coelho et al. 2019). These studies showed
that the lipid components of MVs did not replicate in the
bacterial membrane, but had unique aggregation patterns.
The result suggested that MVs were produced via certain
mechanisms. One possible explanation is that short-chain sat-
urated fatty acids and unsaturated fatty acids, which are selec-
tively enriched in Gram-positive MVs, affect membrane cur-
vature and membrane fluidity. Since the membrane is more
fluid with shorter and more unsaturated fatty acids (Mercier
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et al. 2012), selective enrichment makes it easier for Gram-
positive bacteria to form and release MVs. However, the spe-
cific role of these lipid components needs further exploration.

Metabolites

The changes in metabolites indicate the influence of disease,
toxicity, gene modification, and environmental factors. The
study on bacterial vesicle metabolites is an emerging research
field (Bryant et al. 2017; Zakharzhevskaya et al. 2017).
Comparative metabolomic analyses were conducted on vesi-
cles isolated from virulent strains of Bacteroides fragilis and
nonvirulent strains, and metabolic pathways of OMVs were
reconstructed (Zakharzhevskaya et al. 2017).

Compared to the studies on the Gram-negative bacteria,
few studies explored the metabolomics of Gram-positive bac-
teria. The metabolites carried by MVs include ornithine, cit-
rate, inositol, phenylalanine, citric acid, and the key interme-
diate metabolite pyruvate (Coelho et al. 2019). The metabolic
composition ofMVs varies under different environments. Our
study compared the differences in metabolites in S. mutans
under acidic conditions and obtained 35 different metabolites.
The upregulated MV metabolites, such as betaine, trehalose,
and L-carnitine, were stress protectors, providing new infor-
mation for assessing the survival and proliferation of Gram-
positive bacteria under environmental pressure (Cao et al.
2020). The characteristics of metabolites in different types of
bacteria are not clear, which is worth further exploration.

Function of MVs

The benefits must be sufficient considering the huge energy
costs involved in producing MVs. MVs are likely to have
important biological functions based on their metabolic cost
and interesting contents (Brown et al. 2015). In recent years,
thanks to intensive research, it was soon discovered that MVs
were vital in bacterial physiology and pathogenesis. They
were thought to be involved in stress response, biofilm forma-
tion, intraspecies and interspecies communication, immune
regulation, and so on. In the following sections, the current
understanding of the function of MVs was presented.

Stress response

Bacteria are exposed to a variety of pressures, such as malnu-
trition, antibiotics, and oxidative stress, under both physiolog-
ical and clinical conditions. The bacteria increase the pressure
response, which usually includes activation of pressure sen-
sors, changes in transcription levels, and downstream changes
in bacterial envelope composition, to counteract the effects of
environmental damage on their structures (Ahn et al. 2006).
Current studies suggest that vesicle involvement in pressure

regulation is related to lipid involvement in changes in mem-
brane curvature and secretion of misfolded proteins and
metabolites.

OMVs are used as part of the general stress response mech-
anism to improve the chances of bacterial survival in Gram-
negative bacteria (Atashgahi et al. 2018; Baumgarten et al.
2012). The production of OMVs is also considered as a stress
response, which can eliminate bacterial misfolded proteins
and provide an external bait to absorb antimicrobial agents
on the cell surface (Schwechheimer and Kuehn 2015).

However, MVs in Gram-positive bacteria have been less
explored. L. monocytogenes can survive under extreme envi-
ronmental stress conditions, and the transcription factor sigma
B is involved in this survival ability (Wiedmann et al. 1998).
Studies found that a wild-type strain produces ninefold more
MVs compared with sigB mutant (Lee et al. 2013). Studies
found that the extrusion of the polar growth tissue at the hypha
tip led to the formation of MVs, which was related to the
survival of bacteria in Streptomyces venezuelae (Frojd and
Flardh 2019). In the present study, acidic conditions induced
S. mutans to produce more and smaller vesicles containing
different proteins and metabolites. The expansion of the
MVs may serve as a defensive response to acid pressure, in-
creasing the chances of bacterial survival (Cao et al. 2020).
The forementioned studies suggested that MV formation
helps Gram-positive bacteria to better adapt to environmental
stress and prevent the fatal effects of adverse environments.
On the one hand, the release of MVs can maintain the stability
of the membrane; on the other hand, MVs can carry some
stress substances out of the bacteria. MV formation is a strat-
egy for Gram-positive bacteria to respond to environmental
changes. Hence, the role of MVs in the stress response of
Gram-positive bacteria deserves further investigation.

Biofilm formation

Biofilm is considered as the main state of microorganisms in
the environment, and the formation of biofilms is an important
issue in clinic. Biofilms protect microbial growth from surface
detachment and interference by antimicrobial substances
(Kumar et al. 2017). The involvement of vesicles in biofilm
formation is related to vesicle cargos, such as eDNA as a
biofilm substrate, lipids as hydrophobic surface providers,
and adhesion-related proteins as adhesive mediators. OMVs
are crucial in the formation, communication, nutrition acqui-
sition, and defense of biofilms and are the key substances of
biofilms (Brown et al. 2015; Schooling and Beveridge 2006).

The effects of MVs in Gram-positive bacteria on biofilms
have also been reported. On the one hand, MVs can be used as
the substrate of biofilms. On the other hand, adhesion-related
enzymes in MVs are actively involved in biofilm formation.
In the Bacillus subtilis biofilm, MVs exist in the stroma and
emerge from embedded cells in the biofilm (Brown et al.

1798 Appl Microbiol Biotechnol (2021) 105:1795–1801



2014). In the Mycobacterium ulceris biofilm, MVs are con-
fined in the extracellular matrix surrounding the outer part of
the bacterial community, rather than distributed throughout
the complex biofilm structure. MVs isolated from planktonic
L. monocytogenes contain protein components of biofilms. In
S. mutans, MVs contain eDNAs and adhesive proteins that
contribute to the formation of biofilms. In particular, MVs
are easily dispersed and hence make local use of sucrose in
the surrounding environment, facilitating the colonization of
bacteria (Cao et al. 2020). MVs in S. mutans not only benefit
the formation of their own biofilms but also contribute to the
development of Candida albicans biofilm (Wu et al. 2020).

Immune regulation

The role of MVs in host immune regulation has been increas-
ingly recognized because MVs contain many immune-related
molecules and can be accepted by host cells. These immune-
related molecules include lipoproteins and toxins which could
trigger innate and adaptive immunity.

MVs in both pathogenic and nonpathogenic Gram-positive
bacteria are involved in innate immunity, in which macro-
phages, dendritic cell, and Toll-like receptor 2 (TLR2) are
the key molecules. A large number of MVs in pathogenic
bacteria can activate the host innate immune response. For
example, MVs in C. perfringens induce the release of inflam-
matory cytokine interleukin-6 (IL-6) through the TLR2 sig-
naling pathway (Jiang et al. 2014). Staphylococcus aureus
enhances the production of protein inflammatory mediators,
such as tumor necrosis factor (TNF-), IL-6, and IL-12, through
the expression of co-stimulatory molecules via the TLR2 sig-
naling pathway (Choi et al. 2015; Gurung et al. 2011). MVs in
Streptococcus suis also activate the nuclear factor kappa B
signaling pathway in single cells and macrophages, inducing
the secretion of pro-inflammatory cytokines (Haas and
Grenier 2015). In a study on MVs in nonpathogenic bacteria,
MVs derived from Lactobacillus sakei subsp. sakei
NBRC15893 enhanced immunoglobulin A production by ac-
tivating TLR2 signaling (Yamasaki-Yashiki et al. 2019). The
cell wall components of Gram-positive bacteria contain large
numbers of TLR2 ligands, such as lipoteichoic acid, teichoic
acid, peptidoglycan, and lipoprotein (Kaji et al. 2010;
Matsuguchi et al. 2003; Shida et al. 2009; Zeuthen et al.
2008). Thus, MVs in Gram-positive bacteria which also con-
tain cell wall components could work together with bacteria to
exert innate immunomodulatory effects via TLR2. To date,
lipoproteins contained in MVs have been reported to be in-
volved in immunomodulatory responses in a variety of Gram-
positive bacteria (Prados-Rosales et al. 2011; Yamasaki-
Yashiki et al. 2019).

MVs are also vital in adaptive immunity, which has also
been confirmed by relevant studies. Mice inoculated with
MVs in Streptococcus pneumoniae produced specific

antibodies (Olaya-Abril et al. 2014). S. aureus induced Th1,
Th17, and Th2 cells as well as IgG antibody responses (Choi
et al. 2015). These findings indicated an effective vaccination
efficacy of MVs in Gram-positive bacteria.

Conclusions and perspectives

The discovery of EVs is a breakthrough and provides a new
mechanism for the release of components into the extracellu-
lar environment (Avila-Calderón et al. 2015; Nagakubo et al.
2019). Studies on MVs in Gram-positive bacteria are relative-
ly few, lagging behind those on eukaryotes and Gram-
negative bacteria, due to the thick cell walls and low produc-
tion of vesicles (Brown et al. 2015). However, these MVs
deserve further exploration owing to the importance of their
functions.

The enrichment and selection of specific factors asso-
ciated with Gram-positive MVs indicated a regulatory
mechanism for MV cargo. Genetic and environmental fac-
tors also influence MV contents and regulate their release.
The molecular mechanisms underlying MV release and
cargo are still unknown, but will surely be elucidated in
recent years.

Besides the analysis of individual omics, the combined
analysis of multiple omics has become more important. In
previous studies, the analysis of single omics data was often
carried out; the relationship between the omics data and bio-
logical processes was explored through the independent anal-
ysis of each omics to explain the single information of some
species. However, single omics is far from enough for the
regulation of complex biological processes. Researchers be-
gan to integrate and analyze multiple sets of data (Biagini et al.
2015; Coelho et al. 2019; Olaya-Abril et al. 2014). In the field
of MV research, multiomics is beginning to be applied and
some important conclusions have been drawn.

The diversity of MV composition indicates the diversity of
their functions. This review briefly introduced the role ofMVs
in stress resistance, biofilm formation, and immunity, but
more roles are worth exploring. In particular, as OMVs in
Gram-negative bacteria have been used as vaccines (Jiang
et al. 2019; Pastor et al. 2021), there is great potential for the
application of MVs in Gram-positive bacteria, too.

The findings of this review might stimulate the exploration
of MVs in Gram-positive bacteria.
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