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Abstract
Hairy root (HR) culture, a successful biotechnology combining in vitro tissue culture with recombinant DNA machinery, is
intended for the genetic improvement of plants. This technology has been put to use since the last three decades for genetic
advancement of medicinal and aromatic plants and also to harvest the economical products in the form of secondary metabolites
that are significantly important for their ethnobotanical and pharmacological properties. It also provides an efficient way out for
the quicker extraction and quantification of the valuable phytochemicals. The current review provides an account of the in vitro
HR culture technology and its wide-scale applications in the field of research as well as in pharmaceutical industries. Different
facets of HR with respect to the culture establishment, phytochemical production as well as research investigations concerning
the areas of genemanipulation, biotransformation of the secondary metabolites, phytoremediation, their industrial utilisations and
different problems encountered during the application of this technology have been covered in this appraisal. Eventually, an idea
has been provided on HR about the recent trends on the progress of this technology that may open up newer prospects in near
future and calls for further research and explorations in this field.

Key points
• Genetic engineering–based HR culture aims towards enhanced secondary metabolite production.
• This review explores an insight in the HR technology and its multi-faceted approaches.
• Up-to-date ground-breaking research applications and constraints of HR culture are discussed.

Keywords Biotransformation . Genetic engineering . In vitro regeneration . Phytoremediation . Secondarymetabolites

Introduction

Hairy root (HR) culture technology is a novel biotechnologi-
cal approach that aims towards the genetic and biochemical
improvement of various important medicinal plants (Gantait
et al. 2020). An array of secondary metabolites is found in
different plants with medicinal value. Alkaloids, tannins, fla-
vonoids, phenolics and other aromatic amino acid derivatives
constitute the major bulk of these phytobiochemicals.
Naturally, these biochemicals are biosynthesised through

different metabolic pathways in plants involving different en-
zymes or their complexes. These secondary metabolites are
found in multiple plant parts such as floral buds, leaves, barks,
seeds and, most importantly, in the roots. Extraction of these
useful biochemicals (that have remarkable pharmacological,
medicinal and ethnobotanical uses) through conventional
field-grown methods would involve large-scale uprooting of
the plants and, hence, inevitable destruction of their habitat,
ecosystem and biodiversity. Such approach has pushed these
plants towards endangered category. Tomitigate this problem,
in vitro culture technology could effectively be applied for the
large-scale propagation, conservation as well as production of
secondary metabolites from these plants (Gantait et al. 2011;
Gangopadhyay et al. 2016; Panigrahi et al. 2018; Verma et al.
2018; Mukherjee et al. 2020). In this scenario, HR culture
technology also presents itself as a potential solution to the
above-mentioned problem via production and enhancement of
secondary metabolite content of these plants (Mitra et al.
2020; Das et al. 2020). These HR cultures could be then
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further employed in pharmaceutical research and product
development.

The early 1980s marks the inception of the in vitro cul-
ture studies of this technology (Willmitzer et al. 1982). HR
culture technology mainly involves the use of the soil-
inhabiting gram-negative bacteria Agrobacterium
rhizogenes (Fig. 1). Bacterial cells contain a typical plas-
mid, called ‘Ri-plasmid’ (root-inducing plasmid). During
the bacterial infection at the wounded parts of plants, the
host plant cells are transformed upon integration of the
transfer DNA (T-DNA) segments from the bacteria into
its genome (Fig. 2) (Chilton et al. 1982). This transforma-
tion is effected owing to the presence of different genes (rol
genes, i.e. rol A, rol B and rol C) in the plasmid of the
bacteria. Upon incorporation, the different genes present
in the T-DNA are encoded, and as a result, auxin and cyto-
kinins are produced (Fig. 2) that stimulate the production of
HR-like outgrowths from the wounded regions (Shanks and
Morgan 1999; Sevon and Oksman-Caldentey 2002;
Guillon et al. 2006). On the basis of opine production,
A. rhizogenes strains are of five types: octopine,
mannopine, cucumopine, agropine and nopaline (Zhou
et al. 1998), of which agropine strains serve as the preferred
choice due to their greater root induction ability. Opine
synthesising genes are located in the right border of T-

DNA. In homology to the tms1 and tms2 of Ti plasmid,
the TR-DNA contains genes for auxin production, viz.
Tms1 and Tms2 (Rawat et al. 2019). Resultant HR typifies
quick proliferative phytohormone-independent growth, in-
creased biomass and stable genetic performance with re-
spect to secondary metabolite production. This bacterium,
i.e. A. rhizogenes, also employs binary vector systems
where the genes could be carried on another plasmid inside
the cell (Tepfer 1984; Christey 1997). Further investiga-
tions in this field over years have led to diversified applica-
tions such as phytoremediation and biotransformation,
which are further elaborated in this review.

Techniques involved

For efficient development of HR cultures, various factors
like explant type and growth stage, culture conditions, bac-
terial strains, suitable media for co-cultivations, pH of the
medium and carbon source must be mulled over as these
factors influence the secondary metabolite biosynthesis. In
general, a range of explants like protoplast, leaf, cotyle-
dons, hypocotyls, shoot tips, stem, stalk, storage root and
tubers could be employed (Mugnier 1988; Han et al. 1993;
Drewes and Staden 1995; Giri et al. 2001b; Krolicka et al.

Fig. 1 Diagrammatic
representation of Agrobacterium
rhizogenes–mediated hairy root
induction in plants under natural
conditions (in vivo) (Source:
unpublished diagram of Saikat
Gantait)
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2001; Azlan et al. 2002). In most cases, young and juvenile
explants are preferred though, in some cases, it is species
dependent (Hu and Du 2006). The explants were initially
wounded using a sterile scalpel or needle and then inocu-
lated with bacterial solutions (Fig. 3). Then, explants are
co-cultivated in a semisolid medium supplemented with
suitable antibiotics such as carbenicillin disodium, cefotax-
ime sodium, streptomycin sulphate, ampicillin sodium or
tetracycline with doses ranging from 100 to 500 μg/ml.
This is performed to remove the excess bacteria present on
explant surface (Spano et al. 1988; Drewes and Staden 1995;
Giri et al. 2001b; Krolicka et al. 2001). Root induction from the
wounded places occures within 7 to 30 days. Subsequent
subculturing is done in plant growth regulator (PGR)-free me-
dium (Fig. 3). The media supplemented with heavy metal ions
of nitrate, ammonia, phosphate and other elicitors (Payne et al.
1987; Toivonen et al. 1991; Christen et al. 1992; Sevon et al.
1992) promote secondary metabolism in the cultures. Culture
conditions like light, temperature, pH and different PGR con-
centrations added to the basal media chiefly influence second-
ary metabolite production (Christen et al. 1992; Toivonen et al.
1992; Rhodes et al. 1994; Arroo et al. 1995; Bhadra and
Shanks 1995; Vanhala et al. 1998; Morgan et al. 2000).

Reporter genes such as GUS gene (β-glucuronidase)
(Hosoki and Kigo 1994), kanamycin-resistant enzyme
encoded by NPT-II gene (neomycin phosphotransferase II)
(Han et al. 1993; Qin et al. 1994) and green fluorescent protein

(GFP) encoding gene (inCatharanthus roseusL. experiments
by Hughes et al. 2002) are the most commonly used ones.

In several published reports, it was mentioned that the im-
provement in the secondary metabolite production could be
effected by a range of different approaches such as precursor
feeding, cell permeabilisation and elicitation through the use
of different agents like detergents, sonication, calcium chela-
tors, temperature and oxygen stress. The usage of the above-
mentioned techniques are found in the reports of Thimmaraju
et al. (2003a, b) and Moreno-Valenzuela et al. (2003) describ-
ing the production of betalaine from beet root and serpentine
fromCatharanthus roseusHR cultures, respectively. Notably,
the usage of chitosan, methyl jasmonate (MeJa) and vanadyl
sulphate elicitors in case of Panax ginseng stimulated
ginsenoside production (Palazon et al. 2003a), whereas
Phytophthora cinnamoni elicitors stimulated harmine and
harmaline in case of Oxalis tuberose (Bais et al. 2003). The
use of trapping agents such alumina and silica (1:1) in beet
root HR cultures in order to enhance betalaine production was
reported by Thimmaraju et al. (2004). Cross-species co-cul-
turing method for podophyllotoxin from Podophyllum
hexandrum using coniferin from Linum flavum as precursor
was mentioned in the reports of Lin et al. (2003b). Usage of
elicitors like CuSO4, MeJa in Pharbitis nil for umbelliferone
and scopoletin production (Yaoya et al. 2004), Rhizoctonia
bataticola, β-cyclodextrin and MeJa elicitors in Solanum
tuberosum for sesquiterpene production was also reported

Fig. 2 Diagrammatic
representation of the cellular
mechanism of Agrobacterium
rhizogenes–mediated
transformation of the host cell
(Source: unpublished diagram of
Saikat Gantait)
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(Komaraiah et al. 2003). Similarly, reports of Furze et al.
(1991) mention the use of metal ion elicitation by Cu2+ and
Cd2+ in case of Datura stramonium for sesquiterpenoid phy-
toalexin production. Later on, Hu and Du (2006) reported the
importance of selection of genetically true high metabolite
yielding HR lines. This is due to the ambiguity in proper
integration of T-DNA into the plant genome which may lead
to variations in the secondary metabolite production.

Applications

Wide-scale research and investigation in this field have fa-
cilitated the advancement of varied applications of HR cul-
ture technology. Some of the different prospects as explored

in the available reports on HR culture technology are men-
tioned as follows.

Source of important secondary metabolites

Different secondary phytobiochemicals have been isolated
using HR culture technology. Some of the notable examples
are artemisinin from Artemisia, indole alkaloids from
Catharanthus and Cinchona, forskolin from Coleus,
withanolides from Withania, shikonin from Lithospermum,
diosgenin from Trigonella, etc. (Table 1). Likewise, careful
maintenance and regular subculturing of Nicotiana rustica
HR lines stabilised the yield of nicotine at 300 mg/g fresh
weight. Similarly, the different published reports regarding
the quantification of products of secondary metabolism from

Fig. 3 Diagrammatic representation of the in vitro protocol for hairy root culture establishment using Agrobacterium rhizogenes and regeneration of
transformed plantlet (Source: unpublished diagram of Saikat Gantait)
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HR culturesmention the isolation of ajmaline, ajmalicine from
Rauvolfia micrantha (Sudha et al. 2003), verbascoside from
Gmelina arborea (Dhakulkar et al. 2005), sanguinarine, co-
deine from Papaver somniferum (Le Flem-Bonhomme et al.
2004) and coniferin from Linum flavum (Lin et al. 2003a).
Recent research investigations have also led to the quantifica-
tion of different phytochemicals like isoflavones from
Trifolium pratense (Kumar et al. 2017), crypto tanshinone
and tanshinone from Perovskia abrotanoides (Ebrahimi et al.
2017), withanolide from Withania somnifera (Shahjahan et al.
2017), andrographolides from Andrographis paniculata
(Mahobia and Jha 2018), flavonoids from Prosopis farcta
(Zafari et al. 2018), farnesiferol B from Ferula pseudalliacea
(Khazaei et al. 2019), verbascoside and isoverbascoside from
Rehmannia elata (Piątczak et al. 2019) and steroidal sapogenin
from Trigonella foenum-graecum (Kohsari et al. 2020). All of
these metabolites have various anti-cancerous, anti-arrhythmic,
anti-hypertensive, anti-tumour and multiple other different me-
dicinal properties. This enhancement in the production
of different valuable secondary metabolites was accomplished
by the introduction of a gene construct encoding an important
protein (enzyme) required in the metabolic pathway of the
chemical. In some cases, overexpression of the genes also led
to the increase in metabolite production. Cultures were fast-
growing and easy to maintain and synthesised more than one
phytochemical.

Study of gene function

The technique of manipulation of gene construct via which the
desired transformation through A. rhizogenes is brought about
could be further utilised for the studies of gene expression,
gene silencing and differential promoter expression levels un-
der different conditions. For example, a promoter induced by a
glucocorticoid was utilised to produce the transformed HR
cultures of Catharanthus roseus. In a glucocorticoid
dexamethasone–supplemented medium, the promoter exhib-
ited a reversible dose-regulated response (Hughes et al. 2002).
Similarly, Preiszner et al. (2001) in their experimental inves-
tigations with HR cultures of soybean reported the differences
in the response of the alcohol dehydrogenase promoter fused
with theGUS gene to different treatments of cold temperature,
abscisic acid, low oxygen stress and plant injury.

Gene transfer technology employing A. rhizogenes as
a vector

The system of binary vector of A. rhizogenes can be well
utilised to integrate foreign genes, develop gene constructs
and transfer them into different plant species. This technique
has already been applied in case of Stylosanthes (Manners and
Way 1989), potato (Visser et al. 1989), cucumber (Trulson
et al. 1986) and different crops of Cruciferae (Christey andT
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Sinclair 1992). Co-integrated Ri plasmids with incorporated
foreign genes are used for gene transfer in crops like tobacco
(Comai et al. 1985), tomato (Morgan et al. 1987) and Solanum
sp. (Davey et al. 1987). Some of the useful genes like jellyfish
protein gene, anthocyanin gene, genes for GUS assay, reporter
genes and selectable marker genes like Hpt and NPT II are
transferred (Christey 1997).

Encoding of proteins from related and unrelated taxa

Commercial utilisation of the HR cultures through insertion
and gene expression of foreign genes and proteins has been
done. Insertion of economically important genes from related
or unrelated genera in the transformed root cultures has been
achieved. It is noteworthy to mention that viral coat protein
genes like that from grapevine mosaic virus were used to trans-
form grapevine HR culture (Torregrosa and Bouquet 1997).
Similarly, transformed white clover HR culture was produced
upon the transfer of pea Lectin genes (Diaz et al. 1995).

Metabolic engineering

Manoeuvring the genetic construction of the Ri plasmid T-
DNA of HR-inducing bacteria via incorporation of alien genes
between the TL and TR of the Ri plasmid that code for the
enzymes of the concerned metabolic pathway and then trans-
form the plant cells with this gene construct is metabolic engi-
neering. This method has been lucratively exercised to enhance
alkaloid biosynthesis in Catharanthus roseus and in different
HR cultures of solanaceous plants (Palazon et al. 2003b;
Moyano et al. 2003). Production of important biomolecules
such as secreted embryonic alkaline phosphatase (SEAP) in
human (Gaume et al. 2003), GFP and ricin toxin B (RTB)
fusion proteins (from tobacco HR cultures; Medina-Bolivar
et al. 2003) and accumulation of poly-3-hydroxybutyrate
(from HR cultures of sugar beet; Menzel et al. 2003),
solanoside glycoside (from HR culture of Solanum
khasianum; Putalun et al. 2003), etc., are some of the notable
examples mentioned in the different available literature.

Biotransformation

Biotransformation deals with the conversion of naturally avail-
able phytochemicals to other biochemicals through structural
changes in the original metabolite, employing plant biosystems
in the process and thus creating novel and more useful bio-
chemicals suited to the economic use of human beings. This
leads to the production of second-generation pharmaceuticals
which have enhanced pharmacokinetics, better solubility in
biological systems and lesser toxicity. In this context, as per
the review report of Banerjee et al. (2012), HR cultures have
proven as the beneficial cultures for carrying out this process.
These cultures provide low cost, genetic stability and multi-

enzyme biosynthetic potential for this process. The different
types of biochemical reactions involved in this process in the
cultures are hydroxylation, glycosylation, oxidation, condensa-
tion, hydrolysis, hydrogenation, acetylations, methylations,
esterifications and isomerisation of various exogenously
applied substrates as seen in the findings of Giri et al. (2001a)
and Ishihara et al. (2003). The most commonly occurring bio-
transformation reaction is glucosylation or glycosylation. HR
cultures ofColeus forskohlii effectively biotransformed the eth-
anol and methanol substrates into their respective β-D-ribo-
hex-3-ulopyranosides and β-D-glucopyranosides (Li et al.
2003). Similarly, Chen et al. (2008) stated a region-selective
glycosylation in HR cultures of Panax ginseng where glyco-
sides along with glycosyl esters were produced from the two
isomers of hydroxybenzoic acid. Reduction reactions were
common in case of HR cultures of Daucus carota (Caron
et al. 2005) and Brassica napus (Orden et al. 2006) with dif-
ferential stoichiochemistry of their indigenous enzymes to the
substrates. Apart from the above two reactions, HR cultures of
four members from non-Asteraceae and six members
from Asteraceae family exhibited a condensation reaction, pro-
ducing the dimeric quinone, stilbequinone; though these reac-
tions were rarer compared to the others. In this regard, Flores
et al. (1994) reported that the addition of Pythium
aphanidermatum elicitors to the cultures biotransformed BHT
to stilbequinone. Divergence in reaction responses depend up-
on the mother plant species that is used to initiate the culture.
For instance, in the findings of Nunes et al. (2009), HR cultures
of Levisticum officinale showed differential reaction responses
to menthol and geraniol substrates. The HR cultures exhibit
acetylation, isomerisation, reduction, cyclisation and oxidation
reactions to the addition of geraniol whereas no reaction was
seen to methanol addition. Substrates reduced were mainly
carbonyl functional group conjugated with aromatic ring.

Apart from the various reaction types involved, other lab-
oratory factors affect the efficiency of biotransformation pro-
cess. The HR cultures comprising the plant families, viz.
Solanaceae, Asteraceae, Campanulaceae and Araliaceae, were
more responsive to biotransformation. It was mentioned in the
reports that responsiveness to biotransformation was more
pronounced at species level than at family level (reviewed in
reports of Banerjee et al. 2012). Interestingly, it was pointed
out by Nunes et al. (2009) and Faria et al. (2009) that the HR
cultures of Levisticum officinale and Anethum graveolens,
having the same taxonomic origin (same family), show differ-
ential responses of biotransformation to the same substrate.
Considering the strain of the bacterium A. rhizogenes, the
strains A4, ATCC 15834 and LBA 9402 proved to be more
effective than others. Regarding the basal media for
biotransformation studies, Murashige and Skoog (1962) me-
dium is the preferred choice. Sucrose was used as a carbon
source. In case of Datura tabula, favourable results in
biotransforming p-hydroxybenzyl alcohol into gastrodin were
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obtained with supplementation of media with salicylic acid
(Peng et al. 2008). Flores et al. (1994) reported 20 h as the
time taken for the reactions to complete; though in the findings
of Peng et al. (2008), the duration of up to 25 days was re-
ported. It was reported that in most of the cases, the desired
products were obtained from the media as well as the roots.

Phytoremediation

The utilisation of plants to tackle environmental pollution by
the accumulation and absorption of different heavy metal ions
or the polluting contaminants from the substratum and to alter
those into nontoxic compounds is called phytoremediation
(Suresh and Ravishankar 2004). Through recent research, it
has been found that apart from the different in vivo available
phytoremediator plants, the transgenically developed HR cul-
tures are also efficient in this detoxification process. In some
earlier reports (Agostini et al. 2003; Gujarathi et al. 2005), it is
mentioned that different crops like Helianthus annuus,
Brassica juncea and Cichorium intybus and their respective
HR cultures are efficient in cleansing up pesticides like dichlo-
rodiphenyltrichloroethane (DDT), 2,4-dichlorophenol (2,4-
DPC) and other industrial wastes.

There are different reports providing accounts of the
phytoremediation technology using HR cultures. The HR is
regarded as a model system since this technology allows to
study the cellular responses, cell signalling, gene physiologi-
cal studies and cellular abilities during countering the toxins.
Not only this, HR cultures could be utilised in phytomining
operations to obtain metal-enriched product from the plant
biomass (Boominathan et al. 2004). Under this system, trans-
location of pollutants to upper parts of the plants do not take
place. Quicker proliferation rates and stable genotypic and
phenotypic performance of these cultures further make them
favourable choices over other cell cultures. Previously men-
tioned, plant species like Brassica, Helianthus annuus and
Alyssum are good bioaccumulators that provide valuable in-
formation regarding heavy metal ion accumulation in the rhi-
zosphere and their subsequent management (Eapen et al.
2003; Nedelkoska and Doran 2001; Soudek et al. 2006). To
deal with the inorganic and organic pollutants, the genetic
architecture of the plants with respect to their ability is altered.
This genetic change could be brought about by enhancing the
intrinsic proteins that affect the ion accumulation and translo-
cation. This is brought by fortification in the gene expression
or by incorporation of related novel genes through biotechnol-
ogy. This transformation is brought about using suitable gene
constructs with plasmids that are easy to manipulate.

Citing an interesting example, Rodríguez-Llorente et al.
(2012) reported the utilisation of transgenic HR culture in
Arabidopsis thaliana to phytoremediate inorganic pollutants
through the expression of Cu-binding periplasmic protein
(CopC). The organic pollutants were countered via in vitro

HR culture of Atropa belladonna showing the expression of
a rabbit P4502E1 enzyme (Banerjee et al. 2002). Similar in-
vestigations were reported in experimental results of Wevar
Oller et al. (2005) as well as Sosa Alderete et al. (2009) where-
in tobacco and tomato HR cultures expressed a basic peroxi-
dase enzyme to detoxify phenolic compounds more efficiently
than natural-type HR. Thus, the concept ‘supertransgenic
plants through multi-transgene strategy’ was put forward
(Macek et al. 2008). Hence, the potential of HR culture for
further biotechnological interventions is explored.

Production of novel compounds or proteins

An accrual of conjugates of flavonoid glucoside in the HR
cultures of Scutellaria baicalensis Georgi. was detected when
compared to the normally occurring conjugates of glucose as
observed in the normal root cultures (Nishikawa and Ishimaru
1997).

Bringing out structural changes in the metabolite

Incorporation and subsequent expression of Antirrhinum di-
hydroflavonol genes in the HR cultures of Lotus corniculatus
led to changes in the structure of condensed tannin and their
increased accumulation in the HR (Bavage et al. 1997).
Similar instances of improved metabolite production through
genetic changes in the metabolism were mentioned in the
reports of Berlin et al. (1993) wherein the TDC gene segment
from periwinkle (Catharanthus roseus) was overexpressed in
the HR cultures of Peganum harmala that resulted in in-
creased TDC activity. Hashimoto et al. (1993) testified that
the constitutive expression of the H6H gene transferred from
Hyoscyamus niger to Atropa belladonna led to the conversion
of hyoscyamine to scopolamine in the root tissues.

Whole plant regeneration

It has been reviewed by Hu and Du (2006) that through the
addition of appropriate PGRs like 2,4-dichlorophenoxyacetic
acid (2,4-D), α-naphthaleneacetic acid (NAA) and 6-
benzylaminopurine (BAP) in the medium, the HR could be
induced to produce shoots and somatic embryos. For instance,
it was reported that the addition of 7.5–10 mg 2,4-D into the
media led to the generation of somatic embryos in the HR
cultures of Astragalus sinicus (Cho and Wildholm 2002).

Promoting root formation in vegetative propagation

For the successful perpetuation through vegetative propaga-
tion, rooting is an important aspect. So, HR culture technology
could be utilised to promote rooting in many of the recalcitrant
crops like apple, peaches, olive, Pinus spp. and Larix spp.
(McAfee et al. 1993; Bosselut et al. 2011). This is brought
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about by the introduction of the Ri plasmid ‘rol’ genes of
A. rhizogenes into the host plant genome (Rugini and
Mariotti 1991).

Study of the rhizosphere and culturing of beneficial
obligate parasites

By developing an efficient root system in different plants, the
study of root morphology, functions and rhizosphere effects as
well as plant–microorganism interactions can be performed.
Functions and the role of some secondary phytochemicals in
influencing the soil bacteria could also be studied. HR cultures
can be utilised for the culturing of beneficial fungi like the
mycorrhiza. Some of the examples mentioned are Glomus
mosseae and Gigaspora margarita fungi on the HR of
Convolvulus sepium L. (Mugnier and Musse 1987). These
root cultures can also be used for host–pathogen interaction
especially the soil-borne pathogens. Cai et al. (1997) were
successful in their experiments on developing resistance in
sugar beet to beet cyst nematode (Heterodera schachtii
Schmidt) by transforming susceptible sugar beet HR cultures
with the Hs1

pro1 gene. Further investigations regarding the
outcomes of different other pesticides and chemical on roots
and root-interacting microorganisms (both beneficial and
harmful) can be done (reviewed by Eapen and Mitra 2001).

Scaling-up process

For up-scaled commercialisation of HR cultures for pharma-
ceutical implementations, a scaling-up process is important.
There has been significant progress in the field of scaling-up
process of the HR biosystems with respect to their economic
uplift and industry-based research and development. A varied
number of bioreactors have surfaced with proficient manage-
ment facilities and with improved scientific outlook. The ex-
clusive aim of these commercial exploitations is to maximise
the benefits derived from the economically invaluable phyto-
chemicals which possess immense ethnobotanical and thera-
peutic uses. Conventional fermentors are rather unsuitable.
There are certain important factors to be kept in mind regard-
ing the setting up of HR bioreactor systems. It has to be borne
in mind that prolonged sustenance of cultures in reactor units
is vital to the profitable harvest of biochemicals. Various re-
sults from different workers show that proper aeration of the
culture medium (in case of liquid cultures) is crucial for better
circulation, uptake of nutrients and effectual economic prod-
uct biosynthesis as it optimises oxygen–carbon dioxide bal-
ance (Bhojwani and Razdan 1996). HR cultures thrive better
in suitable support systems. Varied resources put into use are
polyurethane foam (Steingroewer et al. 2013), nylon mesh
(Gangopadhyay et al. 2011) and stainless steel base
(Srivastava and Srivastava 2012). Angelini et al. (2011)

mention the use of nylon mesh in HR bioreactors for
phytoremediation studies.

Hence, the following must be kept in mind: distinctive
morphological structure of HR, oxygen requirements, etc.;
different bioreactors like air-sparged reactors (Taya et al.
1989; Rodriguez-Mendiola et al. 1991); nutrient sprinkle bio-
reactor (Kuźma et al. 2009); stirred tank reactors (Davioud
et al. 1989; Kondo et al. 1989; Hilton and Rhodes 1990;
Cardillo et al. 2010; Rahimi et al. 2012); mechanically driven
bioreactors, viz. rotary drum reactors and turbine blade reac-
tors (Kondo et al. 1989; Mitchell et al. 2006); immobilised
bioreactors like trickle-bed reactors (Flores and Curtis 1992);
nutrient mist bioreactor (Huang et al. 2004); pneumatically
driven bioreactors, viz. airlift balloon bioreactors (Ali et al.
2007); bubble column reactors (Hilton and Rhodes 1990;
Rodriguez-Mendiola et al. 1991; Kwok and Doran 1995;
Ludwig-Müller et al. 2008; Georgiev et al. 2012); etc.
However, the response to these bioreactors is species specific.
For instance, HR cultures of Artemisia annua exhibit suste-
nance for longer period in inner-loop airlift bioreactor (Liu
et al. 1998). Apart from this, airlift reactors (in case of
Solanum chrysotrichum) and mist reactors are also used
(Caspeta et al. 2005). In the experimental investigations of
Ramakrishnan and Curtis (2004) and Suresh et al. (2005), it
was stated that in mist reactors, HR cultures were hung to a
mesh support, thereby reducing the amount of culture media
and also obtaining the desired phytochemical in concentrated
form. The latter method is widely used by the ROOTec
Company. As a cost-effective approach, ‘rhizosecretion’ of
the phytochemicals could be achieved by integration of the
plant-based hydroponic system with the HR culture system
(Gaume et al. 2003).

Computer graphics–based mathematical simulation model-
ling tactics are deployed to address the various culture-related
issues of HR in bioreactors. Srivastava and Srivastava (2006)
opined that this mathematical calculative strategy can greatly
help researchers in finding the best possible combination of
micronutrients and macronutrients for HR growth in
bioreactors, leading to time economy and averting resource
wastage. Under practical conditions in general due to the
dynamicity of the plant cellular organs, exact estimation of
the growth kinetics is not possible. Hence to maximise
precision, different workers have put forward different
models, viz. Patra and Srivastava (2015) in Artemisia annua
and Thakore et al. (2015) inCatharanthus roseus. Mairet et al.
(2010) in their investigative reports have recommended dif-
ferent models to characterise HR culture, viz. branching mod-
el (based on root differentiation), metabolic model (based on
differential metabolic processes) and oxygen-limited growth
kinetic model (based on oxygen concentration in the culture).

Of late, bioreactors with novel prototypes have been put
into use to improvise the pharmaceutical applications of HR
culture as secondary biochemical resources. Some of the
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reactor systems worth mentioning are hydraulically driven
bioreactors—wave-mixed bioreactors (Huang and
McDonald 2012), temporary immersion bioreactors (Ducos
et al. 2009), microbioreactors (Diao et al. 2008), ebb-and-
flow regime bioreactors (Cuello and Yue 2008) and slug bub-
ble bioreactors (Kantarci et al. 2005).

Constraints encountered

Despite many lucrative advantages, HR culture technology is
fraught with many problems and hindrances (Ibañez et al.
2016). General problems encountered during the culturing
are as follows.

Probable chromosomal aberrations

Progressive reduction in the chromosome numbers in cultures
ofOnobrychis viciifolia Scop. was noticed over a subculturing
period ranging from 4 to 8 months. The chromosome number
of normal somatic cells (2n = 28) was found in 4.1% of
cells (Hu and Du 2006).

Genetic changes leading to gene suppression

Silencing of gene expression at later stages of subculturing in
tryptophan decarboxylase (TDC) and strictosidine synthase
(STR) transformed Cinchona officinalis L. cultures despite
earlier prolific expression levels (Greerlings et al. 1999). An
increase in the copy number of transgenes also may lead to
poor gene expression levels, leading to less harvest of a de-
sired metabolite as noticed in HR induction experiments of
Catharanthus roseus transformed with hamster HMGR
cDNA producing higher campesterol and serpentine but al-
tered levels of ajmaline and catharanthine amongst the clones
(Ayora-Talavera et al. 2002).

Regenerants showing morphological alterations

As per the available literature, the transgenic regenerants ex-
hibit changes like wrinkled and variegated leaves,
plagiotrophic rooting, altered apical dominance and poor plant
stature (Tepfer 1984; Tayler et al. 1985; Cardarelli et al. 1987;
Spano et al. 1988; Hamamoto et al. 1990). Also, leaf asym-
metry and shortened shoot length have also been reported.
These changes may be genetically occurring due to inaccuracy
in transgene insertion and somaclonal variations (Han et al.
1993).

Overexpression of gene might not always give the
expected exponential biochemical production

This condition was noticed in the experimental findings of
Koehle et al. (2002) in case of HR cultures of Lithospermum
erythrorhizon Sieb. showing no further increment in
shikonin production.

Related species exhibit differential production of
secondary metabolite

HR cultures of two related genera (Datura metel and
Hyoscyamus muticus) produce differential tropane alkaloids
(Moyano et al. 2003). Also, the background genotypic consti-
tution of the plants may impinge on the transgene expression,
as seen in the HR cultures of L. corniculatus (Carron et al.
1994).

Problems faced during phytoremediation

Problems of the HR cultures to tackle the fluctuating environ-
mental changes in view of the quantity, volume and form of
pollutants were generated out into the environment (Khandare
and Govindwar 2015). Also, the results of this technique in
field level differ significantly compared to the laboratory con-
ditions (Angelini et al. 2011). Lack of appropriate infrastruc-
ture and skilled personnel is also a problem for large-scale
operation.

Application with cutting-edge technologies

Over recent years, transcriptome sequencing has surfaced as
an innovative biotechnological advancement in improvising
the field of HR culture technology with respect to the illumi-
nation of the complex internal biosynthetic processes of
phytometabolite production in the HR cultures, thereby facil-
itating their establishment, biofortification and enhanced
secondary metabolite extraction. Bolger et al. (2014) and
Chaudhary and Sharma (2016) in their reports mention about
the boom in the scientific technology due to the advent of
these next-generation technologies of polynucleotide se-
quencing. HR cultures of different plants of medicinal value
have been analysed using this technology such as Panax
ginseng (Cao et al. 2015), Astragalus membranaceus (Tuan
et al. 2015), Salvia miltiorrhiza (Gao et al. 2014; Xu et al.
2015) and Rehmannia glutinosa (Wang et al. 2017). The gen-
erally used NGS methods were Illumina/Solexa and Roche
454. From the investigations of Yamazaki et al. (2013) in
Ophiorrhiza pumila HR culture, the information generated
from the sequencing of the cellular transcripts using
Illumina/Solexa revealed the metabolic mechanism of
camptothecin production. Similarly, Illumina techniques

45Appl Microbiol Biotechnol (2021) 105:35–53



coupled with RT-qPCR were employed in Catharanthus
roseus to expound the effects of overexpression of anthrani-
late synthase in the HR culture (Sun et al. 2016). In Centella
asiatica, it was found that cytochrome P450 hydroxylase and
carboxylase are involved in the production of metabolic inter-
mediates which ultimately yield the products asiaticosides and
madecassosides (in reports of Kim et al. 2014). In view of this,
transcriptome sequencing provides itself as an innovative way
out for studying the various metabolism pathways of
phytometabolite production in the HR cultures in view of its
high-throughput data generation and effective and quicker
characterisation of transcriptomic information.

The scaling-up process of the laboratory-based HR cultures
requires efficient and meticulous monitoring and supervision
of the cultures in the bioreactors so as to harness the invaluable
secondary phytobiometabolites. Effective utilisation of the
HR cultures under traditional methods are arduous, time con-
suming and prone to mismanagement. Hence, in sight of this,
modern methods based on in silico simulation modelling are
developed to speed up and ease out the pharmaceutical
utilisations of the HR cultures. Amongst the various recently
published works, different models utilised for HR culture are
Box–Behnken design (BBD) in Isatis tinctoria for secondary
metabolite studies (Gai et al. 2015a, b), artificial neural net-
work systems in Rauwolfia serpentina (Mehrotra et al. 2013)
for biosystem productivity studies and in Artemisia annua
(Osama et al. 2013) for evaluation studies on the influences
of different bioreactors on HR growth and agent-based model-
ling in Beta vulgaris to study the root morphological param-
eters (Lenk et al. 2014). Most of the modelling studies aim at
evaluation of various growth factors and subsequent setting up
of an optimised protocol for HR cultures in bioreactors. In
Catharanthus roseus, statistical design was used to study me-
dia condition effects on HR development (Bhadra and Shanks
1995). Similar mathematical modelling method was practised
inAzadirachta indicaHR to infer about the biomass growth of
HR culture affected by differential oxygen and mass transfer
rates (Palavalli et al. 2012). Morphological assessments
centred on root branching (Kim et al. 1995) and root elonga-
tion (Bastian et al. 2008) studies were also done. Regulation of
mist in the mist reactors is a crucial factor. Both longer and
shorter durations of mist lead to nutrient choking. Ranjan et al.
(2009), in their investigations, formulated a mathematical
way-out model to optimise the mist bioreactor specifications.
An up-to-date response surface methodology (RSM) technol-
ogy combining statistical and mathematical method has been
developed. In the published reports of Amdoun et al. (2009,
2010), this modelling tool finds its application in Datura
stramoniumHR culture for estimating the influences of media
composition and metal ion media additives for hyoscyamine
enhancement. Another dependable and noteworthy technique
is the genetic algorithm technology. Arab et al. (2016) attested
in their reports that this computer science–based methodology

utilises the principle of survival of the fittest and natural se-
lection which is experimentally achieved through stochastic
sampling. Using population parameters, this heuristic tech-
nique finds remedies to problems of HR biosystem growth
limitations such as media optimisation and root biomass–
affecting factors. In silico image analysis tool facilitates re-
searchers to develop a two-dimensional image diagram of
HR. In this context, a number of software are available such
as WinRHIZO, ROOTEDGE and PetriCam. Findings of
Flavel et al. (2017) demonstrate an improvement in the preci-
sion of their experiments upon using this tool. Lenk et al.
(2012) have testified that by using this technology, the sec-
ondary phytobiometabolite production can be determined
through root morphology surveillance. Thus, it is seen that
these computer-defined approaches help researchers in study-
ing the growth patterns and morpho-physiological responses
of the HR systems.

Genome editing has become more lucrative in recent times
with the discovery of CRISPR/Cas9 (clustered regularly
interspaced short palindromic repeats/CRISPR-associated nu-
clease 9) technology. This biotechnological tool along with
metabolic engineering has found profitable utilisations in
HR cultures, enabling researchers to study the gene
functions and related biometabolite production pathways.
Published results of Ron et al. (2014) mentioned that genetic
architecture of HR cultures of tomato was amended,
employing this technique, wherein varied deletion and inser-
tion mutations were observed in the SHR (SHORTROOT)
gene which led to phenotypic changes in the HR. Similar
gene-editing exploits were carried out in soybean SHR and
FE12 genes present in situ along with foreign bar gene seg-
ment (Cai et al. 2015). Jacobs et al. (2015) in their findings in
soybean state that this genetic engineering tool can also be
applied to make amends in the genes in homeologous chro-
mosomes in polyploids. The target gene CPS1 in Salvia
miltiorrhiza was metabolically engineered through CRISPR/
Cas9 using AtU6-26SK, 35S-Cas9-SK and pCambia1300
vectors (Li et al. 2017).

Conclusion and prospects

HR culture technology has been developed into an exciting
biotechnological tool for researchers. Despite the occurrence
of problems like chromosomal changes and fluctuating har-
vest of desired biochemical, the cultures are easily manage-
able, genetically stable than the cell suspension cultures and
fast proliferating and provide a lot of pharmaceutical explora-
tion. It also provides for the protection of the plants of medic-
inal value with respect to their demand for the biosynthesis of
invaluable medicinal products by acting as an effectual way
out for the secondary metabolite production. Regarding the
commercial approaches, a more scientific outlook for cost-
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effectiveness and sustained production is required. A lot of
research and investigation have already undergone in this con-
cerned sector of biotechnology spanning over the past 25
years. Various aspects like the metabolic engineering, large-
scale secondary metabolite production and their enhancement
through elicitation studies, studies on host–microorganism in-
teractions through roots, genetic transformation, applying
techniques of phytoremediation and biotransformation to pro-
duce novel biomolecules, utilising novel biotechnological
tools like transcriptome sequencing studies, in silico simula-
tion modelling technologies, mathematical modelling for HR
biosystem studies and CRISPR-Cas9 technology for en-
hanced phytometabolite synthesis were dealt with. Despite
extensive research, a lot still requires to be explored to extract
the wholesome prospects of HR cultures for crop
improvement.
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