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Abstract
Increasing prevalence of multidrug-resistant untreatable infections has prompted researchers to trial alternative treatments such as
a substitute for traditional antibiotics. This study endeavored to elucidate the antibacterial mechanism(s) of this isoflavone, via
analysis of relationship between genistein and Escherichia coli. Furthermore, this investigation analyzed whether genistein
generates nitric oxide (NO) in E. coli as NO contributes to cell death. RecA, an essential protein for the bacterial SOS response,
was detected through western blot, and the activated caspases decreased without RecA. The results showed that the NO induced
by genistein affected the bacterial DNA. Under conditions of acute DNA damage, an SOS response called apoptosis-like death
occurred, affecting DNA repair. These results suggested that RecA was bacterial caspase-like protein. In addition, NO was toxic
to the bacterial cells and induced dysfunction of the plasma membrane. Thus, membrane depolarization and phosphatidylserine
exposure were observed similarly to eukaryotic apoptosis. In conclusion, the combined results demonstrated that the antibacterial
mode of action(s) of genistein was a NO-induced apoptosis-like death, and the role of RecA suggested that it contributed to the
SOS response of NO defense.

Key points
• Genistein generates nitric oxide in E. coli.
• Genistein exhibits intense SOS response in E. coli.
• Genistein-induced NO causes apoptosis-like death in E. coli.
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Introduction

The hazards of antibiotic resistance are increasing sharply due
to the abuse of antibiotics and inappropriate antibiotic pre-
scription (Aslam et al. 2018; Ventola 2015). Recently,
antibiotic-resistant bacteria have emerged and are difficult to
treat (Ahmed and Baptiste 2018; McGuinness et al. 2017;
Ventola 2015). Furthermore, since antibiotic-resistant bacteria
are dangerous enough to take a patient’s life, resistant forms
are regarded as one of the major threats to health of the
world (Chaudhary 2016; Laxminarayan et al. 2013).
Therefore, antibiotics modified by renowned drugs have

been developed; however, efficacy is not always apparent
(Walsh 2003). Therefore, it is significant to discover and
develop more treatments with a novel mechanism(s), which
are more effective and safer to replace the antibiotics cur-
rently in use (Aslam et al. 2018; Butler and Buss 2006;
Chaudhary 2016; Livermore 2004; Wright 2017; Yang
et al. 2018).

Genistein, soy-derived isoflavonoid, is broadly contained
in leguminous plant foods, such as soybean, chickpeas, tofu,
and lupin (Ganai and Farooqi 2015; Hong et al. 2006; Khan
et al. 2015; Squadrito and Bitto 2012; Węgrzyn et al. 2010). It
has been used as an adequate agent in remedy of chronic
illness and cancer (Chatterjee et al. 2015; Ganai and Farooqi
2015; Li et al. 2013; Valles et al. 2010). This isoflavonoid
exhibited various therapeutic effects in human cancer due to
genistein’s ability to trigger apoptosis through caspase activa-
tion, NF-κB inactivation, and downregulation of Bcl-2 and
Bcl-xL known as anti-apoptotic factors (Banerjee et al.
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2008; Dhandayuthapani et al. 2013; Lee et al. 2012; Zhang
et al. 2010). Apoptosis mediated by genistein also triggers
disruption of the mitochondria membrane potential (de
Oliveira 2016; Salvi et al. 2002). In addition, although this
flavonoid is an antioxidant, it acts as a pro-oxidant by leading
to DNA impairment in the presence of nitric oxide (NO)
(Muzandu et al. 2005). This compound also activates nitric
oxide synthase (NOS) that produces nitric oxide in mamma-
lian cells (Ganai and Farooqi 2015; Liu et al. 2004; Si and Liu
2008; Verdrengh et al. 2004). Genistein is informed that it has
antimicrobial activity and acts as poisons of bacterial
topoisomerases (DNA gyrase) playing a vital role in DNA
replication and repair (Hong et al. 2006; Pommier et al.
2010; Tse-Dinh 2009; Ulanowska et al. 2006). Except for this
mode of action, the antibacterial mechanism of genistein re-
mains largely indistinct.

Nitric oxide (NO) is a diatomic molecule created by NOS
and the reduction of inorganic nitrate. Previously, it was
regarded as a modulator of apoptosis (Kim et al. 2001; Li
and Wogan 2005). This pro-apoptotic molecule promotes
single-stranded DNA breaks in the bacterial and mammalian
cells that inhibit ribonucleotide reductase, which blocks DNA
synthesis and induces mitochondrial dysfunction and mem-
brane depolarization (Brown and Borutaite 2001; Habib and
Ali 2011; Poderoso et al. 2019; Spek et al. 2001). NO itself
has a short half-life due to its reactivity with biological mole-
cules, such as oxygen or superoxide radical to form reactive
NO species (RNOS) (Sawa and Ohshima 2006; Schairer et al.
2012). NO displays antimicrobial activity and covalently
binds to DNA and proteins, thereby destabilizing the target
pathogens (Mihu et al. 2010; Schairer et al. 2012).
Antimicrobial mechanisms mediated by NO are widely
known today, and chemical change of DNA induced by
RNOS is the one of the main modes of action, leading to
nitrosative stresses in E. coli (Carpenter and Schoenfisch
2012). In addition, NO induces the modification of proteins
related to the synthesis and repair of E. coli DNA (Ren et al.
2008).

In programmed cell death (PCD), apoptosis is the one of
general mode, which is characterized by several stereotyped
aspects (Wlodkowic et al. 2011). Apoptosis occurs to sustain
cells homeostatically and acts as a defense mechanism when
cells are devastated by various stimuli and conditions (Baar
et al. 2017). During the process of apoptosis, chromatin con-
densation, DNA fragmentation, activated caspases, membrane
potential loss, and the existence of phosphatidylserine in the
outside leaflet of the cell membrane are visible (Bakshi et al.
2010; Elmore 2007; Wlodkowic et al. 2011). Although apo-
ptosis occurs generally in eukaryotic cells, recent studies have
indicated that prokaryotic cells could also go through an
apoptosis-like response (Erental et al. 2014; Lee and Lee
2014). When treated with norfloxacin, a second-generation
fluoroquinolone antibiotic, E. coli, exhibited apoptotic

markers (Choi et al. 2016; Erental et al. 2014; Lee and Lee
2014; Yun and Lee 2016).

In this investigation, several experiments were conducted
to confirm that genistein induces bacterial apoptosis-like death
in response to genistein treatment. Furthermore, we evaluated
the overexpression of RecA protein which concerned the bac-
terial SOS response to recover impaired DNA.

Materials and methods

Minimum inhibitory concentration

Depending on the Clinical and Laboratory Standard
Institute (CLSI) guidelines, the minimum inhibitory con-
centration (MIC) values were assessed. In the first phase,
genistein (Sigma Chemical Co., St. Louis, MO, USA) or
norfloxacin were dissolved using the universal solvent, di-
methyl sulfoxide (DMSO) or acetic acid (Merck KGaA,
Darmstadt, Germany), respectively. The following bacteri-
al strains were used for this experiment: Enterococcus
faecium (ATCC 19434), Enterococcus faecalis (ATCC
29212), Escherichia coli (ATCC 25922), Pseudomonas
aeruginosa (ATCC 27853), and Salmonella enteritidis
(ATCC 13076) were obtained from the American Type
Culture Collection (ATCC, Manassas, VA, USA).
Staphylococcus epidermidis (KCTC 1917), Streptococcus
mutans (KCTC 3065), and Salmonella typhimurium
(KCTC 1926) were obtained from the Korean Collection
for Type Cultures (KCTC, Jeongeup-si, Jeollabuk-do,
Korea). Growing bacterial cells (2 × 106 cells/mL) were
allotted into microwell plates (0.1 mL/well). Genistein
and norfloxacin were treated via two-fold serial dilution.
After incubation at 37 °C for 24 h, cell proliferation was
determined by optical density at 600 nm using a microtiter
ELISA Reader (BioTek Instruments, Winooski, VT, USA).

Estimation of intracellular NO and superoxide (O2
−)

generation

To estimate NO generation, E. coli MG 1655 were used,
which is acquired from Coli Genetic Stock Center. Bacterial
cells (2 × 106 cells/mL) were treated with genistein (5 μg/mL)
or norfloxacin (2.5 μg/mL) at 37 °C for 2 h. Then the cells
were resuspended in PBS (pH 7.4, 137 mM NaCl, 2.7 mM
KCl, 10 mM Na2HPO4, and 2 mM KH2PO4) and incubated
w i t h 1 0 μM 4 - am i n o - 5 -m e t h y l am i n o - 2 ′ , 7 ′ -
difluorofluorescein diacetate (DAF-FM DA, Molecular
Probes) at 37 °C for 30 min. Ensuing centrifugation and re-
suspension in PBS, the samples were assessed using a
FACSVerse flow cytometer (Becton Dickinson, NJ, USA).
Evaluation of the O2

− levels was measured using a
Dihydrorhodamine 123 (DHR-123) (Sigma Chemical Co.,
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St. Louis, MO, USA) dissolved in DMSO. The E. coli cells
were incubated with genistein (5 μg/ml) or norfloxacin (2.5
μg/ml) at 37 °C for 2 h. Following incubation, the cells were
collected via centrifugation at 12000 rpm for 5 min and then
stained with 5 μΜ DHR-123. Samples were assessed using a
FACSVerse flow cytometer.

Detection of peroxynitrite (ONOO−) formation

ONOO− formation was detected using a 3′-(p-hydroxyphenyl)
fluorescein (HPF, Molecular Probes) (Invitrogen, Carlsbad,
CA, USA) which is a cell-permeable fluorescent reporter
dye. HPF itself was not very fluorescent; however, when
reacted with ONOO−, this compound exhibited strong dose-
dependent fluorescence. Bacterial cells (2 × 106 cells/mL)
were incubated with genistein (5 μg/mL), L-NAME (Nω-ni-
tro-L-arginine methyl ester hydrochloride, 0.5 μg/mL)-pre-
treated genistein, or norfloxacin (2.5 μg/mL) treatment for
2 h at 37 °C. Following incubation, the cells were centrifuged
12000 rpm for 5 min. Then, the cells were washed with PBS
and dyed with 5 μM HPF, which was dissolved in
Dimethylformamide (DMF) (JUNSEI Chemical Co., Tokyo,
Japan). Following treatment with HPF, the intensity of fluo-
rescence was determined by utilizing a FACSVerse flow
cytometer.

Measurement of DNA fragmentation and
chromosomal condensation

Terminal deoxynucleotidyl transferase dUTP nick end la-
beling (TUNEL) staining is the method for detecting the
DNA cleavage. This assay was performed using an In Situ
Cell Death Detection Kit, Fluorescein (Roche Applied
Science, Basel, Switzerland). 3′-OH termini of the nucleo-
tide were enzymatically labeled and mediated by the ter-
minal deoxynucleotidyl transferase and, then, the
fragmented DNA was identified. Cells (2 × 106 cells/mL)
were incubated for 2 h at 37 °C with genistein (5 μg/mL),
L-NAME (0.5 μg/mL)-pre- t rea ted genis te in , or
norfloxacin (2.5 μg/mL). Following incubation, the cells
were washed with PBS and then fixed with 2% paraformal-
dehyde for 1 h on ice. Succeeding this washing step, the
fixed cells were incubated with permeabilization solution
(0.1% Triton X-100 and 0.1% sodium citrate) on ice for 2
min. Then, the cells were incubated with a TUNEL reac-
tion mixture for 1 h at 37 °C. The fluorescence intensity
was estimated using a spectrofluorophotometer (Shimadzu
RF-5301PC; Shimadzu, Japan) at wavelengths of 495 nm
(excitation) and 519 nm (emission). Chromosomal conden-
sation was measured using 4′,6-diamidino-2-phenylindole
dihydrochloride (DAPI) (Sigma Chemical Co., St. Louis,
MO, USA). The E. coli (2 × 106 cells/mL) were treated
with genistein (5 μg/mL), L-NAME (0.5 μg/mL)-pre-

treated genistein, or norfloxacin (2.5 μg/mL) for 2 h.
Cells were resuspended twice with PBS and incubated with
1 μg/mL DAPI. The intensity of fluorescence was assessed
by utilizing a FACSVerse flow cytometer.

Protein extraction and western blotting

The harvested E. coli cells were treated with genistein (5 μg/
mL), L-NAME (0.5 μg/mL)-pre-treated genistein, or
norfloxacin (2.5 μg/mL). Cells were incubated at 37 °C on
an incubator shaker (120 rpm) for 2 h and resuspended in
PBS. The suspensions underwent lysis using an ultrasonic
sonicator (10 pulses of 2 min each at amplitude 38) (Sonics,
Newtown, CT, USA) and then centrifuged at 12000 rpm for
20 min to eliminate undamaged cells. The supernatants were
gathered, and the proteins were precipitated with 5% trichlo-
roacetic acid (TCA) at 4 °C for 10 min. The precipitated pro-
teins were washed with cold acetone and dissolved in H2O.
Quantitation of the protein was estimated with a Bradford
assay (Bio-Rad, Hercules, CA, USA). Each 10 μg protein
sample was transferred to a nitrocellulose membrane. The
membranes were blocked in 3% skim milk at room tempera-
ture for 1 h and incubated with a rabbit polyclonal anti-RecA
antibody (Abcam, Cambridge, UK), then diluted to 1:2000,
for 16 h at 4 °C. Then the samples were incubated for 1 h at
room temperature with a secondary antibody, horseradish
peroxidase-conjugated goat anti-rabbit IgG (Biovision,
Milpitas, CA, USA), which is diluted 1:2000. Pierce ECL
Plus Western Blotting Substrate (Thermo Scientific,
Waltham, MA, USA) was added, and the membranes were
exposed to an X-ray film. The relative amount of RecA was
numerically quantified with the ImageJ program (http://rsb.
info.nih.gov/ij).

Determination of bacterial caspase-like protein

With the aim of detecting a homologous of eukaryotic cas-
pase (cysteine-dependent aspartate-directed proteases), the
CaspACE FITC-VAD-FMK In Situ Marker (Promega,
Fitchburg, WI, USA) was employed and ΔRecA mutant
was obtained from E. coli K-12 collection. FITC-VAD-
FMK is cell-permeable and irreversibly binds to activated
caspases. VAD-FMK, a FITC-conjugated peptide pan-
caspase inhibitor, is shifted into cells and combines to the
active site of caspase to identify expression of the bacterial
caspase-like protein. A stock of FITC-VAD-FMK was dis-
solved in DMSO at a concentration of 50 μM. E. coli wild-
type and ΔRecA cells were incubated with genistein (5 μg/
mL), (0.5 μg/mL)-pre-treated genistein, or norfloxacin (2.5
μg/mL) for 2 h at 37 °C. The cells were centrifuged
12000 rpm for 5 min and resuspended in 1 mL of PBS.
Cells were centrifuged again to make cells cleaner and
stained with 5 μM FITC-VAD-FMK for 30 min at 37 °C.
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After setting the total volume to 1 mL with PBS, intensity
of fluorescence was assessed utilizing a FACSVerse flow
cytometer.

Assessment of membrane depolarization and PS
exposure

The bis-(1,3-dibutylbarbituric acid) trimethine oxonol
[DiBAC4(3)] (Molecular Probes, Eugene, OR, US) was
used to evaluate membrane depolarization. Cells (2 ×
106 cells/mL) were treated with genistein (5 μg/mL), L-
NAME (0.5 μg/mL)-pre-treated genistein, or norfloxacin
(2.5 μg/mL) and incubated for 2 h at 37 °C. Following
this incubation, the cells were washed with PBS and
stained with 5 μg/mL DiBAC4(3). Intensity of fluores-
cence was analyzed utilizing a FACSVerse flow
cytometer. Phosphatidylserine (PS) exposure was detected
using the Annexin V–FITC apoptosis detection kit (BD
Pharmingen, San Diego, CA, USA). Cells (2 × 106 cells/
mL) treated with genistein (5 μg/mL), L-NAME (12.5 ng/
mL)-pre-treated genistein, or norfloxacin (60 ng/mL) were
incubated for 2 h at 37 °C. Ensuing incubation, the cells
were gathered and resuspended in 100 μl of 1 × Annexin
V binding buffer, followed by the addition of 50 μl/ml of
Annexin V–FITC to the cell suspensions. The mixtures
were then incubated at room temperature for 15 min in
the dark. Thereafter, the total volume was raised to 1 ml
with PBS and the cells were assessed utilizing a
FACSVerse flow cytometer.

Statistical analysis

All the experiments were performed in triplicates and the
values were expressed as the means ± standard deviation.
After confirming the normality of distribution using the
Shapiro-Wilk test, statistical comparisons between various
groups were carried out by analysis of variance (ANOVA)
followed by Tukey’s post hoc test for three-group compari-
sons using SPSS software (SPSS, version 25, SPSS/IBM.
Chicago, IL, USA). Intergroup differences were considered
statistically significant at p values < 0.05.

Results

Genistein exhibits antibacterial effect

Genistein is known to exhibit an antimicrobial effect with
lesser toxicity (Ganai and Farooqi 2015). Therefore, to
estimate the antibacterial effect of genistein, the MIC
values were performed based on CLSI method. MIC values
between 2.5 and 5 μg/mL confirmed that genistein pos-
sessed potent antibacterial activity (Table 1). Hence, to

better understand the antibacterial mechanism of genistein,
E. coli was utilized as a bacterial model organism. Many
papers have long proved that NO exhibits broad-spectrum
antimicrobial activity by exacting oxidative and nitrosative
damage on pathogens (Jones et al. 2010; Regev-Shoshani
et al. 2010; Schairer et al. 2012). Several researches have
shown that genistein induced NOS activation, increasing
NO formation (Liu et al. 2004; Si and Liu 2008). This
prompted us to determine whether the antibacterial mech-
anism of genistein is associated with NO production in
E. coli. The cells treated with genistein (5 μg/mL) or
norfloxacin (2.5 μg/mL) accounted for 55.70% and
87.69%, respectively, compared to 21.93% for untreated
cells (Fig. 1). This result indicates that genistein induced
the creation of NO.

Genistein produces O2
− by inducing ONOO− formation

The free radical NO is considered a signaling molecule in a
biological reaction. NO is toxic if it combines with O2

− to
form ONOO− which dissolves rapidly to a highly reactive
oxidant species. A previous study reported that O2

− reacted
readily with NO, facilitating ONOO− formation. ONOO− is
associated with killing bacteria as it produced oxidative and
nitrosative stresses in E. coli (McLean et al. 2010). Initially,
the level of intracellular O2

−, which was necessary to
form ONOO−, was estimated using the DHR-123 reac-
tive oxygen species sensor. DHR-123 is used an indica-
tor as it can passively diffuse across the membrane.
Compared with untreated cell (12.37%), cells treated
with genistein or norfloxacin exhibited 83.85% and
96.78%, respectively (Fig. 2). Moreover, HPF was used
to measure the formation of ONOO−. The E. coli treated
with genistein (5 μg/mL) or norfloxacin (2.5 μg/mL)
exhibited increases in ONOO− formation, and the cells

Table 1 The antimicrobial activity of genistein and norfloxacin

Microbial strains MIC (μg/ml)

Genistein Norfloxacin

Gram-positive bacteria

Enterococcus faecium ATCC 19434 2.5 2.5

Enterococcus faecalis ATCC 29212 5 2.5

Staphylococcus epidermidis KCTC 1917 5 2.5

Streptococcus mutans KCTC 3065 5 2.5

Gram-negative bacteria

Escherichia coli ATCC 25922 5 2.5

Pseudomonas aeruginosa ATCC 27853 2.5 1.25

Salmonella typhimurium KCTC 1926 5 2.5

Salmonella enteritidis ATCC 13076 5 2.5–5
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pre-treated with L-NAME in genistein showed a similar
trend in the untreated cells (Fig. 3). These results dem-
onstrated that genistein produced O2

− and this O2
−

reacted with the NO induced by genistein to form
ONOO−.

Genistein causes DNA fragmentation and
chromosomal condensation

DNA cleavage is a general apoptosis feature that could be
assessed by TUNEL assay, which binds to the 3′-ends of
fragmented DNA. The TUNEL assay was performed to
evaluate whether genistein induced DNA fragmentation.
Compared to the intensity of the untreated cells, genistein
(5 μg/mL) and norfloxacin (2.5 μg/mL) showed an in-
crease in fluorescence intensity. Meanwhile, the intensity
of the cells pre-treated with L-NAME in genistein tended
to reduce the fragmented DNA levels which indicated that
NO was caused by genistein and led to DNA fragmentation
(Fig. 4). DAPI, which binds to the minor groove of A-T-
rich regions in DNA sequences, was used to monitor the

chromosomal condensation. DAPI staining involved the
following; cells with genistein (5 μg/mL) or norfloxacin
(2.5 μg/mL) displayed a mightier fluorescent intensity
(Fig. 5). Overall, these data demonstrated that the produc-
tion of genistein-induced NO influences the DNA and the
chromosome.

Genistein exerts expression of RecA as a caspase-like
protein

RecA, which is known as a caspase-like protein con-
cerned with the bacterial SOS response, was identified
by western blotting (Erental et al. 2014). In the genistein
(5 μg/mL)- or norfloxacin (2.5 μg/mL)-treated cells, the
band equivalent to the RecA protein was more intense
than that from the untreated cells or the pretreatment with
L-NAME cells (Fig. 6). This study indicated that genis-
tein induces over-occurrence of the RecA protein, induc-
ing the SOS response. To examine whether genistein-
induced RecA acted as a caspase-like protein, FITC-
VAD-FMK was applied in the E. coli wild-type and

Fig. 2 Superoxide generationwasmeasured usingDihydrorhodamine 123 inE. coli. aUntreated cells, b cells were treated with 5μg/mL genistein, and c
cells were treated with 2.5 μg/mL norfloxacin

Fig. 1 Detection of nitric oxide in genistein-treated E. coli cells. After treatment with 5 μg/ml genistein and 2.5 μg/ml norfloxacin, nitric oxide was
measured by DAF-FM
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ΔRecA cells. In the genistein-treated E. coli wild-type
cells (5 μg/mL), fluorescence was increased by 50.62%
compared to the untreated cells (10.39%) and the cells
pre-treated with L-NAME in genistein (11.28%), and the
norfloxacin-treated (2.5 μg/mL) cells increased by
64.39%. In the ΔRecA cells, the fluorescence remained
unaltered ensuing treatment with genistein (5 μg/mL) or
norfloxacin (2.5 μg/mL) as well as the untreated cells and
the cells pre-treated with L-NAME in genistein (Fig. 7).
These observations indicated that a caspase-like protein,
which shared the same substrate with the eukaryotic

caspase, was increased by genistein, and suggested the
potentiality that RecA induced by genistein could act as
a caspase-like protein.

Genistein induces apoptosis-like death

Cells treated with genistein exhibited DNA fragmentation
and caspase-like proteins. Furthermore, increased levels of
fragmented DNA and caspase-like proteins were consid-
ered an apoptotic marker. Moreover, we confirmed the in-
duction of apoptosis-like death by observing the membrane

Fig. 3 Peroxynitrite formation was measured using HPF in E. coli. a Untreated cells, b cells were treated with 5 μg/mL genistein, c cells were treated
with 5 μg/mL genistein and 0.5 μg/mL L-NAME, and d cells were treated with 2.5 μg/mL norfloxacin
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depolarization, one of the characteristics of eukaryotic ap-
optosis. In eukaryotic cells, the membrane potential was
constantly maintained, but when cells suffer apoptosis, this
potential was interrupted, and membrane depolarization
was triggered. Furthermore, NO mediated the mitochondri-
al membrane depolarization, which induced eukaryotic ap-
optosis (Brown 2010). Similarly, recent studies have
shown that the membrane potential loss was associated
with apoptosis-like death. Thus, we postulated that genis-
tein induces apoptosis-like death in bacteria cells. To
investigate this objective, we assessed membrane

depolarization by using the potential-sensitive DiBAC4(3)
dye. Compared to the untreated cells (17.05%), the cells
depolarized by genistein (5 μg/mL) or norfloxacin (2.5 μg/
mL) exhibited 59.41% and 97.36%, respectively (Fig. 8).
However, L-NAME attenuated the genistein-induced apo-
ptotic signals by inhibiting membrane depolarization.
These observations (DNA fragmentation, caspase-like pro-
tein, and membrane depolarization) demonstrated persua-
sive evidence that the mechanism triggered by the
genistein-induced NO is a certainly apoptosis-like death.

Genistein mediates PS exposure

PS is a phospholipid that composes cell membrane and pri-
marily resided in the inside leaflet of the cell membrane. In
apoptosis, PS is no longer restricted to the inner side by
flippase and becomes revealed on the outside leaflet.
Detection of the displaced PS was accomplished using
annexin V–FITC that binds to PS. Annexin V/PI double stain-
ing (annexin V positive and PI negative; early apoptosis,
annexin V positive, and PI-positive; necrosis) was succeeded
by flow cytometric analysis. PS exposure of 35.75% and
37.00% was derived in the E. coli cells treated with genistein
(5 μg/mL) or norfloxacin (60 ng/mL), whereas the L-NAME
diminished genistein-induced PS exposure (Fig. 9). These re-
sults suggested that genistein could lead to PS exposure on the
outside leaflet without necrosis (upper right quadrant) by gen-
erating NO.

Discussion

The crisis of antibiotic resistance has been ascribed to the mis-
use of medicines, as well as the shortage of new drug develop-
ment. Thus, resistance of bacteria to renowned antibiotics is a
growing problem globally now and in the future, and it is one
of the major challenges facing health care providers in the 21st
century (Aslam et al. 2018; Ventola 2015). Although various
strategies have been proposed to confront this problem, it

Fig. 5 Flow cytometric analysis of chromosomal condensation was
measured using DAPI in E. coli. (a) Untreated cell, (b) genistein was
treated with 5 μg/mL, (c) genistein was treated with 5 μg/mL and L-
NAMEwas treated with 0.5 μg/mL, and (d) norfloxacin was treated with
2.5 μg/mL. Experiments were held triplicate independently and the re-
sults represent the average, standard deviation, and p values from three
different experiments (**p < 0.05; ***p < 0.01)

Fig. 4 Spectrofluorophotometric analysis of DNA strand break was
measured by TUNEL assay in E. coli. (a) Untreated cell, (b) genistein
was treated with 5 μg/mL, (c) genistein was treated with 5 μg/mL and L-
NAMEwas treated with 0.5 μg/mL, and (d) norfloxacin was treated with
2.5 μg/mL. Experiments were held triplicate independently and the re-
sults represent the average, standard deviation, and p values from three
different experiments (**p < 0.05; ***p < 0.01)

Fig. 6 Analysis of RecA expression levels by western blotting. E. coli
cells were treated genistein (5 μg/mL) or norfloxacin (2.5 μg/mL) and L-
NAME was treated with 0.5 μg/mL. Each band was compared with the
band of RecA, which is the 5 μg/mL concentration on the far right. The
relative amount of RecA, indicated with number above western blot, was
quantified in comparison with RecA using ImageJ (http://rsb.info.nih.
gov/ij)
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seems difficult to expect a distinct effect. Consequently, novel
antimicrobial agents are required urgently due to the appear-
ance of antibiotic-resistant bacteria like MRSA and VRE
(Ahmed and Baptiste 2018; McGuinness et al. 2017).
Genistein, a soy-derived flavonoid, was known to exhibit anti-
microbial activity against various microorganisms (Ganai and

Farooqi 2015; Hong et al. 2006; Ozcelik et al. 2011; Rahman
et al. 2008; Sauter et al. 2014; Węgrzyn et al. 2010). In current
trend, natural phenolic compounds such as genistein were as-
sociated with bacterial topoisomerase IV by disturbing DNA
synthesis similar to norfloxacin, a bacterial topoisomerase IV
inhibitor (Alt et al. 2011; Deibler et al. 2001; Fournier et al.

Fig. 7 Flow cytometric analysis of caspase-like protein expression by
caspACE FITC-VAD-FMK in E. coli. a E. coli wild-type cells were
treated with genistein (5 μg/mL) or norfloxacin (2.5 μg/mL), and b

ΔRecA cells were treated with genistein (5 μg/mL) or norfloxacin (2.5
μg/mL). L-NAME was pre-treated both E. coli wild-type and ΔRecA
cells
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2000; Gradisar et al. 2007; Hooper and Jacoby 2016; Mukne
et al. 2011; Phetnoo et al. 2013; Verdrengh et al. 2004). NO is
also known as a substance that acts as a bactericidal and bac-
teriostatic (Regev-Shoshani et al. 2010). However, it is not yet
clear how NO affects the cell death of bacteria. Hence, this
investigation targeted to reveal the effect of NO on the E. coli
and to disclose the novel antibacterial mechanism of genistein
in the E. coli.

To confirm the antibacterial effects of genistein, the MIC
values of genistein or norfloxacin were determined.
Norfloxacin, selected for positive control, is widely used to
treat bacterial infections and acts as a DNA gyrase (topoisom-
erase IV) inhibitor like genistein (Adjei et al. 2006; Deibler
et al. 2001; Fournier et al. 2000; Moreau et al. 2018; Yim et al.
2018). This investigation demonstrated that genistein exhibit-
ed antibacterial activity similar to that of norfloxacin, which
was widely used for bacterial infections. NO is known to
function as an antimicrobial agent for a long time (Ghaffari
et al. 2006; Schairer et al. 2012). Today, nitric oxide–releasing
devices and particles that exhibit antibacterial effects are wide-
ly used as an antibacterial agent (Han et al. 2009; Mihu et al.
2010; Schairer et al. 2012). Furthermore, it is known that
genistein activated mammalian NOS. Although bacterial
NOS (bNOS) lacks the reductase domain, bNOS and eukary-
otic NOS were mechanistically and structurally related to pro-
duce NO (Jones et al. 2010). The experiment was conducted
using DAF-FM to clarify whether genistein and norfloxacin,
except for role of topoisomerase IV inhibitor, produce NO that
functions as antimicrobial agent in the E. coli cells. Genistein
generated intracellular NO atMIC values and norfloxacin also
showed NO generation at MIC values. Therefore, this result
indicated that genistein possessed an antibacterial effect via
inducing NO.

Many harmful effects of NO were not directly attributable
to NO itself and were instead mediated via the production of

ONOO−, a byproduct of the reaction between NO and O2
−.

One of the most common RNOS, ONOO−, represented an
important mechanism that contributed to the DNA damage,
inactivation of the metabolic enzyme, and disruption of the
cell membranes and apoptosis (Ascenzi et al. 2010).
Moreover, ONOO− possesses antimicrobial activity, which
induces membrane damage (Genest et al. 2002; McLean
et al. 2010). Therefore, we first estimated O2

− generation
using the DHR-123 dye, which was essential for RNOS cre-
ation. Cells treated with genistein exhibited an increase in
intracellular O2

−. Through use of the HPF assay, we verified
that the ONOO− formation in E. coli was detected in compli-
ance with genistein treatment. In this experiment, the produc-
tion of peroxynitrite was similar to the untreated cells when
pre-treated with substances that inhibited NO generation.
Summing up the previous observation, O2

− was identified in
E. coli treated with genistein and this O2

− reacted with the NO
induced by genistein to create RNOS.

The observation from this study showed DNA damage in
the E. coli cells under genistein-induced NO production.
Indeed, NO has been reported to react immediately with
DNA while inducing oxidation and nitration of base. Thus,
it induced double-stranded DNA breaks, promoting oxidative
damage of DNA (Jaiswal et al. 2001). To explain the relation-
ship between NO and DNA, a TUNEL assay was performed.
Through this assay, we confirmed that DNA fragmentation
was caused by genistein-induced NO. Damage to the DNA
affected the cell cycle and replication and blocked DNA syn-
thesis; thus, degradation of chromosomal DNA indicated that
DNA replication arrest has occurred, which was conducted
with DAPI staining (Nagata et al. 2003). DAPI staining con-
firmed chromosomal condensation, and these features were
diminished by NO inhibition. These results supported that
genistein-induced NO plays a vital role in E. coli DNA
damage.

Fig. 8 Flow cytometric analysis of membrane depolarization byDiBAC4(3) inE. coli. Genistein was treated with 5 μg/mL, genistein, and L-NAMEwas
treated with 5 μg/mL genistein and 0.5 μg/mL L-NAME. Norfloxacin was treated with 2.5 μg/mL
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During eukaryotic apoptosis, caspase amplified the apopto-
tic signal by activating different caspase and diverse apoptotic
factors. Caspase, therefore, had a significant part in the apo-
ptotic process. RecA is an ATP-dependent protein that
formed nucleoprotein filaments by binding to the single-
stranded DNA, and these filaments promoted the SOS re-
sponse by inducing autocleavage of the LexA repressor.
The SOS response generally occurred when DNAwas dam-
aged by various stress conditions, and if the damage was
weak, the cells were repaired by this response. However,
if the cells are severely damaged, they could not be repaired,

and RecA contributed to the apoptosis-like response rather
than an SOS response (Lee and Lee 2017). In some papers,
RecA, which is required for a bacterial apoptosis-like re-
sponse, is known as caspase-like protein in E. coli (Erental
et al. 2014; Lee and Lee 2014, 2017). In E. coli, the SOS
response is induced by promoting expression of the DNA
repair proteins such as RecA (Lee and Lee 2019). Thus, we
proposed that a genistein-induced NO caused DNA damage
that promoted the SOS response, leading to a bacterial
apoptosis-like response. Following treatment with genis-
tein, overexpression of RecA was confirmed by a western

Fig. 9 Flow cytometric analysis of phosphatidylserine exposure was
measured using Annexin V/propidium iodide double staining in E. coli.
a Untreated cell, b genistein was treated with 5 μg/mL, c genistein was

treated with 5 μg/mL and L-NAME was treated with 12.5 ng/mL, and d
norfloxacin was treated with 60 ng/mL
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blot assay, and its role as a caspase-like protein was also
confirmed in E. coli.

In western blot assay, the cells treated with genistein ex-
hibited bands that appeared dark, while the cells pre-treated
with NO inhibitor exhibited light bands. To find out whether
RecA acted as a caspase-like protein in E. coli, FITC-VAD-
FMK was employed. The E. coli wild-type cells treated with
genistein increased the caspase-like protein activation, how-
ever, not in the cells pre-treated with the NO inhibitor.
Experimenting withΔRecA cells, the caspase-like protein ac-
tivation in those treated with genistein and those with the
pretreatment of the NO inhibitor was similar. Based on these
results, we assumed that genistein-induced NO triggered over-
expression of RecA, which contributed to the bacterial SOS
response, and RecA acted qua a caspase-like protein in E. coli.
Nevertheless, functional resemblances between caspase and
RecA have not yet been confirmed, and further investigation
was needed.

In eukaryotic PCD, the mitochondrial membrane potential
was disturbed, and membrane depolarization is exhibited
(Kim et al. 2011; Ly et al. 2003). Mitochondrial membrane
potential decreased, activating mitochondrial apoptotic factor,
such as cytochrome c (Garedew et al. 2010; Okada et al.
2012). In addition, NO and RNOS entered the membranes
of bacteria, causing damage to the cell membranes. In
E. coli, which is considered a unicellular organism,
DiBAC4(3) was conducted to identify the characteristics of
apoptosis, such as membrane depolarization. Compared to
the untreated cells, the intensity of fluorescence increased in
the cells treated with genistein, and in the cells pre-treated with
the NO inhibitors, fluorescence intensity did not increase sig-
nificantly. These results suggested that genistein caused dam-
age to the bacterial membranes, producing NO and induced
membrane depolarization, one of the characteristics of the
apoptosis of eukaryotic cells.

Apoptosis is a crucial process in cell growth and ho-
meostasis (Baar et al. 2017; Negroni et al. 2015). In the
apoptotic cells, they display a signal to eat me, probably
due to PS exposure (Segawa and Nagata 2015). PS was
normally confined to the interior leaflet of the plasma
membrane by a “flippase”; apoptosis activated a
“scramblase” that rapidly exposed PS on the cell exterior
(Marino and Kroemer 2013). Annexin V is a Ca2+-reliant
phospholipid-binding protein with high affinity for PS.
Thus, this protein could be used as a sensitive probe for
PS exposure upon the cell membrane. Annexin V/PI dou-
ble staining was employed to confirm whether genistein-
treated E. coli cells exhibit PS exposure, a feature of early
apoptosis. Genistein-treated cells exhibit PS exposure
without membrane integrity; however, this result was de-
creased by the NO inhibition, which indicated that NO
took part in mediating genistein-induced bacterial
apoptosis-like death.

The SOS response is a universal response to DNA damage
in bacteria, mediated by the LexA-RecA genes that result in
DNA repair and cell cycle arrest (Bellio et al. 2017; McKenzie
et al. 2000). Previously, a number of studies had detailed that
E. coli responded to DNA damage via another RecA-LexA-
mediated pathway resulting in PCD (Choi et al. 2016; Lee
et al. 2019). It is called an apoptosis-like death because it is
characterized by DNA cleavage and membrane depolariza-
tion, which are hallmarks of eukaryotic apoptosis. In addition,
under apoptosis-like death, activation of RecA led to degra-
dation of LexA (Erental et al. 2014). The NO and RNOS
generated by genistein were enough to cause membrane de-
polarization and severe DNA damage. These features activat-
ed the apoptosis-like death, leading to bacterial cell death.

In summary, a number of apoptotic hallmarks, such as
DNA fragmentation, caspase-like protein activation, mem-
brane depolarization, and PS exposure, were caused by genis-
tein. Our findings suggested that genistein possesses a novel
mechanism of antibacterial action and genistein-induced apo-
ptosis-like death, which was effectuated by inordinate NO
generation. Importantly, RecA was essential for the process
of apoptosis-like death, acting as caspase. Consequently, ge-
nistein exerted antibacterial activity via a novel mechanism,
apoptosis-like death, and genistein could be an antibiotic de-
rived from natural substances that is easy to obtain around and
could work as an antimicrobial agent while generating NO
with antimicrobial activity.
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