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Abstract
L-Tyrosine is an aromatic, polar, non-essential amino acid that contains a highly reactive α-amino, α-carboxyl, and phenolic
hydroxyl group. Derivatization of these functional groups can produce chemicals, such as L-3,4-dihydroxyphenylalanine, tyra-
mine, 4-hydroxyphenylpyruvic acid, and benzylisoquinoline alkaloids, which are widely employed in the pharmaceutical, food,
and cosmetics industries. In this review, we summarize typical L-tyrosine derivatizations catalyzed by enzymatic biocatalysts, as
well as the strategies and challenges associated with their production processes. Finally, we discuss future perspectives pertaining
to the enzymatic production of L-tyrosine derivatives.

Key points
• Summary of recent advances in enzyme-catalyzed L-tyrosine derivatization.
• Highlights of relevant strategies involved in L-tyrosine derivatives biosynthesis.
• Future perspectives on industrial applications of L-tyrosine derivatization.
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Introduction

L-Tyrosine is a valuable compound widely used in the food,
health care, and cosmetics industries (Dennig et al. 2015; Li
et al. 2020). As an aromatic polar amino acid, L-tyrosine con-
tains a highly reactive α-amino group, α-carboxyl group, and
phenolic hydroxyl group Their derivatization generates a va-
riety of high-value chemicals, such as unsaturated aromatic
compounds, α-hydroxy acids, and aromatic alcohols, which
are commonly applied in the feed, pharmaceutical, and fine
chemical industries (Chen et al. 2019; Lukito et al. 2019;
Rodriguez et al. 2017).

Two main strategies have been developed for L-tyrosine
derivatization: chemical synthesis and biosynthesis (Luetke
et al. 2007; Sarlaslani 2007). Heterocyclic compounds can

be obtained directly from L-tyrosine via oxidation and hydro-
lysis reactions using chemical catalysts (Cox et al. 2019;
Glachet et al. 2019); however, these processes commonly re-
quire extreme reaction conditions such as high temperatures,
multi-step procedures, and high-cost precursors, resulting in
various toxic intermediates and limited economic benefit
(Mujumdar et al. 2019; Wen et al. 2016). Biosynthetic strate-
gies, including microbial fermentation and enzymatic cataly-
sis, offer an alternative approach. Although microbial fermen-
tation usually exhibits good enantioselectivity, the separation
and purification processes are complex owing to the inclusion
of other substrates and proteins in the culture broth (Haslinger
and Prather 2020; Noda et al. 2015). Enzyme catalysis pro-
vides a promising and efficient approach for synthesizing
chemicals from L-tyrosine due to its elevated specificity, di-
versity, and atom economy. Enzymatic derivatization relies on
the ability of specific enzymes to recognize a particular func-
tional group on L-tyrosine and synthesize certain derivatives.
An example is given by alkylation of the phenolic hydroxyl
group (Kim et al. 2018) to O-alkylated L-tyrosine derivatives,
or decarboxylation of the α-carboxyl group to generate tyra-
mine (Zhang et al. 2016). Moreover, wild-type or mutant en-
zymes can be selected to convert L-tyrosine to derivatives
under specific conditions, such as high substrate loads or
non-aqueous media (Almhjell et al. 2018; Li et al. 2019b;
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Sheldon and Pereira 2017). Furthermore, the elevated catalytic
efficiency of enzymes, such as tyrosine aminomutase (TAM;
EC 5.4.3.6) or phenylalanine aminomutase (PAM; EC
5.4.3.11), enables high atom economy and a shift of the α-
amino group between α- and β-positions to generate (R)-β-
tyrosine (Wang et al. 2020).

The present review aims to provide a summary of typical
enzyme-catalyzed L-tyrosine derivatization reactions (Fig. 1).
Based on the reaction characteristics, we can divide the reac-
tions into four categories: side chain, α-carboxyl group, α-
amino group, and multi-group derivatization. Additionally,
we summarize the strategies associated with these enzymatic
processes and discuss methods for producing L-tyrosine deriv-
atives as well as the associated challenges.

Derivatization of the L-tyrosine side chain

As shown in Fig. 2, the phenol group comprises a benzene
ring (–C6H5) and a hydroxyl moiety (–OH). The benzene ring
can be hydroxylated and prenylated to generate L-3,4-
dihydroxyphenylalanine (L-DOPA) and 3-dimethylallyl-L-ty-
rosine, respectively. Additionally, the hydroxyl can be easily
substituted through directO-alkylation to produceO-alkylated
L-tyrosine derivatives.

Derivatization of the benzene ring
on the phenol group

Owing to the presence of the hydroxyl group, the C3 position
of the L-tyrosine benzene ring becomes more reactive and can
undergo either hydroxylation to produce L-DOPA or
prenylation to yield 3-dimethylallyl-L-tyrosine (Fig. 2a).
Two main enzymatic approaches have been developed for
the hydroxylation of the benzene ring: simple enzymatic syn-
thesis and the electro-enzymatic system (Min et al. 2019; Min
et al. 2015). Synthesis of L-DOPA by tyrosinase (EC
1.14.18.1) can occur either via reactor engineering or immo-
bilization engineering. Reactor engineering achieves sustain-
able and efficient operation by allowing full mixing of tyros-
inase and L-tyrosine (Rinaldi et al. 2020; Sheldon and
Woodley 2018). The most representative example involves a
packed-bed reactor, in which tyrosinase is trapped in a copper-
alginate gel, resulting in 7.7 mg/L L-DOPA and productivity
of 110 mg/L/h (Ates et al. 2007). Immobilization engineering
can further increase the L-DOPA titer by preventing enzyme
denaturation and promoting enzyme recycling (Sheldon and
Woodley 2018). Recently, a new nano-biocatalyst was pre-
pared by immobilizing tyrosinase from Verrucomicrobium
spinosum on a polyhydroxyalkanoate nanoparticle, resulting
in an L-DOPA titer of 446.20 mg/L, with 90.62% conversion
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and productivity of 148.70 mg/L/h (Tan et al. 2019). Even
though a variety of reactor types and materials for immobili-
zation of the recycled biocatalysts have been explored, the
productivity of L-DOPA has remained below 500 mg/L/h,
which does not meet the requirements of industrial

production. To overcome this limitation, an electro-
enzymatic system designed to utilize electrical power to
directly reduce the undesirable byproduct dopaquinine back
to L-DOPA has been developed (Wu and Zhu 2018). The
system achieved 76.6 g/L of L-DOPA at an optimal
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productivity of 15,300 mg/L/h and 77.7% conversion after a
5-h reaction (Min et al. 2013) (Fig. 2a). The prominent
conversion rate and productivity of the electro-enzymatic sys-
tem are attractive for industrial-scale applications.

C3-prenylation of the benzene ring on the phenol group
can be catalyzed by 4-dimethylallyltryptophan synthase
(FgaPT2; EC 2.5.1.34) from Aspergillus fumigatus.
Scheme 1 illustrates a hypothetical mechanism for FgaPT2
reaction with L-tyrosine. Accordingly, protonation of
dimethylallyl diphosphate (DMAPP) yields the dimethylallyl
carbocation, which is then attacked by C3 of L-tyrosine to
generate intermediate I; finally, the latter undergoes proton
elimination to form 3-dimethylallyl-L-tyrosine (Fan et al.
2015a). FgaPT2, which traditionally catalyzes C4-
prenylation of the indole ring of L-tryptophan, was mutated
to an L-tyrosine C3-prenylating enzyme (FgaPT2K174F) by
protein engineering. This strategy led to the synthesis of
0.5 mM 3-dimethylallyl-L-tyrosine at a 50% conversion (Fan
et al. 2015b) (Fig. 2a). Although this value is far from the
requirements of industrial production, it demonstrates the po-
tential benefit of changing the substrate specificity of other
prenyltransferases and the industrial application of L-tyrosine
derivatization.

Derivatization of the hydroxyl on the phenol
group

Due to easy dissociation of the phenolic –OH group, L-tyro-
sine can undergo direct O-alkylation to generate O-alkylated
L-tyrosine derivatives characterized by numerous pharmaco-
logical and biological activities (Chen et al. 2020; Li 2016;
Morita et al. 2018). As a member of the dimethylallyl trypto-
phan synthase superfamily (Burkhardt et al. 2019), 4-O-
dimethylallyl-L-tyrosine synthase (TyrPT; EC 2.5.1.122) from
Aspergillus niger and 4-O-dimethylallyl-L-tyrosine synthase
(SirD; EC 2.5.1.122) from Leptosphaeria maculans can spe-
cifically transfer alkyl moieties from three different alkyl do-
nors to an L-tyrosine acceptor (Fig. 2b) (Fan et al. 2015a; Yu
et al. 2015). Using DMAPP as the alkyl donor, TyrPT and
SirD catalyzed the O-prenylation of L-tyrosine to 4-O-
dimethylallyl-L-tyrosine, with 89.1% and 99.3% conversion,
respectively. Transfer of methylallyl frommethylallyl diphos-
phate (MAPP) to L-tyrosine also yielded 4-O-methylallyl-L-
tyrosine, albeit at a conversion rate of only 21.2% (TyrPT) and

28.0% (SirD). The presence of 2-pentenyldiphosphate (2-pen-
PP) achieved 56.6% (TyrPT) and 44.3% (SirD) conversion of
L-tyrosine to 4-O-(2-pentenyl)-L-tyrosine (Fig. 2b) (Bandari
et al. 2017). These results enriched the libraries of alkyl do-
nors for L-tyrosine O-alkylation, but the turnover of TyrPT
and SirD with MAPP and 2-pen-PP remained 0.1–1.0 per
minute. Hence, site-directed mutagenesis should be used in
the future to improve the catalytic efficiency of TyrPT and
SirD on MAPP and 2-pen-PP as alkyl donors.

Derivatization of the L-tyrosine α-carboxyl
group

As a stable functional group on a conjugated system, the car-
boxyl group of L-tyrosine can undergo two different derivati-
zations: direct decarboxylation by tyrosine decarboxylase
(TDC; EC 4.1.1.25) to form tyramine or facile reduction by
L-tyrosine reductases (EC 1.2.1.101) to generate L-tyrosine
aldehyde (Fig. 3).

Decarboxylation of the α-carboxyl group
by tyrosine decarboxylase

The α-carboxyl group of L-tyrosine can undergo decarboxyl-
ation by TDC to generate tyramine (Ni et al. 2019; Toy et al.
2015), which is a precursor of textile materials and drugs
(Jiang et al. 2019; Zhang and Ni 2014). In the previous de-
cade, membrane engineering, immobilization engineering,
and expression optimization became the focus of L-tyrosine
decarboxylation. Substrate uptake and product release are me-
diated by the cell membrane (Britton et al. 2018); therefore,
increasing cell membrane permeability could potentially aug-
ment the tyramine titer (Westbrook et al. 2019; Westbrook
et al. 2018). Use of 1% hexane-treated Origami (DE3) ex-
pressing TDC from Lactobacillus brevis (LbTDC) as the bio-
catalyst successfully converted 18 g/L L-tyrosine to 18 g/L
tyramine (> 99%) after 4.5 h (Zhao et al. 2017). To prevent
tyramine from being toxic to cells (Zhang and Ni 2014), an
encapsulating biocatalyst with alginate (Zhao et al. 2011)
achieved 377 mM tyramine, corresponding to a 91.2% yield
(Zhang et al. 2016). Improving the expression of soluble TDC
in a heterologous host can further increase the tyramine titer.
Accordingly, the addition of 1% glucose under acidic
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conditions, increased the specific activity of LbTDC in
Escherichia coli BL21 (DE3) to 46.3 U/mg (Zhang and Ni
2014), allowing 400 mM tyrosine to be completely converted
into 400 mM tyramine (> 99.9%) within 24 h (Fig. 3a) (Jiang
et al. 2019). Further development of this whole-cell decarbox-
ylation process could lead to highly productive and selective
industrial manufacturing of tyramine.

Reduction of the α-carboxyl group
by L-tyrosine reductases

The mechanism of the L-tyrosine α-carboxyl group to an al-
dehyde group by L-tyrosine reductases comprises four steps
(Qu et al. 2018). In the first step, the carboxylic acid substrate
is activated to form an acyl-AMP intermediate in the
adenylation domain. In the second step, the acyl group is
transferred to phosphopantetheine to form an enzyme-bound
thioester. Third, the peptidyl carrier protein domain delivers
the thioester to the reductase domain. Finally, the thioester is
reduced by NADPH to yield the aldehyde product
(Scheme 2). An enzyme-screening strategy (Derrington et al.
2019; Winkler 2018) led to the identification of L-tyrosine
reductases LnaA and LnbA from Aspergillus flavus, which
reduced the stable α-carboxyl group using NADPH as a co-
factor. LnaA and LnbA could convert almost 1 mM L-tyrosine
to L-tyrosine aldehyde after a 2-h reaction (Fig. 3b) (Kalb et al.
2014). As this reaction was conducted in a total volume of
only 5 mL, with 1 mM L-tyrosine and 250 μM purified en-
zyme, further work (e.g., discovery and performance

improvement of novel enzymes) is required to test its applica-
bility at an industrial scale.

Derivatization of the L-tyrosine α-amino
group

The chiral α-amino group of L-tyrosine can undergo five dif-
ferent derivatizations: (1) deamination via L-amino acid deam-
inases (L-AADs; EC 1.4.3.2); (2) elimination catalyzed by
tyrosine ammonia lyase (TAL; EC 4.3.1.5); (3) α-amino
shifting by TAM or PAM; (4) catalysis by a three-enzyme
cascade composed of L-AAD, meso-diaminopimelate dehy-
drogenase (DAPDH; EC 1.4.1.16), and formate dehydroge-
nase (FDH) for the stereo-inversion of theα-amino group; and
(5) type conversion of the α-amino group by a three-enzyme
cascade including L-AAD, 2-hydroxyisocaproate dehydroge-
nase (HicDH), and FDH (Fig. 4).

Deamination of the α-amino group via
L-amino acid deaminase

Conversion of the L-tyrosine α-amino group (–NH2) to a car-
bonyl group (–CO–) is catalyzed by four different kinds of
enzymes: L-amino acid dehydrogenase (EC1.4.1.5), L-tyro-
sine aminotransferases (EC 2.6.1.5), L-amino acid oxidase
(EC 1.4.3.2), and L-AADs. Membrane-bound L-AAD is an
ideal enzyme to prepare 4-hydroxyphenylpyruvic acid (4-
HPPA) as no amino acceptor is needed and no H2O2 is
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produced during the reaction (Fig. 4a) (Ju et al. 2016; Wang
et al. 2020). A widely accepted hypothetical mechanism en-
visions that, during the first half of the reaction, L-AAD em-
ploys FAD to catalyze the deamination of L-amino acid, yield-
ing the corresponding α-imino acid, while the FADH2 cofac-
tor is recycled by transferring electrons to molecular oxygen
through a membrane electron transfer chain, yielding H2O
instead of H2O2. In the second half of the reaction, the corre-
sponding α-keto acid and ammonia are obtained via sponta-
neous hydrolysis of the α-imino acid (Molla et al. 2017)
(Scheme 3). Because L-AADs are anchored to the outside of
the cell membrane through an N-terminal transmembrane he-
lix (Ju et al. 2016; Motta et al. 2016), optimization of the
protein-secretion system could improve the release of L-
AADs to the periplasm. Replacing the integrated pelB-Tat
signal peptide with a twin-arginine signal peptide increased
secretion efficiency of whole-cellE. coliBL21 (DE3) express-
ing L-AAD from Proteus vulgaris to 18.9%, resulting in the
transformation of 100 mM L-tyrosine into 72.72 mM 4-HPPA
with 72.7% yield in 10 h (Ding et al. 2018). This bioprocess,
which is more eco-friendly and economical than the use of
transaminase or oxidoreductase, has strong potential for in-
dustrial application.

Elimination of the α-amino group by tyrosine
ammonia lyase

Elimination of the L-tyrosine α-amino group can be
achieved by 3,5-dihydro-5-methylidene-4H-imidazol-4-
one (MIO)-dependent TAL (EC 4.3.1.5) (Parmeggiani
et al. 2018; Wu and Li 2018). The mechanism of MIO-
dependent ammonia lyases has been discussed extensively
over the past 50 years. The generally accepted hypothesis
is that, first, the MIO cofactor is spontaneously generated
as a potent electrophile from the three-amino acid motif
Ala-Ser-Gly (Scheme 4a). In the second step, the amino
group becomes attached to the MIO cofactor, which

enhances the leaving ability of the amino group. In the
third step, deprotonation of the β-carbon results in the
elimination of the MIO-bound amine and product forma-
tion. Finally, the MIO-bound amine becomes protonated
and released to the broth as free ammonia, regenerating
the functional MIO-prosthetic group (Attanayake et al.
2018) (Scheme 4b, path a). To date, three strategies, in-
cluding protein engineering combined with codon optimi-
zation, immobilization engineering, and enzyme screen-
ing, have been used to convert L-tyrosine to p-coumaric
acid. As a promising tool, protein engineering has been
used extensively to improve the catalytic efficiency of
codon-optimized TAL and its affinity for L-tyrosine. The
most representative example is a triple mutant of TAL
from Rhodotorula glutinis (RgTALS9N/A11T/E518V) (Zhou
et al. 2016), whose synthesis of 280 mg/L of p-coumaric
acid was 65.9% higher than that of wild-type RgTAL. To
obtain an even higher p-coumaric acid titer, a calcium
alginate matrix cross-linked with glutaraldehyde and
polyethyleneimine (GA/PEI) was employed to provide
the mechanical stability necessary for repeated use in con-
secutive batch reactions (Trotman et al. 2007). As a result,
50 g/L L-tyrosine was converted to ~ 39 g/L p-coumaric
acid with an average yield of 88% in a 1-L batch reaction
run for 41 cycles. The enzymatic screening revealed a
thermostable TAL from the wood-rotting fungus
Phanerochaete chrysosporium (PcTAL) (Xue et al.
2007). This discovery allowed the reaction temperature
to be raised from 30 to 45 °C, resulting in 42.2 g/L p-
coumaric acid being produced from 50 g/L L-tyrosine,
with 1.11 g/g dcw/L and only 2 g/L PcTAL (Fig. 4b).
Recently, another thermostable TAL identified in
Streptomyces sp. NRRL F-4489 was characterized as hav-
ing much higher efficiency, corresponding to a kcat/Km of
78.31/μM/min (Cui et al. 2020). Therefore, the above
process could replace traditional chemical synthesis for
the industrial production of p-coumaric acid.
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Shifting of the α-amino group by tyrosine
or phenylalanine aminomutase

Theα-amino group of L-tyrosine can move from theα-position
to the β-position to generate (R)-β-tyrosine by two different
MIO-dependent aminomutases: TAM or PAM (Parmeggiani
et al. 2018; Turner 2011). MIO-dependent aminomutases likely
share the same catalytic mechanism for the amine removal step
with ammonia lyases, but rather than releasing the MIO-bound
amine into the surrounding environment, they catalyze a
Michael addition that appends the amine to theα,β-unsaturated
carboxylic acid intermediate, creating a β-amino acid as the
final product (Attanayake et al. 2018) (Scheme 4b, path b). A
eukaryotic (R)-selective TAM from rice (Oryza sativa) was
found to generate enantiopure (R)-β-tyrosine with 52% conver-
sion and 96.5% ee after 24 h of reaction (Walter et al. 2016;
Yan et al. 2015). To further improve conversion, an engineered
PAM from Taxus wallichiana (TwPAMC107S) was obtained by
sequence alignment and rational mutagenesis, resulting in
(R)-β-tyrosine with > 99% ee and without any trace of the
undesirable (S)-enantiomer or p-coumarate byproducts
(Fig. 4c) (Wu et al. 2010). However, the lower titer, productiv-
ity, and yield of (R)-β-tyrosine limit its industrial application.
Therefore, continued enzyme discovery and engineering efforts
are required to transform aminomutases into effective commer-
cial biocatalysts for L-tyrosine derivatization.

Stereo-inversion of the α-amino group
by a three-enzyme cascade

The α-amino group of L-tyrosine can be stereo-inverted by
cascading deamination and reductive amination (Song et al.

2018). In one study, a biocatalytic reaction route was designed
based on the modification of the α-amino group (Fig. 4d)
(Zhang et al. 2019): L-tyrosine was first deaminated to 4-
HPPA by L-AAD from Proteus mirabilis, followed by
stereoselective reductive amination with a recombinant
DAPDH f rom Symb iobac t e r i um the rmoph i l um
(StDAPDHH227V). By incorporating an NADPH-recycling
system based on FDH from Burkholderia stabilis, D-tyrosine
was obtained with 45.3% conversion and > 99% ee. Recently,
the identification and functional characterization of two novel
DAPDHs from Numidum massiliense (NmDAPDH) and
Thermosyntropha lipolytica (TlDAPDH) were reported.
NmDAPDH was found to use both NADP+ and NAD+ as
coenzymes and exhibited ~ 2 times higher kcat/Km toward
meso-2,6-diaminopimelate than StDAPDH (Akita et al.
2020b). Moreover, the activity of TlDAPDH remained above
80% after incubation for 30 min at 50 °C–65 °C and pH 4.5–
pH 9.5 (Akita et al. 2020a). While these studies are still at the
laboratory stage, they offer some guidance on the industrial
production of D-tyrosine.

Type conversion of the α-amino group
by a three-enzyme cascade

Direct conversion of the α-amino group to a hydroxyl group
to produce the corresponding chiral α-hydroxy acid cannot be
achieved by natural enzymes (Song et al. 2019). Thus, design-
ing an artificial biocatalytic cascade and balancing the expres-
sion levels of the cascade enzymes represent two strategies for
preparing stereocomplementary (R)- or (S)-4-hydroxyphenyl
lactic acid (4-HPLA) from L-tyrosine (Diethelm et al. 2010;
Gourinchas et al. 2015). As shown in Fig. 4e, L-tyrosine was
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first converted to 4-HPPA by L-AAD from Proteus
myxofaciens and then asymmetrically reduced by HicDH
from Lactobacillus paracasei DSM 20008 (L-HicDH) or
from Lactobacillus confuses DSM 20196 (D-HicDH). By in-
corporating FDH from Candida boidinii to recycle NADH,
100 mg of L-tyrosine was successfully transformed into
78.4 mg (R)-4-HPLA and 80 mg of (S)-4-HPLA with 78–
80% isolated yield and 95–99% ee (Busto et al. 2014). To
implement this cascade in a designed cell catalyst, the expres-
sion levels of the cascade enzymes were balanced by two
different promoters (the stronger T7/lacO promoter and the
weaker pBAD promoter) (Gourinchas et al. 2015), which re-
sulted in 18.1 g/L (R)-4-HPLA and 36.1 g/L (S)-4-HPLA,
with > 99% conversion and > 98% ee (Fig. 4e). Such artificial
biocatalytic cascade with both prominent conversion rate and
balanced protein expression level might improve the feasibil-
ity of 4-HPLA production at an industrial scale.

Derivatization of multiple groups
on L-tyrosine

The different groups on L-tyrosine can undergo three types of
derivatizations: (1) combinations of convergent and divergent
reactions that produce non-natural benzylisoquinoline alka-
loids (BIAs); (2) coupling of transamination and deoxygen-
ation reactions to produce (S)-4-hydroxymandelic acid [(S)-
HMA]; and (3) a five-enzyme linear cascade that generates 4-
hydroxybenzyl alcohol (Fig. 5).

Combinations of convergent and divergent
reactions to produce BIAs

Combining convergent and divergent reactions affecting the
three functional groups on L-tyrosine leads to the synthesis of
three non-natural BIAs (Wang et al. 2019). A convergent re-
action with phenylacetaldehyde as substrate plus tyrosinase
fromCandidatus Nitrosopumilus salaria BD31Q, TDCs from
Enterococcus faecalis DC32, and norcoclaurine synthase (EC
4.2.1.78) from Thalictrum flavum as catalysts enabled the
s yn t h e s i s o f 1 - b en zy l - 6 , 7 - d i hyd r oxy - 1 , 2 , 3 , 4 -
tetrahydroisoquinoline at 66% isolated yield and > 97% ee
( F i g . 5 a ) . I n t r oduc t i on o f t r a n s am ina s e f r om
Chromobacterium violaceum and L-tyrosine as the sole
starting material led to production of (S)-norlaudanosoline
with 53% isolated yield and > 97% ee (Fig. 5a). If the order
of those four enzymes was changed, (S)-norcoclaurine was
produced with an isolated yield of 62% and > 97% ee
(Fig. 5a). However, although bio-based production of BIAs
can be achieved with excellent enantioselectivity, the low
BIAs titer is far from the industrial scale. In the future, directed
evolution or expression optimization should be used to

improve the activity and stability of key enzymes in the path-
way and make the transformation more effective.

Coupling of transamination
and deoxygenation reactions to produce (S)
-HMA

A sequential cascade of transamination and deoxygenation
can be created by coupling β-methylphenylalanine transami-
nase TyrB (EC 2.6.1.107) with 4-hydroxymandelate synthase
(HMS; EC 1.13.11.46) from Amycolatopsis orientalis. As
shown in Fig. 5b, L-tyrosine was first transaminated to 4-
HPPA using α-ketoglutarate as the amino acceptor and then
directly converted to (S)-HMA in the presence of oxygen
(Youn et al. 2020). Using recombinant E. coli as whole-cell
biocatalysts over a period of 6 h yielded ~ 4.5 mM (S)-HMA
with 84% conversion and > 97% ee. Nevertheless, the appli-
cation of this route on an industrial scale has been hampered
by low productivity and the additional cost of the co-substrate
α - ke t og lu t a r a t e . Use o f L -AAD ins t e ad o f β -
methylphenylalanine transaminase TyrB and a reactor engi-
neering strategy to improve catalytic efficiency could bring
this process closer to industrial application.

A five-enzyme linear cascade to produce
4-hydroxybenzyl alcohol

Cascading a deamination reaction with four other reac-
tions allowed the conversion of L-tyrosine α-amino and
α-carboxyl groups into a hydroxyl group (Fig. 5c) (Liu
et al. 2020). Specifically, 4-HPPA was first obtained
through direct deamination of L-tyrosine catalyzed by L-
AAD, and subsequent transformation of 4-HPPA to 4-
hydroxybenzyl alcohol was achieved through four heter-
ologous enzymatic steps involving HMS, (S)-mandelate
dehydrogenase (EC 1.1.99.31), benzoylformate decarbox-
ylase (EC 4.1.1.7), and phenylacetaldehyde reductase
from Solanum lycopersicum . Using this method,
580.98 mg/L of 4-hydroxybenzyl alcohol was synthesized
from L-tyrosine with 93.6% conversion. Even though an
NADPH-recycling system can be incorporated to reduce
the cost for cofactor addition, NADPH is still too expen-
sive to be applied at an industrial scale. Recently, a novel
short-chain carbonyl reductase from Bacillus aryabhattai
(BaSDR1; EC 1.1.1.184) was cloned and expressed in
E. coli. Notably, BaSDR1 displayed excellent catalytic
performance toward various acetophenone analogs with
NADH as a cofactor and yielded chiral phenethyl alcohol
with 99% ee for all the tested substrates (Li et al. 2019a).
Replacing phenylacetaldehyde reductase with NADH-
dependent carbonyl reductase or changing cofactor
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preference of phenylacetaldehyde reductase will likely en-
able the industrial production of 4-hydroxybenzyl alcohol.

Conclusion and future prospects

As an aromatic polar amino acid, L-tyrosine contains a highly
reactive α-amino, α-carboxyl, and phenolic group. These
functional groups allow diverse derivatizations of L-tyrosine,
such as hydroxylation catalyzed by tyrosinase, decarboxyl-
ation of the α-carboxyl group by TDC, and deamination of
the α-amino group via L-AAD. Single- or multi-group deriv-
atizations guided by various enzymes enable highly
enantioselective conversion of L-tyrosine to value-added
chemical scaffolds, including non-proteinogenic amino acids,
α-hydroxy acids, ketoacids, unsaturated aromatic compounds,
and non-natural alkaloids. However, unsatisfactory yields of
L-tyrosine derivatives, as well as the restrictive category of L-
tyrosine, continue to limit the industrial application of the
derivatization process. Therefore, future efforts should focus
on the following three aspects: (1) discovery and performance
improvement of novel enzymes; (2) design and extension of
derivatization reactions; and (3) optimization and develop-
ment of the catalytic process. With the explosive growth in
enzyme discovery (e.g., metagenome screening and genemin-
ing), the prospect of using new functional enzymes for L-ty-
rosine derivatization increases the chances of overcoming
multiple limitations. Additionally, protein engineering tech-
nologies promote enzyme modification to address defects as-
sociated with enzyme activity and stability, resulting in in-
creased tolerance for high substrate loads required in industrial
applications (Sun et al. 2019). L-Tyrosine derivatization has
clearly advanced from single-step transformations to multi-
step cascade reactions using either isolated biocatalysts or
whole-cell systems. Therefore, a deeper understanding of the
catalytic performance of the associated enzymes will foster the
continued development of derivatization strategies by extend-
ing linear enzyme cascades or designing different cascade
types (e.g., orthogonal or cyclic cascades) via biocatalytic
retrosynthetic analysis (Schrittwieser et al. 2018).
Furthermore, to meet the demands of industrial settings, novel
techniques aimed at optimizing the catalytic process, such as
media, immobilization, and reactor engineering, should be
implemented to improve the cost-effectiveness of L-tyrosine
derivatives production. As a result of more effective
biocatalysts, novel L-tyrosine derivatives can be soon expect-
ed on a large scale.
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