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Abstract
Artificial intelligence (AI) models and optimization algorithms (OA) are broadly employed in different fields of technology and
science and have recently been applied to improve different stages of plant tissue culture. The usefulness of the application of AI-
OA has been demonstrated in the prediction and optimization of length and number of microshoots or roots, biomass in plant cell
cultures or hairy root culture, and optimization of environmental conditions to achieve maximum productivity and efficiency, as
well as classification of microshoots and somatic embryos. Despite its potential, the use of AI and OA in this field has been
limited due to complex definition terms and computational algorithms. Therefore, a systematic review to unravel modeling and
optimizing methods is important for plant researchers and has been acknowledged in this study. First, the main steps for AI-OA
development (from data selection to evaluation of prediction and classification models), as well as several AI models such as
artificial neural networks (ANNs), neurofuzzy logic, support vector machines (SVMs), decision trees, random forest (FR), and
genetic algorithms (GA), have been represented. Then, the application of AI-OA models in different steps of plant tissue culture
has been discussed and highlighted. This review also points out limitations in the application of AI-OA in different plant tissue
culture processes and provides a new view for future study objectives.

Key points
• Artificial intelligence models and optimization algorithms can be considered a novel and reliable computational method in
plant tissue culture.
• This review provides the main steps and concepts for model development.
• The application of machine learning algorithms in different steps of plant tissue culture has been discussed and highlighted.
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Introduction

Plant tissue culture can be considered the culture or cultivation of
specific plant cells, organs, or tissues (explant) under axenic con-
ditions, which is based on “totipotency” (Bhojwani and Dantu
2013). The term totipotency means that all plant cells (except
male and female gametes) include the full range of genes, which
makes it theoretically possible for individual cells under in vitro

condition to develop into healthy and true-to-type plants
(Bhojwani and Dantu 2013). This process provides the founda-
tion for “micropropagation” in which culture vessels are used for
propagation from various explants. Nowadays, in vitro culture
can be considered one of the most important methodologies for
the breeding and propagation of many plant species. Without
in vitro culture, different methods such as micropropagation,
in vitro shoot regeneration, gynogenesis, androgenesis, the pro-
duction of plant-derived metabolites, or somatic embryogenesis
would not be achievable (Raj and Saudagar 2019; Hesami et al.
2018c). However, it is necessary to optimize the in vitro culture
conditions (Fig. 1) for each species, and in some cases each
genotype within a species, and for different stages of growth
and development such as callogenesis, embryogenesis, shooting,
and rooting (Gray and Trigiano 2018). For instance, the
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composition and concentrations of macro and micro nutrients,
vitamins, and amino acids have a profound effect on organogen-
esis as reported in several studies with different plants. Although
a plethora of studies have usedMS (Murashige and Skoog 1962)
salts as a basal medium for organogenesis in different plants, the
composition of MS medium is based on analysis of tissue ashes
of tobacco (Arab et al. 2018; Jamshidi et al. 2019; Akin et al.
2020; Nezami-Alanagh et al. 2018). Since the nutrient require-
ments for different tissue culture systems and plant species vary,
it is necessary to develop medium formulations optimized for
specific species and stages of development for maximal efficien-
cy. However, due to the large number of media components,
design and modification of a medium for specific purpose needs
high expertise and is time-consuming (Phillips and Garda 2019).
Hildebrandt et al. (1946) indicated thatmore than 16000 different
treatments were required for designing a new culture medium.
Also, Murashige and Skoog (1962) spent about five years to
establish and develop the culture medium by using eighty-one
different combinations of macro- and micro-elements and vita-
mins. To ease this problem, computer technologies such as arti-
ficial intelligence (AI) would be helpful to reduce this long and
cumbersome process.

Although there are numerous biological events that can
readily be observed in different stages of in vitro culture, all
of them are non-linear and non-deterministic and, further-
more, are impacted by multiple other factors as well (Osama
et al. 2015; Zielinska and Kepczynska 2013). The complex
interactions of many factors make optimization using tradi-
tional statistics problematic and would require unrealistic
numbers of treatments. Therefore, the application of the ap-
propriate AI models can be considered a useful and precise
methodology to simulate and predict different growth and
developmental processes under in vitro conditions to help op-
timize protocols with fewer treatments.

Recently, there has been an increase in plant tissue culture
modeling using data-driven (also known as machine learning
or AI) models (Prasad and Gupta 2008a; Osama et al. 2015;
García-Pérez et al. 2020a; Kaur et al. 2020). AI models in-
clude various designs that might cover different views to
in vitro processes (Tani et al. 1992). Modeling different steps
of plant tissue culture is one of the most remarkable challenges
in the field of in vitro culture (Frossyniotis et al. 2008). This
rise is a consequence of the physical complexity of plant tissue
culture and the time and cost needed for analyzing different
elements of the in vitro culture process (Shiotani et al. 1994;
Molto and Harrell 1993; Hesami et al. 2017c). AImodels have
been found to be very applicable and reliable methods to help
cope with those challenges and problems by providing oppor-
tunities to construct AI models from experimental and ob-
served data and, also, improving the response of decision-
makers facing complex systems in plant tissue culture
(Osama et al. 2013; Araghinejad et al. 2017; Hesami et al.
2020b). Since AI tools are able to model different in vitro
systems and subsequent outcomes of biological processes
without the requirement for a profound knowledge of the
physical systems neighboring the process, these methods are
becoming common among plant tissue culture researchers
(Osama et al. 2015; Zielinska and Kepczynska 2013).

Data-driven models, as understood by the name, refer to
various methods that predict and model a process based on
real information obtained from the process (Maddalena et al.
2020; Moravej et al. 2020; Dezfooli et al. 2018). They consist
of various models, generally classified into soft computing
and statistical methods (Akbari and Deligani 2020;
Ebrahimian et al. 2020). Data-driven models can be generally
categorized as accurate, inexpensive, precise, and flexible
methods, which make them appropriate approaches for
predicting and studying different biological systems with

Fig. 1 The schematic diagram of the major factors affecting in vitro culture processes
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various complexity degrees according to our knowledge about
a process (Araghinejad et al. 2017; Hosseini-Moghari et al.
2017). Although data-driven models were primarily used in
different fields of science and technology, they could be con-
sidered novel methods regarding soft computing (Maddalena
et al. 2020; Araghinejad et al. 2018). Modeling through AI
models, which is dependent on the levels of our knowledge of
mathematical and statistical equations, can be described as a
solution determined by “engineering thinking and judgment”
to the field of computational biology.

Recently, several reports have been published regarding
various applications of artificial intelligence models in differ-
ent procedures of plant tissue culture (Hesami et al. 2019b;
Zielinska and Kepczynska 2013; Osama et al. 2015). All the
reports confirmed the reliability and accuracy of AI in fore-
casting and optimizing growth and developmental processes
under in vitro culture conditions. Thus, this review focuses on
the recent developments in plant tissue culture using AI-OA.
First, we have introduced the principle of modeling and opti-
mizing as well as different well- known algorithms. Then, the
application of AI-OA in different stages of plant tissue culture
has been discussed.

Data-driven modeling basics

Preprocessing of data: first step before modeling

Although preprocessing data before using AI models is not
required, it can sometimes improve the performance and ac-
curacy of the models (Silva et al. 2019). Indeed, data prepro-
cessing can guarantee that all data receive equivalent consid-
eration during the training set. Two common preprocessing
methods that can be applied are principle component analysis
(PCA) and standardizing the data (Araghinejad et al. 2017).
These approaches are described in this section.

Principal component analysis

The principal component analysis (PCA) is an approach that
can be used for two purposes. The first is to eliminate the
linear correlations among variables and the second is to de-
crease the data dimension. PCA replaces correlated variables
by principal components (new uncorrelated variables). PCA
uses a new orthogonal coordinate set to replace xy (Cartesian)
coordinate set, where the first line crosses via the data scatter
axis and the novel origin. The new coordinate process has
merit over the previous version of the coordinate system that
the first axis can be utilized to explain most of the variance,
while the second axis provides only a little description.
Therefore, the reduction of data dimension can be obtained
by decreasing the second axis without missing much data

when a significant correlation is available (Aït-Sahalia and
Xiu 2019).

Linear combinations of the n vector of correlated vectors
are shown by PCs and Xi. The PC number is equal to n, so, the
full variance of the dataset is obtained through all PCs togeth-
er. The first few PCs explain most of the variance, therefore,
some PCs which represent a little of the variance can be ig-
nored. n PCs are determined based on the following equa-
tions:

PC1 ¼ a11X 1 þ a12X 2 þ…þ a1nX n

PC2 ¼ a21X 1 þ a22X 2 þ…þ a2nX n

⋮
PCn ¼ an1X 1 þ an2X 2 þ…þ annX n

ð1Þ

Figure 2 represents PCA for a two-dimensional (2D)
dataset.

Standardizing

Data standardization as a simple method can improve the
model efficiency. In this method, the specified range (usually
between zero and one) is used for transmitting all variables.
Data standardization prevents the negative effects of input
variables with various ranges on the model efficiency. The
following equation is one of the most common equations for
the data standardization:

xnormal ¼ x−xmin

xmax−xmin
ð2Þ

where xmin, xmax, and xnormal are the minimum, maximum,
and normalized values of x, respectively. By using this equa-
tion for each of the output and input vectors, all variables are
transmitted between 0 and 1 (Kumari and Swarnkar 2020).

Fig. 2 An example of principal component analysis (PCA) for a two-
dimensional data set
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Network selection

Network selection involves choosing the network, initial
weight matrix, size and number of hidden layers, etc.
(Osama et al. 2015).

Training selection

Training selection should be started with initial weight and
network topology and training the network on the training
dataset. After reaching the satisfactory minimum error, the
weights will be saved (Silva et al. 2019).

Testing and interpretation of results

The trained network is employed to test the dataset to obtain
the error. If it is not satisfactory, the network architecture or
training set requires to be modified (Silva et al. 2019).

Assessment of the developed model

The concluding assessment of the network quality is ad-
dressed after the training processes completed through testing
datasets based on different performance criteria such as the
sum of the squares of the error (SSE), mean square error
(MSE), root mean square error (RMSE), mean absolute error
(MAE), mean bias error (MBE), the linear Pearson’s correla-
tion coefficient (R), and coefficient of determination (R2)
(Silva et al. 2019; Osama et al. 2015).

SSE ¼ 1=n ∑
n

i¼1
yi−y

� �2
ð3Þ

MSE ¼ 1=n ∑
n

i¼1
yi−eyi

� �2
ð4Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 yi−byi
� �2

� �
=n

s
ð5Þ

MAE ¼ 1=n ∑
n

i¼1
yi−byi
��� ��� ð6Þ

MBE ¼ 1=n ∑
n

i¼1
yi−byi

� �
ð7Þ

R ¼
∑n

i¼1 yi−y
� � byi−by

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 yi−y
� �r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
i¼1 byi−by

� �s ð8Þ

R2 ¼
∑n

i¼1 yi−y
� � byi−by

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 yi−y
� �r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
i¼1 byi−by

� �s

2
66664

3
77775

2

ð9Þ

where yi presents the ih observed data, y shows the mean of
observed values, byi indicates the mean of predicted values, and
n is the total number of predicted values.

Artificial intelligence models

Artificial neural networks

Different kinds of artificial neural networks (ANNs) including
multilayer perceptron (MLP), generalized regression neural net-
work (GRNN), radial basis function (RBF), and probabilistic
neural network (PNN) are described in this section. Before intro-
ducing these ANNs, some terms should be defined:

Neuron: is the main unit of ANN,which based on a specific
input variable and applying a transfer function, provides an
appropriate response.

Architecture: is a network construction consists of input,
hidden and output layers, number of neurons in each layer, the
way of neuron connection, the flow of data (recurrent or
straight), and specific transfer functions.

Train network: is the process of calibrating the ANN
through input/output pairs.

Multilayer perceptron

The MLP as one of the most well-known ANNs includes one
or more hidden layers, an input layer, and an output layer
(Silva et al. 2019; Osama et al. 2015; Sheikhi et al. 2020)
(Fig. 3a). A supervised training procedure is implemented
by MLP that provides input and output variables to the net-
work; the training set continues until the following equation
would be minimized:

E ¼ 1

K
∑
K

k¼1
yk−byk

� �2
ð10Þ

where K, yk, andbyk are the number of datapoints, the kth ob-
served data, and the kth forecasted data. In a three-layer MLP
with n inputs and m neurons in the hidden layer by determined
as:

by ¼ f ∑
m

j¼1
wj:g ∑

n

i¼1
wjixi þ wj0

� �
þ wo

" #
ð11Þ

where xi is the ith input variable, w0 represents bias related to
the neuron of output,wj0 is bias of the jth neuron of the hidden
layer, f represents transfer functions for the output layer, g is
the transfer functions for hidden layer, wji is the weight
connecting the jth neuron of hidden layer and the ith input
variable, andwj represents weight linking the neuron of output
layer and the jth neuron of the hidden layer. Some of the well-
known transfer functions are presented in Table 1.
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Determining the construction of the MLP has the main
function in its performance (Domingues et al. 2020; Niazian
et al. 2018a). In the construction of this model, it is necessary
to determine the number of neurons in each layer and the
number of hidden layers (Niazian et al. 2018a). Hornik et al.
(1989) revealed that the MLP with a sigmoid transfer function
is general approximators; which shows that it could be trained
to build any construction between the input and output vari-
ables. Therefore, the number of neurons in the hidden layer
plays an important role in determining the construction of the
MLP. Some studies (Sheikhi et al. 2020; Niazian et al. 2018a)
have recommended the proper number of neurons (m) based
on the number of data (K) or the number of input (n). For
example, Tang and Fishwick (1993), Wong (1991), and
Wanas et al. (1998) suggested “n,” “2n,” and “log (K)” as
the suitable neuron number. Eventually, the optimal number
of neurons in the hidden layer should be calculated by using
trial and error, however, the reported offers could be
employed as an initiating point. A large number of neurons
contributes to the complexity of the network while a low
number of themmakes for simplicity of the network, therefore
should be noted that a too simple network results in under-
fitting, and, conversely, becoming too complex causes over-
fitting (Domingues et al. 2020; Hosseini-Moghari and
Araghinejad 2015).

Radial basis function

RBF is a three-layer ANN consisting of an input layer, a
hidden layer, and an output layer (Fig. 3b). This is the basis
and principal for radial basis networks, which organizes sta-
tistical ANNs. Statistical ANNs refer to networks which in
contrast to the traditional ANNs implement regression-based
approaches and have not been emulated by the biological
neural networks (Lin et al. 2020). In an RBF model,
Euclidean distance between the center of each neuron and
the input is considered an input of transfer function for that
neuron. The most well-known transfer function in RBF is the
Gaussian function, which is determined based on the follow-
ing equation:

f X r;X bð Þ ¼ e− X r−Xbk k*0:8326=h½ �2 ð12Þ

where Xr,Xb, and h are input with unknown output, observed
inputs in time b, and spread, respectively. The output of the
function close to 1 when‖Xr − Xb‖approaches 0 and close to 0
when ‖Xr − Xb‖approaches a large value. Finally, the depen-
dent variable (Yr) by predictor Xr is determined as follows:

Y r ¼ ∑
m

b¼1
wb*f X r;X bð Þ þ w0 ð13Þ

where w0 andwjare the bias and weight of linkage between the
bth hidden layer and the output layer, respectively.

Generalized regression neural network

GRNN introduced by Specht (1991) is another kind of statis-
tical ANNs with a very fast training process. In the GRNN
model, the number of observed data and the number of neu-
rons in the hidden layer are equal. This model consists of an
input layer, pattern layer, summation layer, and output layer
(Fig. 3c). The pattern layer is completely connected to the
input layer. D-summation and S-summation neurons of the
summation layer are connected to the output derived from
each neuron of the pattern layer. D-summation and S-summa-
tion neurons calculate the sum of the unweighted and weight-
ed of the pattern layer, respectively. The connection weight
between S-summation neuron and a neuron of the pattern
layer is equal to the target output, while the connection weight
for D-summation is unity. The output layer obtains the un-
known value of output corresponding to the input vector, only
via dividing the output of each S-summation neuron through
the output of each D-summation neuron (Lan et al. 2020).
Consequently, the following equation is used to determine
the output value:

Y r ¼
∑
m

b¼1
Tb: f X r;X bð Þ

∑
m

b¼1
f X r;X bð Þ

ð14Þ

where Yrrepresents the output value, andTb is target associated
with the bth observed data.

Probabilistic neural network

The probabilistic neural network (PNN) is a type of ANNs for
classification aims. This model has a construction similar to
that of the RBF model (Fig. 3d). When an input is provided,
the first layer calculates distances from the calibration input
vectors to the input vector and generates a probabilities vector
as f(Xr,Xb). In the last layer, the maximum of these probabil-
ities is picked by a complete transfer function in the output.
PNN is not a regression model and cannot be forecasted con-
tinuous data, therefore, it can be employed as a method to
qualitative predicting (Ying et al. 2020).

Table 1 The most well-known transfer functions

Name Function

Linear f(x) = x

Tangent
sigmoid

f xð Þ ¼ 2
1þe−ax

� �
−1 α > 0

Log sigmoid f xð Þ ¼ 1
1þe−ax α > 0

Radial basis f xð Þ ¼ e−
x2

σ2
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Neurofuzzy logic

Neurofuzzy logic is the result of the combination of the adap-
tive learning capabilities of ANNs and fuzzy logic
(Dorzhigulov and James 2020). Designing neurofuzzy logic
needs qualitative knowledge, but not quantitative. Neurofuzzy
logic produces certain rules in an understandable and clear
form: if there is a requirement, then there is a decision; there-
fore, demonstrating the relationships in observations. ANN
models are applied to find the optimal levels of certain fuzzy
logic parameters in neurofuzzy system and automatically de-
termine fuzzy linguistic terms (rules) from numerical vari-
ables. The simplest and the most well-known method for con-
structing such models is to develop linguistic terms and mem-
bership functions by following these functions and then to
review how this model operates. The network structure
employed in neurofuzzy model consists of inference,
fuzzyfication, and defuzzyfication facilities. The classic con-
struction of the fuzzy logic indicates the description of opera-
tions conducted at each stage: (i) fuzzyfication, involving in
defining the membership level of a special input variable to
the size of each fuzzy sets comprising the possible ranges of
inputs—this step is decreased to estimating functions or find-
ing suitable variables in the tables, (ii) the application of fuzzy
system indicators to define the degree to which a condition is
reached in each of the functions, (iii) the use of the implication
model, which causes the production of fuzzy sets representing
each of the output variables happening in the conclusion, (iv)
gathering all combinations of outputs for each of the
representing outputs and all functions in one set of fuzzy,
and (v) defuzzification, which involves in the specific value
assigned to each of the outputs of the fuzzy set taken after
gathering (Dorzhigulov and James 2020). Recently, several

neuro-fuzzy approaches such as ASMOD (adaptive spline
modeling of data), ANFIS (adaptive neuro-fuzzy inference
systems), and NEFPROX (neuro-fuzzy systems for function
approximation) have been developed and implemented.
Among them, the ANFIS model gives a directed and system-
atic strategy for modeling and generates the best design pa-
rameters in the minimum time (Prado et al. 2020).

ANFIS can explain the complex system behavior accord-
ing to the fuzzy if–then rules which are based on Sugeno fuzzy
inference system. Consider the fuzzy inference system with x
and y as input variables and z as an output. A typical ruleset,
for the first order Sugeno fuzzy model, with four fuzzy if–then
rules can be represented as:

Rule 1 : if x is A1 and y is B1 then z1 ¼ p1xþ q1yþ r1
Rule 2 : if x is A1 and y is B2 then z2 ¼ p2xþ q2yþ r2
Rule 3 : if x is A2 and y is B1 then z3 ¼ p3xþ q3yþ r3
Rule 4 : if x is A2 and y is B2 then z4 ¼ p4xþ q4yþ r4

ð15Þ
where Ai and Bi (i = 1,2,3,4) are the fuzzy sets, pi,qi, and ri(i =
1,2,3,4) are the design parameters that are calculated during
the training set. The construction of ANFIS includes input
node layer, rule node layer, average node layer, consequent
node layer, and output node layer (Fig. 4a).

Layer 1 (input node layer): All the nodes in layer 1 are
adaptive nodes. The outputs of the input node layer are the
fuzzy membership grade of the input variables, which are
determined by:

O1
i ¼ μAi

xð Þ i ¼ 1; 2:
O1

i ¼ μBi−2
xð Þ i ¼ 3; 4:

ð16Þ

where μand O1
i are membership functions and output from

Fig. 3 The schematic diagram of different artificial neural networks (ANNs) including a multilayer perceptron, b radial basis function, c generalized
regression neural network, and d probabilistic neural network
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node i, respectively.
Layer 2 (rule node layer): In the second layer, the nodes are

considered fixed nodes and labeled ∏, the AND operator is
implemented to achieve one output that displays the result of
the prior for that rule. The kth output of Layer 2 (wk) is calcu-
lated as:

O2
k ¼ wk ¼ μAi

xð ÞμB j
xð Þ i ¼ 1; 2: j ¼ 1; 2: k

¼ 1; 2; 3 ; 4: ð17Þ

which elucidates the firing strength of each rule. The firing
strength indicates the level to which the prior section of the
rule is satisfied, and it develops the function of the output for
the rule.

Layer 3 (average node layer): In the third layer, the nodes
are fixed nodes and labelledN. The normalization of firing
strengths from the prior layer is the main function of layer 3.
The normalized firing strengths are the outputs of the average
node layer (wi ), and can be determined as:

O3
i ¼ wi ¼ wi

∑
4

l¼1
wk

i ¼ 1; 2; 3 ; 4: ð18Þ

Layer 4 (consequent node layer): This layer determines the
contribution of each ith rule in the whole output. The product
of the first-order Sugeno model and the normalized firing

strength is the output of each node in the fourth layer.
Therefore, the outputs of the fourth layer can be shown as:

O4
i ¼ wizi ¼ wi pixþ qiyþ rið Þ i ¼ 1; 2; 3 ; 4: ð19Þ

Layer 5 (output node layer): One single fixed node labeled
Sis the only node in the fifth layer. Summing all incoming
signals is the task of this layer. As a result, the following
equation represents the final output of the ANFIS:

O5
i ¼ ∑

4

i¼1
wizi ð20Þ

As can be seen, two sets of parameters should be deter-
mined and adjusted. The first set is premise parameters that
are based on the input membership functions. The second set
is consequent parameters {p,q,r} which are based on the first-
order Sugeno model. The least-squares approach is imple-
mented to adjust the consequent parameters and
backpropagation algorithm is used to optimize premise pa-
rameters. It has been documented that high performance in
training the ANFIS can be obtained by a hybrid algorithm
(Prado et al. 2020).

Support vector machine

Support vector machines (SVMs) developed by Vapnik
(2013) are the types of AI models with supervised and

Fig. 4 The schematic view of a Adaptive Neuro-Fuzzy Inference Systems (ANFIS) model for a two-input Sugeno model with four rules, b support
vector regression (SVR), c random forest (RF), and d data fusion approach with three individual models including MLP, ANFIS, and SVR
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unsupervised learning that are utilized for classification, clus-
tering, and regression analysis. Two types of SVM including
support vector classification (SVC) and support vector regres-
sion (SVR) have been introduced in this section.

Support vector classification

SVC is a classification version of SVM; therefore, it can only
be applied for qualitative predicting. SVC minimizes the risk
of classification by dividing the decision space, which means
that two groups have the highest distance from both lines. This
means that among different separators, the separator is select-
ed to have the highest distance of all groups. Figure 5 repre-
sents the differences between SVC classification and ANN
classification methods. In Fig. 5, a and b are separators with
error = 0; however, if a new input is added, these lines may
lose their accuracy, while line c has the minimum risk for
losing its precision. The following equation shows line c:

wTxþ b ¼ 0 ð21Þ

Where w and b are the classifier parameters and x is the
variables in the decision space. As can be seen in Fig. 5, for
classification, a margin is considered by SVC which deter-
mines as follow:

wTxþ b ¼ 1 ð22Þ
wTxþ b ¼ −1 ð23Þ

bj j wk k represents the distance of a line from the origin.
Therefore, the distance between the classifier line and the
upper marginal line is computed as:

d ¼ b−1j j
wk k −

bj j
wk k

����
���� ¼ 1

wk k ð24Þ

Thus, the width of the margin is calculated as:

D ¼ 2

wk k ð25Þ

The objective function of the SVC model can be consid-
ered the D value maximization or:

Min: L ¼ 1

2
wTw ð26Þ

Also, when variables in the decision are in the ownership of
the first class (y = 1),wTx + b should be ≥ 1, while with vari-
ables belonging to the second class (y = -1) in the decision
space,wTx + b should be ≤ − 1. Thus, the optimization problem
can be presented as:

Min: L ¼ 1

2
wTw

subjet to :
y wTxþ b
� 	

≥1
ð27Þ

The mentioned optimization problem is applied for the
“hard margin” method where a solid fringe is taken account
of the SVs. However, more flexibility is needed for practical
purposes. This SVC will be achieved by receiving an error of
ξ for each of the marginal lines. Therefore, the optimization
can be represented as:

Min: L ¼ 1

2
wTwþ C ∑

n

i¼1
ξi i ¼ 1;…; n

subjet to :
yi W

TX þ b
� 	

≥1−ξi i ¼ 1;…; n
ξi≥0 i ¼ 1;…; n

ð28Þ

where ξi and C are a slack variable providing a soft classifi-
cation margin and a penalty parameter, respectively. The dual
problem can be solved to simplifying optimization. The dual
solution can be written as:

Fig. 5 The schematic view of classification with a artificial neural network (ANN) and b support vector classification (SVC) approach
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Max: LD ¼ ∑
n

i¼1
αi−

1

2
∑
n

i¼1
∑
n

j¼1
yi:y j: jαi:α jxTi :x j

subjet to :
0≤αi≤C i ¼ 1;…; n

∑
n

i¼1
αiyi ¼ 0 i ¼ 1;…; n

ð29Þ

whereαi ∈ℜn presents Lagrange multipliers. In the training
process, one αiexists for each vector. Support vectors (SVs)
correspond to the nonzero subset (αi) and determine the deci-
sion surface, these SVs are the most informative. SVs present
the location of the borderline (Fig. 5).

Mapping a higher-dimensional space through functionφ(x)
can be obtained by the decision space variables (x). Therefore,
the dual problem can be shown as:

Max: LD ¼ ∑
n

i¼1
αi−

1

2
∑
n

i¼1
∑
n

j¼1
yi:y j: jαi:α j:k xi; x j

� 	
subjet to :

0≤αi≤C i ¼ 1;…; n

∑
n

i¼1
αiyi ¼ 0 i ¼ 1;…; n

ð30Þ

where k(xi, xj) =φ(xi).φ(xj) presents the kernel function. Thus,
the SVC can be performed as follows:

f xð Þ ¼ sign ∑
n

i¼1
yiαik x; xið Þ þ b

� �
ð31Þ

This distinctive function is named as SVC. Table 2 has
shown the kernel functions implemented in SVM’s
formulations.

SVC presented in this section can be classified into two
classes. When more than two categories are subjected, a suit-
able multiclass approach is required. There are two possible
methods for this aim as following:

1. Modification of the SVC design to directly combine the
quadratic solving algorithm and multiclass learning.

2. Incorporating several binary classifiers with two ap-
proaches:

“One against one” which employs pair comparisons
among categories.

“One against the others” which compares a particular
category with all the other categories.

Based on a comparative study (Kranjčić et al. 2019), the
precision of these approaches has approximately been the
same.

Support vector regression

The main difference between SVR and SVC is that in SVR, y
instead of a binary number is considered a real number. When

xiðf ; tiÞgni is considered a dataset, n, ti, and xi are the total
number of observed data, ith output vector, and ith input vec-
tor. The following equation can be used for SVR determina-
tion:

y ¼ wφ xð Þ þ b ð32Þ

Where b shows bias, w indicates weights, and the high
dimensional feature space is shown asφ(x), which is non-
linearly constructed based on the input space x. SVR tries to
minimize the risk by placing predicted variables between the
lower and upper bounds of the dataset. Lower and upper bor-
derlines are written asy =wφ(x) + b − ε and y =wφ(x) + b + ε,
respectively. Therefore, if a data is placed outside the marginal
line, it must be adjusted (Fig. 4b). The following equations as
an optimization set are applied for determining b and w coef-
ficients:

Min : L ¼ C
1

n
∑
n

i¼1
Lε ti; yið Þ þ 1

2
w:wT ð33Þ

Lε ti; yið Þ ¼ jt−yj−ε jt−yj > ε
0 otherwise



ð34Þ

where C is the penalty parameter, Lε shows insensitive loss
function, andεis acceptable error (tube size). εand C are user-
prescribed items. The following equation is used for the dual
function with using Lagrange multipliers:

Max LD ¼
∑
n

i¼1
ti αiα

*
i

� 	
−ε ∑

n

i¼1
αiα

*
i

� 	

−
1

2
∑
n

i¼1
∑
n

i¼1
αiα

*
i

� 	
k xi; x j
� 	

Subjected to :

∑
n

i¼1
αiα

*
i

� 	 ¼ 0

0≤αi≤C i ¼ 1; 2;…; n
0≤α*

i ≤C i ¼ 1; 2;…; n

ð35Þ

Then, w and b are calculated. The supporting vector is
considered the Lagrange multipliers with non-zero values.
Finally, the following equation is used for performing the
SVR:

y ¼ ∑
n

i¼1
αi−α*

i

� 	
k x; xið Þ þ b ð36Þ

RBF can be considered one of the common kernel func-
tions (Tong et al. 2020). Thus, an SVRwith RBF as the kernel
function can be shown as SVR(γ,C, ε).

Decision trees

Decision trees, as supervised machine learning models, are
broadly employed in regression and classification tasks
(Thomas et al. 2020). The decision tree structure consists of
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a root node, internal and leaf nodes. The internal nodes repre-
sent the values of the attributes, and each leaf node of the tree
includes the probability distribution and the label of the class.
There are different decision tree building algorithms such as
chi-squared automatic interaction detector (CHAID), exhaus-
tive CHAID, and Classification and regression tree (CART).
These models construct data in an easily interpretable way
(Akin et al. 2018). The foremost differences among these
models occur in the tree construction process. In CART, each
node dissects into two nodes (binary splits), while in CHAID
and exhaustive CHAID, each node dissects into more than
two nodes (multiway splits) by default (Akin et al. 2018;
Kusiak et al. 2010). All the methods restrict the tree size by
avoiding over-fitting. CART first produces the whole tree and
thenmakes a backward pruning (post-pruning) to optimize the
size of the tree, while CHAID and exhaustive CHAID restrict
any growth at the optimal size of the tree by employing a
stopping criterion (Thomas et al. 2020). All descriptive vari-
ables are checked for the optimal split in the tree construction
process, and trial splits are employed to find the best split
point. The best split can be considered the one that maximizes
the variance between groups and minimizes the variance with-
in a group. Backward pruning (post-pruning) is carried out
based on V-fold cross-validation. The whole tree is randomly
allocated to the V number of groups. One of these groups is
employed to validate the model and the residual is used to
construct a model, and this step is repeated V times. V number
of models are created and confirmed in this step (Thomas et al.
2020; Akin et al. 2018). The CHAID and exhaustive CHAID
tree-producing methods include merging, splitting, and stop-
ping processes. When the output variable is continuous (re-
gression-type variables), the CHAID approach performs the
best-next split based on the F test, while chi-square is
employed when the output is categorical. Continuous vari-
ables are divided into groups with a similar sample size. The
smallest Bonferroni adjusted p value is utilized for partitioning
response variables. Descriptive variable pairs with the highest
p-value are monitored for significance (which is generally
considered 0.05). The pair is merged into a single node if
the p-value is larger than 0.05. A group with three or more
classes is analyzed to define the most significant split. When
the node size is less than the predetermined minimum child
and parent node size value, the tree growth process stops,

otherwise it continues (Rashidi et al. 2014). The exhaustive
CHAID, as a modified CHAID method, needs more comput-
ing time because it uses more dependent variable testing and
merging (Akin et al. 2018; Kusiak et al. 2010).

Random forest

RF as an ensemble learning method is introduced firstly by
Breiman (2001). RF can be categorized as an ensemble of
unpruned trees. This algorithm has been successfully
employed in both classification and regression due to its sim-
plicity in design and superior efficiency. Several merit points
of the RF model such as prevent overfitting, the ability to
handle noise, and the ability to manage a large number of
features have been reported (Silva et al. 2019; Biau et al.
2019). The final output of the FR model is the combination
of the output data of the individual trees (Fig. 4c). To maintain
the minimum correlation among the individual trees while
keeping the strength of the individual trees, each of the indi-
vidual trees is thus built with two random injected sources for
classification accuracy. First, each individual tree is trained
based on randomly drawn with replacement (bootstrap repli-
ca) of the training data. Second, the algorithm defines the best
split, at each node of each tree, based on a small variable
subset that is randomly chosen from the whole variable set.
Furthermore, each tree is completely grown to obtain a high
variance of the tree outputs and low bias (Biau et al. 2019).

To solve regression problems, the mean squared error
(MSE) is used to how data branches from each node. In fact,
MSE determines the distance of each node from the forecasted
real value, serving to determine which branch is better for the
forest.

y ¼ ∑
n

i¼1
αi−α*

i

� 	
k x; xið Þ þ b ð36Þ

whereN is the number of data points, fi is the value returned
by the RF algorithm, and yi is the value of data point i.To solve
classification problems, the Gini index is applied to determine
how nodes on the branch of a decision tree. Equation 31 de-
termines which of the branches is more likely to happen based
on the probability and class to calculates the Gini of each
branch on a node.

Table 2 Some well-known kernel functions

Name Function

Linear k xið ; x jÞ ¼ xTi :x j
Radial basis function (RBF) k(xi, xj) = exp (−γ‖xi − xj‖2) γ > 0

Polynomial k xið ; x jÞ ¼ xTi :x j þ 1
� 	

d

Sigmoid kernel k xið ; x jÞ ¼ tanh γ xTi x j þ r
� 	
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Gini ¼ 1−∑c
i¼1 pið Þ2 ð38Þ

where pi corresponds to the relative frequency of the class in
the dataset and c is the class number.

Entropy can be also used to calculate how nodes branch in
a decision tree.

Entropy ¼ ∑c
i¼1−pi � log2 pið Þ ð39Þ

Entropy employs a certain outcome probability to decide
how the node should branch. Unlike the Gini index, entropy is
more mathematical intensive because of the logarithmic func-
tion applied in its formula.

Data fusion model

Nowadays, the necessity of increased precision and accuracy
of AI models has encouraged researchers to establish applica-
ble methods such as multi-model fusion-based (ensemble) ap-
proaches. The key idea of the ensemble model is fusing or
combining data derived from fused information in order to
obtain more precise predictions in comparing with
implementing individual models (Alizadeh and Nikoo
2018). Many researchers in several fields of study have used
data fusion (Alizadeh and Nikoo 2018; Hararuk et al. 2018;
Meng et al. 2020). At more complex systems such as different
stages of plant tissue culture, the ensemble model can be used
to fuse the advantages and strengths of individual AI models.
Several studies have demonstrated that ensemble models can
be more reliable and accurate to model complex systems
(Alizadeh and Nikoo 2018; Hararuk et al. 2018; Meng et al.
2020).

Data fusion is known as the process of combining and
mixing data from various sources such as single outputs of
several individual data-driven models (Fig. 4d) that the overall
equation can be as follows:

ŷi ¼ f xið Þ þ εi i ¼ 1; 2; 3; …; n ð40Þ
where ŷi stands for target variable, x is a vector of independent
indicators, ε stands for corresponding estimation error, and n
is a number of observation data.

In order to develop data fusion models, Eq. (40) can be
introduced to the following equation where several individual
AI models are used as follows;

ŷi½ � ¼

ŷi1
ŷi2
:
:
:
ŷim

2
6666664

3
7777775

¼

f 1 xið Þ
f 2 xið Þ
:
:
:
f m xið Þ

2
6666664

3
7777775

þ

εi1
εi2
:
:
:
εim

2
6666664

3
7777775

i

¼ 1; 2; …; n ð41Þ

where m stands for the number of individual model and [ŷi ]
stands as matrix of estimations provided by each model.

Subsequently, the matrix of [ŷi ] will be considered input
data in fusion models.

Many methods such as bagging, K-nearest neighbors
(KNN) algorithm, ordered weighted averaged (OWA)method
based on the ORLIKE weighting method (ORLIKE-OWA)
and ORNESSweighting method (ORNESS-OWA) have been
recommended for fusing individual models, which reported
that the most powerful and uncomplicated among different
approaches is the bagging method for data fusing.

Optimization algorithms

In plant tissue culture, the optimum selection between existing
various alternatives can significantly reduce the costs and
time. Thus, the use of optimization methods in the field of
plant tissue culture is of particular importance (Osama et al.
2015; Zielinska and Kepczynska 2013; Guangrong et al.
2008). In general, optimization methods are categorized into
two groups including classic and evolutionary algorithms.
Among classic methods, linear programming (LP), dynamic
programming (DP), stochastic dynamic programming (SDP),
and non-linear programming (NLP) can be mentioned
(Goudarzi et al. 2020; Moravej 2017). Each of these methods
has limitations that restrict their use. The LP method has the
limitation of being linear. In this method, the entire set of
relations should be linear; therefore, this method is not appli-
cable to the nonlinear problems, which are common in plant
tissue culture. In the DP method, the linear limitation was
removed, but this method is only applicable to the discrete
case. The SDP method, which is a stochastic form of the
DP, also has this limitation; moreover, the computation vol-
ume in the DP and SDP will exponentially increase if the
dimensions of the problem increase that this case is the so-
called curse of dimensionality. The NLP method has higher
accuracy than other methods, although in this way, the process
of solving the problem is time-consuming, and in complicated
problems, it may stop in the local optimums and does not
reach a global optimum solution (Goudarzi et al. 2020;
Moravej 2018; Bozorg-Haddad et al. 2017). The second cat-
egory of methods includes evolutionary or metaheuristic ones,
which have been developed based on a natural process
(Moravej and Hosseini-Moghari 2016; Bozorg-Haddad et al.
2016; Hosseini-Moghari et al. 2015; Haddad Omid et al.
2016). Since these methods are not dependent on the problem
type in terms of being linear or nonlinear and converge in the
global optimum solution (close to the optimum) with a high-
speed, are enormously popular. In this regard, in this paper,
the Genetic Algorithm (GA), which is the most well-known
evolutionary method, was introduced.
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Among the particular contexts that the GA can be poten-
tially applied, optimization of different in vitro culture stages,
optimization of the MLP neural network weights, optimiza-
tion of the spread parameter in the RBF, GRNN, etc., neural
networks can be pointed out. In general, at any situation in
which there are unknown variables or variables that their op-
timum amounts should be obtained based on a given criterion
(objective function), the GA can be employed (Jamshidi et al.
2019).

In this section, firstly, we will discuss the basic concepts of
optimization; some expressions such as the objective function,
decision variable, and state variable will be introduced, and
the GAwill be explained. Then, the concepts of chromosome,
gene, genetic and evolutionary operators, and the performance
quality of the GA will be stated.

Basic concepts of optimization

Since the GA is an optimization algorithm, before entering
into the discussions explaining the GA, at first, basic concepts
of optimization will be stated. These concepts are general and
exist in all optimization methods.

Decision variable: the variable that an optimization process
is conducted to find its optimum value.

State variable: the variable that will not be optimized di-
rectly, but after determining the optimum amount of the deci-
sion variable, the value of this variable is also calculated; in
fact, its value depends on the decision variable value.

Objective function: the criterion that optimum values of
the decision variables are obtained based on it. This criterion
can be defined as minimizing or maximizing.

The presence of the state variable in the optimization prob-
lems is not permanent, though the decision variable and ob-
jective function are two principal parts of any optimization
method. For example, consider a function that gives an input
such as x, and concludes an output like y. In a simple situation,
it can be shown in the form of y = ax + b; however, if we want
to determine the appropriate amounts of a and b according to
the available data, we will require to a criterion for comparing
between calculated ys and observed ones for different values
of a and b. This criterion can be MSE or RMSE or any other
criterion. In this example, a and b are decision variables of the
problem, andMSE or RMSE are the objective functions of the
problem, which we intend to minimize them.

Genetic algorithm

The GA, for the first time, was designed by Holland (1992)
and developed as a powerful tool of optimization. The GA is a
searching algorithm, which is derived from the biological na-
ture and the process of natural selection. This method is based
on Darwin’s notion, which says that in the environment, or-
ganisms that are much more stable than the others can always

survive (Yun et al. 2020). Before entering into the discussion
of the GA algorithm behavior, it is essential to know some of
the basic concepts about GA.

Basic definitions

In the genetic algorithm, seven concepts are widely used;
these concepts include (1) gene, (2) chromosome, (3) popula-
tion, (4) evolutionary operators, (5) genetic operators, (6) elit-
ism, and finally (7) generation. Genetic algorithm is based on
these concepts, which will be defined as follows:

1. Gene: in the GA, each decision variable of the problem is
called a gene.

2. Chromosome: a set of genes that are actually a series of
answers for the studied problem are called a chromosome.
In a problem with one decision variable, the gene and
chromosome are the same.

3. Population: a set of answers (chromosomes) is called
population.

4. Evolutionary operators: in order to create new answers in
the GA, it is needed to select parent chromosomes; this
selection is performed by the evolutionary operators.

5 Genetic operators: after selecting the parent chromosomes,
creating new generations is performed by genetic opera-
tions of crossover and mutation.

6. Elitism: In each iteration of the algorithm, the best an-
swers are not undergone crossover and mutation, and
are transferred to the next iteration intact, that they are
called elite.

7. Generation: each iteration of the algorithm is called a
generation.

Overall flowchart of genetic algorithm

Before implementing the GA, some parameters such as selec-
tion method, crossover fraction, mutation rate etc. should be
determined. Then, a set of probable answers will be created.
Indeed, a population is created through chromosomes. These
chromosomes possess the genes equal to the number of prob-
lem dimensions. During the process of optimization, these
genes are improved by means of genetic operators of the
crossover and mutation. Chromosomes are chosen for moving
to the next generation according to the sufficiency of their
corresponding objective function. In this selection, the opera-
tors such as the roulette wheel and tournament selection,
which are evolutionary operators, are used. Using a crossover
operator, a number of genes from two selected chromosomes
are replaced with each other, moreover, some genes randomly
changed by mutation operator. In addition, using the elitism
parameter, we are able to increases the chance of selecting the
best chromosomes, and consequently, improve the algorithm
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convergence. In the producing of each new generation, three
operators including selection, crossover, and mutation, handle
the process of optimization in such a way that created chro-
mosomes make the objective function value better and better
at each iteration to the extent that the optimization process will
be ended by one of the stopping conditions (Yun et al. 2020).
Figure 6 illustrates flowchart of the GA. The flowchart steps
have been described in the following section.

Determining the parameters and stopping criteria

In order to implement the GA, the values of its parameters
must first be determined, and then, for finishing algorithm
process, the stopping conditions are necessary. In the deter-
mining part, some parameters such as the number of popula-
tions, crossover fraction, mutation rate, and the number of
elites are determined. Optimum amounts of these values are
given through the trial and error method. Crossover fraction is
a percentage of the population onwhich crossover operation is
performed. The mutation rate is a percentage of the genes of
the population on which the mutation process is performed.
Elites are a number of population members who are trans-
ferred unchanged to the next generation.

In order to end the algorithm procedure, we must consider
the criterion; this criterion is arbitrary, but usually, the number
of iterations (generation) is taken as the stopping criteria. In
this way, the algorithm will stop after passing the maximum
iterations. However, other criteria such as “to achieve a satis-
factory answer” or “passing a certain number of iterations
without observed improvement” or “time of algorithm imple-
mentation” can be selected as the stopping criteria.

Creating the initial population

The initial population, which its number is one of the algo-
rithm parameters, is created randomly. This population is the
number of chromosomes. The manner of creating an initial
population is arbitrary but creating population between the
upper and lower band of decision variables may be a good
choice for the initial population.

Calculating the objective function value

Based on the created population and written cost function, the
objective function value is calculated. In fact, equal to the
number of population members, the objective function is cal-
culated. Each objective function calculation is called an as-
sessment; therefore, in a generation with a population equal to
50, the number of iterations is equal to 1, but the assessment
number will be 50. The objective function value correspond-
ing to each chromosome is used in the next stages of the
algorithm.

The selection

In order to perform the crossover, two chromosomes should
be selected. These chromosomes are considered parent, and
by combining their genes, two offspring are established that
are replaced with parents in the next generation. The selection
process is usually based on the fitness value of the relevant
objective function of each chromosome. Each chromosome
that has more optimal objective function values is more likely

Fig. 6 The schematic diagram showing the step-by-step genetic algo-
rithm (GA) optimization process
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to be selected and, as a result, to create the next generation.
There are several ways to select that some of them are men-
tioned below.

Tournament Selection: In this method, some of the pop-
ulation members are randomly chosen. Among the selected
set, a chromosome that shows the best fitness is considered
parent. Selected members come back to the population, and
once again, this procedure is performed, and the second parent
is selected.

Roulette wheel: roulette wheel selection method is one of
the most efficient and best-known methods of selecting. In
this way, the probability of selecting chromosomes with
higher fitness value of the objective function is greater; in
other words, the probability of selection allocates to each
chromosome corresponding to its fitness value.

To understand the mechanism of the roulette wheel, con-
sider a circular plate (Fig. 7a), which has been divided into n
parts (unequally). If we put an indicator in one side of the
plate, and roll the plate, when the revolving plate stops, the
parts that cover greater portions of the circle perimeter, have
more probability to be the front of the indicator. The roulette
wheel also employs a similar process for the selection of par-
ent chromosomes. If the circle perimeter is equal to one, so the
amount less than one will be allocated to the perimeter of each
part (pi). Thus, if we cut the circle perimeter from a point, we
will consider it like a line (Fig. 7a).

As over the line, perimeters (probabilities) are placed in the
form of cumulative; if we create a random number in the range
of zero to one, it is more likely to be placed in front of the
ranges with a greater perimeter when the upper limit of each
band is considered an index of the location of the random
number; in this way, if the random number q is placed in the
range of zero to p1, the index 1 will be selected, and If is
placed in the range of p1 and p2 + p1, index 2, and so on.

The crossover

Survival of generations in nature is done by intercourse. In the
GA, consequently, there is the nature of combination and in-
tercourse. The combination is performed among chromo-
somes with gene replacement, and each parent chromosomes
transfer their characteristics to their children. This process in
the GA is arranged by means of the crossover operation.
Crossover is a process in which the current generations of
chromosomes mix, and create a new generation of chromo-
somes. Although the crossover operator may be applied on a
chromosome or more than two chromosomes, usually, for
each combination, two chromosomes are selected as the par-
ent, and by joining them, two offspring are created. In the
following section, some of the well-known crossover methods
have been mentioned in the GA.

One-point crossover: this method was developed by
Holland (1992). For mixing two chromosomes, parent

chromosomes are cut from one given point and their genes
are replaced with each other. Figure 7 b displays the single
point crossover operator.

Two-point crossover: in this method, the parent chromo-
somes are randomly cut from two points. In this way, each
chromosome is divided into three parts, which in order to
combine, the middle section is fixed and the surrounding parts
of two chromosomes are replaced (Fig. 7c).

Uniform crossover: in the previous methods, replace-
ments were merely possible at cut points, whoever, in the
uniform method, potential of replacement is uniformly con-
sidered for all genes. The number of replaced genes in this
method is not fixed, but usually, half of the chromosome
length is taken into account. Figure 7 d shows a uniform
crossover operator.

These abovementioned methods are well used for binary
problems, but in the continuous problems, replacement with-
out changing genes is not appropriate, because in the contin-
uous problems infinite answers are possible. Moreover, in the
case of raw replacement of genes, their values are only re-
placed between established amounts in the initial population.
In continuous problems, special methods are used to replace
genes. Some of these methods include the arithmetic method
and the sequential method.

Arithmeticmethod: In this method, the genes of two chro-
mosomes of A and the B, which are selected for the crossover
process, are transferred to offspring chromosomes (a,b) by
using the following equations:

a ¼ αAþ 1−αð ÞB
b ¼ αBþ 1−αð ÞA ð42Þ

where α is selected in the interval of [0,1]. The amount of α =
0.5 causes that the children are gained out of parental genes.
We can consider the α as a random number in the interval of
[0,1] with different values for each gene.

Sequential method: in this method, parent chromosomes
are cut from two points. Then, the middle section is kept
constant for both chromosomes. The left and right parts,
which are calculated for the first child in the second parent,
have to start from the beginning of the chromosomes; genes
that are absent in the middle of the first child are placed in the
blank spaces randomly. In the second child, also, the middle
part of the second parent is kept constant, and the previous
process is performed based on the first parent.

The mutation

The aim of mutation in the GA is to create variety in the
solutions. This operator beside the crossover operator leads
to converge the GA toward the optimum solution. Mutation
on chromosomes creates random variations. These changes
contribute to enter the new genes into the population; as a
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result, creating new genes causes the comprehensive search of
the algorithm. The mutation operator prevents the algorithm
from trapping in the local optimum solutions. Furthermore, a
low mutation rate causes that changes in the low number of
genes does not have clear effects on the problem solution; in
the other words, the high mutation rate makes children have
little resemblance to their parent; so, this fact results in the loss
of the historical memory of the algorithm. Thus, the mutation
rate should be optimally determined by the trial and error
method. Figure 7 e shows the mutation on a chromosome.

Random mutation operator (uniform): in this method, a
number of genes are randomly replaced with new genes.
Having a mutation rate and generating random numbers in
the interval of [0,1], we can replace the genes, which their
relevant random number is less than the rate of mutation, with
a new gene. Creating a new gene could be based on the rela-
tionship of the initial population production.

Gaussian mutation operator: in this method, also, selec-
tion of a gene, which is supposed to be replaced by another
gene by mutation operator, is similar to the previous method.
In this way, if the selected gene is equal to xk, its value with the
aid of a random number will be replaced with a normal distri-
bution with mean xk and standard deviation σ. In this case, σ

can be appropriated according to the permissible range of xk
(upper and lower limit of the variable).

The presented methods in the previous section concerning
the selection, crossover, and mutation are only a part of the
existing methods in this area, although, knowing the basic
concepts, the use of other methods will be possible; in addi-
tion, the inventive methods can be applied in this context as
well. With respect to what was stated, the population in the
next generation will be composed of three parts: the first part,
elites that will be moved to the next generation without any
change; the second part, the population obtained from cross-
over process; and the third part, the population obtained from
mutation process.

The cost function

In the previous sections, we observed that the genetic and
evolutionary operators act based on being appropriate for the
objective function value corresponding to each chromosome.
Nevertheless, the question is how to calculate the objective
function value? To this end, we need a cost function. The cost
function is not related to the implementation of the GA algo-
rithm. Conversely, it is related to the optimization problem

Fig. 7 The schematic view of a Roulette wheel, b one-point crossover, c
two-point crossover, d uniform crossover, e the mutation on a chromo-
some, f the objective space of an optimization problem with two

objectives, where the yellow point in the center of areas is considered a
solution, g the objective space of a two-objective optimization problem,
and h the binary tournament selection
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and should be written for each optimization problem separate-
ly. As it is clear from the name of the cost function, a function
has to be defined. So, the desired function needs to input, and
based on the input, it concludes output. A cost function in the
GA takes chromosome into account as the input of the func-
tion, and the output of the function is the objective function
value corresponding to that chromosome. In fact, the cost
function is the main core for solving an optimization problem
that the modeling system is carried out inside of it.

Multi-objective optimization

In many real problems of plant tissue culture, simultaneous
optimization of multiple objective functions is considered.
These functions are often in conflict with each other (George
and Amudha 2020). For example, in the sterilization step, the
sterilant has a negative effect on the explant viability and a
positive impact on controlling contamination. Therefore, the
ultimate aim of in vitro sterilization protocols would be the
maximum explant viability and the minimum contamination.

In the multi-objective problems, in addition to the decision
space of the problem, there is another space that is called
objective space in which coordinate axes show the objective
function value. Therefore, in order to define a multi-objective
problem, if K ⊆ Rnis considered the n-dimensional search
space,D ⊆K as the justified space of multi-objective problem,
andO ⊆ Rm as them-dimensional objective space, then we will
have:

Min
subjected to :

Z xð Þ ¼ z1 xð Þ; z2 xð Þ;…; zm xð Þð Þ
gp xð Þ≤0 p ¼ 1;…:;P
hq xð Þ ¼ 0 q ¼ 1;…;Q
xi≥xmini i ¼ 1;…; n
xi≤xmaxi i ¼ 1;…; n

ð43Þ

where gp(x) is the pth inequality constraint, hq(x) is the qth
equality constraint, P is the number of inequality constraints,
Q is the number of equality constraints, xmin

i is the lower limit
of decision variables, and xmax

i is the upper limit of decision
variables.

In the single-objective optimization problems, judgment on
the final optimal point was simple, because in this kind of
problems, we only talk about one objective function. Hence,
the optimal solution corresponding to the best value of the
objective function can be regarded as the optimum solution
of the problem. However, in judgment, in the multi-objective
problems, it is not simple because the objective functions are
usually in conflict with each other, so improving one will
worsen the other. Therefore, we must establish a balance be-
tween the objectives. The aim of balancing is to find an equiv-
alent solution between different objective functions of the
problem. A balanced solution is concluded when it is not

already possible to improve each of the objective functions
without deteriorating other function values. According to the
offered definition, a balanced solution of a problem may be
more than one, and here, an individual solution will not be
presented for the problem like the single-objective optimiza-
tion. Each balanced solution is so-called a non-dominated
solution, and the set of these solutions is known as non-
dominated set or Pareto Optimal Set. In addition, these non-
dominated solutions in the objective space of the problem
form a front namely Pareto Front.

Domination: The solution x1 dominates solution x2 if and
only if:

1. The solution x1 is worse than x2 in none of the objective
functions.

2. The solution x1 is better than x2 at least in one objective
function.

The mathematical expression of domination is presented as
follows:

x1≺x2 ⇔ ∀i zi x1ð Þ≤zi x2ð Þ & ∃i0 zi0 x1ð Þ
< zi0 x2ð Þ ð44Þ

\fleqno\tflt="P7B6C"(44)

The definition above for both objective vectors (Z1, Z2) in the
objective space can be defined similarly. If Z1 is not worse
than Z2 in any objective function and is better than it at least in
one objective function, then we will haveZ1 ≺ Z2. According
to what was stated, it can be concluded that the solution x1
dominates the x2 solution when Z1 ≺ Z2.

Pareto Optimal: decision vector of x ∗ ∈D will be called
Pareto optimal if there is no other decision vector similar to
x ≠ x∗ that dominates it. Moreover, decision vector of Z (x)
will be Pareto optimal when x = x∗.

Pareto Optimal Set: the set of all decision vectors related
to Pareto Optimal is named Pareto Optimal Set. If POS is
Pareto Optimal Set, then it will be defined as follows.

POS ¼ x*∈Dj∄x∈D : x≺x*
� � ð45Þ

Pareto Optimal front: The set of all objective vectors
corresponding to the POS set is called the Pareto optimal
front.

Figure 7 f is associated with the objective space of an op-
timization problem with two objectives. In this figure, if the
yellow point in the center of four areas including 1, 2, 3, and 4
is placed as a solution, this point dominates all existing points
in area 1, but all the existing points in area 3 dominate this
point, whereas in areas 2 and 4, no point dominates this point
as well as this point dominates no point in these areas.
Considering areas 2 and 4, the necessity of providing a set
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of optimal solutions rather than a single solution is completely
clear, because in this case, it is not certain which solution is
better than other solutions. In fact, solutions have no superi-
ority over each other.

Figure 7 g shows the objective space of a two-objective
optimization problem. As it is obvious, the points that have
not been dominated by any other points (Pareto point) form
Pareto front. A good Pareto front is a one that has a maximum
possible length, which means that covers all the non-
dominated feasible solutions of the problem (George and
Amudha 2020). In this regard, finding the points of both
Pareto front sides will be more valuable. Infeasible points
are known as points that do not meet the problem constraints.
In fact, they are a mapping form of the infeasible decision
variables in the decision space over objective space.
Feasible points are points that meet the problem constraints,
but was defeated by other point or points. Thus, the Pareto
points are Feasible points that are non-dominated. It is neces-
sary to note that in solving the problem, Pareto points are
usually an estimation of Pareto front and cannot be fully com-
pliant. The more compatibility among them is gained, the
more quality of the obtained solutions is observed. (George
and Amudha 2020).

Multi-objective optimization methods such as single-
objective methods are divided into two categories: classic
and smart (evolutionary). Of the classic solving methods re-
lated to multi-objective optimization problems, weighted sum
method, goal programming, and goal attainment method can
be noted. In these methods, a multi-objective problem by con-
sidering different weights for each objective will repeatedly be
solved again and again, and thus, the Pareto curve is obtained.
In other words, in these methods, with regard to the weight for
each objective, the problem is changed into a single-objective
problem. Therefore, these methods are so-called decomposi-
tion methods. Evolutionary multi-objective methods are very
diverse, which include the first and second versions of the
micro genetic algorithm (μGA, μGA2), and the first and sec-
ond versions of non-dominated sorting genetic algorithm
(NSGA-II, NSGA). The most well-known evolutionary
multi-objective method is without doubt the NSGA-II
(George and Amudha 2020). This algorithm will be described
in the following section.

The second version of the non-dominated sorting genetic
algorithm

NSGA-II algorithm is one of the most well-known and pow-
erful algorithms that is applied for solving multi-objective
optimization problems and its effectiveness has been proven
in solving various problems. The first version of the algorithm
(NSGA) was presented by Srinivas and Deb (1994). In this
method, the concept of dominance was used and the Pareto
that had an appropriate scattering plot (diversity in solutions)

as well was considered more suitable Pareto. Important mat-
ters that exist in this optimization approach include:

& The solution over which there is no other solution certain-
ly better than is rated further. The solutions are ranked and
sorted based on how many solutions dominate them.

& Competence and quality of solutions is determined ac-
cording to their rating.

& Uses the Fitness Sharingmethod to diversify the solutions.
In this method, if the Pareto points are closer to each other
from a certain distance such as σ that is called sharing
parameters, the fitness amount will be decreased with
sharing between points.

The sensitivity of performance and quality of solutions in
the algorithm NSGA to the parameter σwas very high, so that
it was so difficult to determine its appropriate amount; more-
over, the lack of elitism and complex calculations in determin-
ing the non-dominated solutions was so inappropriate in such
a way that it was not simply negligible. In this regard, the
second version of the algorithm NSGA namely NSGA-II
was introduced by Deb et al. (2000) and Deb et al. (2002).
This algorithm and its unique manner of dealing with the
multi-objective optimization problems has been repeatedly
applied by different researchers to create newer various
multi-objective optimization algorithms. In the NSGA-II ver-
sion, instead of the concept of the fitness sharing method,
another concept called crowding distance has been used.
Furthermore, the algorithm used to find the non-dominated
solutions has reflected a significant improvement in terms of
computational issues.

As mentioned before, a good Pareto front has two charac-
teristics: the first feature is the solution quality, which means
that the non-dominated solutions are in the Pareto front, and
the second feature is the appropriate distribution and diversity
of Pareto points. In the algorithm NSGA-II, the quality of
solutions is determined by the relevant rank of each solution.
Determining the rank of each solution is done by an algorithm
called non-dominated sorting (NS) algorithm. the diversity of
solutions is another criterion that is quantized by crowding
distance. Therefore, a good solution is a solution that, in the
first place, has the best quality and, in the second place, in-
cludes the highest crowding distance. In the following parts,
these subjects will be discussed.

Fast non-dominated sorting algorithm

Discussed Pareto front until now is called the first front or F 1.
If we do not take the F1 into account, another Pareto front can
be extracted namely F2. This process can be applied until
determining all fronts. For non-dominated sorting of a popu-
lation with the size of N, any solution will be compared with
other solutions. All individuals of the population, which are
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not dominated by any member, are placed in F1. For finding
individuals of the next front, the previous process can be re-
peated by temporary ignoring of F1. This approach will nearly
impose extra computational issues on us. In this section, the
fast non-dominated sorting approach, which was introduced
by Deb et al. (2000), will be discussed.

At first, for each solution, we consider two features; first
feature ni, which is the number of solutions that dominates i
solution. The second feature Si, which is a collection of the
population individuals that are dominated by i solution.
Whole solutions that have a ni equal to zero, are known as
members of F1 (these solutions are rated as 1, the rate of
anybody is the number front that is placed in). When F1 is
called the current front, for each solution in the current front if
the jth individual is observed in the Si group, one unit will be
decreased from nj. In this way, if nj is equal to zero, that
solution will be located in a separate list called H.

When all individuals of the current front are evaluated,
individuals of the F1 will be introduced as the first front, and
the process by considering H as the current front will be re-
peated. From now, the NS is known the same as fast non-
dominated sorting (FNS). Mathematical description of the
abovementioned matters related to the non-dominated sorting
of the population (P) are presented as follows:

Fast Nondominated Sort Pð Þ :
for each p∈P
for each q∈P
if p≺q then
Sp ¼ Sp∪ qf g
elseif q≺p then
np ¼ np þ 1
if np ¼ 0 then
F1 ¼ F1∪ pf g

k ¼ 1
while Fk≠∅
H ¼ ∅

for each p∈Fk

for each q∈Sp
nq ¼ nq−1

if nq ¼ 0 then
H ¼ H∪ qf g
k ¼ k þ 1
Fk ¼ H

ð46Þ

Crowding distance

Among the optimal solutions presented with the same rank,
the solution that could bring more diversity has superiority.
Thus, the solutions that are in the vacant regions of the objec-
tive space of the problem are considered superior. This advan-
tage is quantified using the crowding distance. This distance
for individuals over each front is calculated separately. To this
end, individuals existing in each front should be ranked in an

ascending format according to each objective function. As the
smallest and largest values of the objective function are of
great importance, the amount of crowding distance is consid-
ered equal to ∞ for them. For the rest of the solutions,
crowding distance is computed based on the normalized dif-
ference amount between the objective function of two sides
(before and after) of each solution. If we are going to calculate
the crowding distance for L solutions existing in the τ front,
we will have:

crowding−distance−assignment τð Þ
L ¼ jτ j

for each i; τ ;CD ¼ 0
for each objective m %sort using each objective

τ ¼ sort τ ;mð Þ
r1:CD ¼ τL:CD ¼ ∞

for i ¼ 2 to L−1

τ1:CD ¼ τ i:CDþ τmiþ1−τmi−1
�� ��
zmmax−zmmin

� 	

ð47Þ

By calculating the crowding distance, we are able to define
an operator, which includes in the first place domination and
in the second place the crowding distance. This operator can
be employed in different steps of the NSGA-II algorithm as a
guide to move toward an optimum Pareto with an even distri-
bution. This operator, which is called the crowded-
comparison operator (≺n) is defined as follows; assume that
each member of the population, such as i , has two character-
istics including rank (irank) and crowding distance (idistance)

i ≺n j ⇔ if irank < jrankð Þ or irank ¼ jrank and idistance > jdistanceð Þ
ð48Þ

Therefore, between two solutions with unequal ranks, the
superior solution is one with a lower rank, or if the rank of
solutions is equal, the solution that has more crowding dis-
tance is a better solution. The criterion (≺n) is used to select the
parent and create the new population.

Here, it is clearly characterized the difference between the
single-objective GA algorithm and NSGA-II algorithm. Since
in the NSGA-II the objective space is not sortable, we are not
able to find the best solution by a sorting. So, in any part of the
GA, that amount of the Cost was considered a criterion for
selecting, in the NSGA-II criterion of (≺n) will be replaced
with the Cost.

Binary tournament selection

The selection process in the algorithm NSGA-II is performed
using the binary tournament selection method. In this method,
the following steps are pursued:

& Two members of the population are chosen randomly.
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& If two members are not of the same rank, the members
with a lower ranking are selected.

& If two members are of the same rank, a member is selected
that has further crowding distance.

& Selected members are returned into the population, and
the previous process is repeated for the second parent
selection.

After selecting the parents, the crossover operator is ap-
plied over them and offspring are created; then, mutation is
applied on the population. So, the existing population will
consist of three sections; the first section, the previous popu-
lation; the second section, the population obtained from the
crossover; the third section, the population achieved frommu-
tation. After the merging of these populations, to the number
of N, superior individuals (N is the allowable size of the pop-
ulation) should be selected. In this regard, at first, the popula-
tion is sorted in ascending order based on non-dominated
sorting (NS), and we begin to take individuals from F1 to
create a new population. If the number of F1 individuals is
less than N, all of its members will be transferred to the new
population, and the remaining members will be transferred
from subsequent Fs until the new population size would be
equal to N. Continuing this process in a front like Fk, the size
of the new population reaches N, in this front, all individuals
are the same rank; so, in such condition, the front Fk based on
the crowding distance is sorted in decreasing order, and
decision-making criteria would be the crowding distance.
Until the new population reaches size N, individuals are trans-
ferred to the next generation from the beginning of the front
Fk. Figure 7 h illustrates this process well. If the number of F1

members is more than N, because the rank of all members in
this front is equal to one, existing individuals in the front
according to crowding distance are sorted in decreasing order,
and the first N members are elected as the new population.
Figure 7 h shows how to select a new population. In this
figure, P is the main population and Q is the population
resulting from the crossover and mutation.

The algorithm procedure such as the GAwill continue until
satisfying one of the stopping conditions. The obtained non-
dominated solutions from solving the multi-objective optimi-
zation problem have no priority over other solutions, and de-
pending on the circumstances, each of them can be considered
an optimal decision.

AI-OA in plant tissue culture

In vitro culture consists of non-linear and non-deterministic
developmental processes. In fact, in vitro culture stages are
multi-variable procedures impacted by different factors such
as plant genotype, culture medium, different types and con-
centrations of plant growth regulators (PGRs), etc. (Fig. 1)

(Zielinska and Kepczynska 2013). The data derived from the
plant tissue culture process can be categorized as (1) binary
inputs which have only two grades, e.g., non-embryogenic/
embryogenic callus, (2) discrete variables which include more
than two grades, such as the number of roots, shoots, and
embryos, (3) continuous variables which can consist of any
grade, e.g., length of shoots or roots, and callus weight, (4)
time-series data, (5) temporal data, (6) fuzzy inputs that relate
to the degree of vitrification, callus color, and the develop-
mental stages of embryos, and (7) categorical variables, e.g.,
the type of reaction, or the type of phytohormones and carbo-
hydrate sources (Prasad and Gupta 2008a; Osama et al. 2015).
The complexity of this situation and the interactive nature of
the variables makes optimization challenging using traditional
approaches in which single variable are generally evaluated
sequentially in isolation. To address this challenge, artificial
intelligence models and optimization algorithms have recently
been used for modeling, forecasting and optimizing different
stages of plant tissue culture. AI and OA methods used in
various steps of in vitro culture were presented in this section
and the AI-OA application was summarized in Table 3. As
summary of various studies using AI systems to optimize
different stages of plant tissue is presented below.

In vitro sterilization

Surface sterilization is an initial step of micropropagation in
which the final success of plant tissue culture is directly de-
pendent on. The surface sterilization performance can be im-
pacted by various factors, e.g., the type, age, and size of the
explant, physiological phase (vegetative or reproductive) of
the mother plant, physical in vitro conditions (temperature
and light), type and concentration of sterilant, and immersion
time. Several studies (Teixeira da Silva et al. 2016; Hesami
et al. 2017a; Hesami et al. 2018b; Cuba-Díaz et al. 2020)
revealed that treatments with longer immersion time and
greater concentration of disinfectants led to better surface dis-
infection. However, there is a negative correlation between
explant viability and high concentration of disinfectants with
long immersion time such that the efficiency of sterilization
must be balanced with explant health (Hesami et al. 2019b;
Cuba-Díaz et al. 2020). Thus, the type/level of sterilant and
immersion time must be optimized for each species and ex-
plant to obtain the best outcomes during the surface steriliza-
tion. Optimizing this step is costly and time-consuming and
some disinfectants are not environmentally friendly and/or
hazardous to human health. To ease this problem, A hybrid
AI-OA could be a reliable and useful statistical methodology
for forecasting and optimizing this step. For instance,
Ivashchuk et al. (2018) used MLP and RBF methods for
studying and predicting in vitro sterilization of Bellevalia
sarmatica, Nigella damascene, and Echinacea purpurea.
Different concentrations of lysoformin, biocide, liquid bleach,
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Table 3 Application of artificial intelligence models and optimization algorithms in different stages of plant tissue culture

Plant Species Purpose Model Inputs Output(s) Reference

Bellevalia
sarmatica,
Nigella
damascene,
Echinacea
purpurea.

Predicting and optimizing
the sterilization

MLP and RBF Lysoformin, biocide, liquid
bleach, chloramine B, silver
nitrate, and immersion time

The percentage of
contamination and
explant viability

Ivashchuk et al.
(2018)

Chrysanthemum ×
grandiflorum

Predicting and optimizing
the sterilization

MLP-NSGA-II NaOCl, AgCl2, Nano-silver,
AgNO3, Ca(ClO)2, H2O2,
and immersion time

The percentage of
contamination and
explant viability

Hesami et al.
(2019b)

- Predicting temperature
inside the culture
containers

MLP Four node temperatures Nusselt numbers for the top
surface and for the side
surface

Murase et al.
(1996)

Cuminum
cyminum

Predicting and optimizing
callogenesis

MLP Area, minor axis length, feret
diameter, weighted density,
and perimeter

Fresh weight and volume of
callus

Mansouri et al.
(2016)

Trachyspermum
ammi

Predicting and optimizing
callogenesis

MLP Explant age, the
concentrations of kinetin,
2,4-D, and sucrose

Morphological features of
callus (Feret diameter,
perimeter, roundness, true
density, and area of the
callus)

Niazian et al.
(2018b)

Gyrinops walla Predicting and optimizing
callogenesis

MLP Different explants, NAA,
BAP, coconut water, and
different media (MS and
WPM)

Days taken to initiate callus,
callus weight, and
callogenesis rate

Munasinghe
et al. (2020)

Daucus carota Predicting and optimizing
cell growth

MLP Time, the initial level of
inoculum, the
concentration of glucose,
fructose, and sucrose

Final biomass level, the
concentration of glucose,
fructose, and sucrose

Albiol et al.
(1995)

Arabidopsis
thaliana

Classification of cells in
protoplast culture

MLP Shape and color of cells from
digitized image

Type of cell (alive or dead) Shiotani et al.
(1994)

Nicotiana tabacum Detection of plant viruses in
cell culture

MLP Bioelectric recognition assay
(BERA) parameters

Electric response from plant
cells

Frossyniotis et al.
(2008)

Swertia paniculata Predicting and optimizing
the secondary metabolite
production

MLP Chitosan (CS) and salicylic
acid (SA)

Mangiferin, swertiamarin,
and amarogentin

Kaur et al. (2020)

Corylus avellane Predicting and optimizing
the secondary metabolite
production

MLP-GA Callus dry weight, total yield
of paclitaxel, extracellular
paclitaxel portion,
extracellular paclitaxel, and
intracellular paclitaxel

Elicitor adding day,
intercept, cell suspension
culture harvesting time,
cell extract level, and
culture filtrate level

Salehi et al.
(2020a)

Bryophyllum
tubiflorum, B.
daigremontian-
um, B.
daigremontian-
um × tubiflorum

Predicting and optimizing
the secondary metabolite
production

Neurofuzzy logic total phenolic content,
radical-scavenging activity,
and flavonoid content

eight ions (NO3
−, NH4

+, K+,
PO4

2−, Cl−, Ca2+, Mg2+,
and SO4

2−), different
genotypes, various
explants (aerial parts and
roots), and solvents

García-Pérez
et al. (2020a)

Ipomoea batatas Classification of embryos MLP Embryo area, length, and
symmetry, polar
coordinates of an embryo’s
perimeter with respect to its
centroid

Type of embryo Molto and Harrel
(1993)

Apium graveolens Classification of
non-embryogenic
structures and somatic
embryos as well as
predicting the time
needed for transferring
the somatic embryos to
the next phase

MLP The ratio of length to width,
area, distance dispersion,
and circularity from images
of embryos

Type of embryo and time
needed for transferring
the somatic embryos to
the next phase

Uozumi et al.
(1993)

Daucus carota Classification of somatic
embryos

MLP Fourier traits and the embryo
size

Type of embryo Ruan et al.
(1997)
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Table 3 (continued)

Plant Species Purpose Model Inputs Output(s) Reference

Pseudotsuga
menziesii

Classification of somatic
embryos

MLP Fourier traits and the length,
radius, circularity, width,
perimeter, and area of
callus

Type of embryo Zhang et al.
(1999)

Trachyspermum
ammi

Predicting and optimizing
the somatic
embryogenesis

MLP Explant age, the
concentrations of kinetin,
2,4-D, and sucrose

The number of the somatic
embryo

Niazian et al.
(2018b)

Chrysanthemum ×
grandiflorum

Predicting and optimizing
the somatic
embryogenesis

ANFIS-NSGA-II Fructose, 2,4-D, sucrose,
BAP, glucose, and light
quality

Callogenesis rate, somatic
embryogenesis rate, and
somatic embryo number

Hesami et al.
(2019d)

Chrysanthemum ×
grandiflorum

Predicting and optimizing
the somatic
embryogenesis

MLP,
SVR-NSGA--
II

2,4-D, KIN, and SNP Callogenesis rate, somatic
embryogenesis rate, and
somatic embryo number

Hesami et al.
(2020b)

Oryza sativa Predicting microshoot
length

MLP and FNN RGB brightness from the
digitized image

Shoot length Honda et al.
(1997)

Saccharum
officinarum

Classification of
microshoots

MLP The intensity of spectral
brightness and a reflection
of the leaf on digitized
imaged

Quality of microshoots Honda et al.
(1999)

Gladiolus hybridus Classification of
microshoots

SOM and ANN Grayscale level, mean
brightness, the trichromatic
elements (RGB), and the
maximum pixel count in
luminosity

The ability of the
microshoots to form
corms

Prasad and Dutta
Gupta (2008)

Actinidia deliciosa Predicting and optimizing
shoot proliferation

MLP-GA The concentrations of sucrose
and light intensity

Proliferation rate, shoot
number and shoot length

Gago et al.
(2010c)

Prunus armeniaca Predicting and optimizing
shoot proliferation

Neurofuzzy logic Apricot varieties, NO3
−,

SO4
2−, NH4

+, K+, PO4
2−,

Ca2+, Cl−, Mg2+, and BAP

Length and number of
shoots and productivity

Gago et al.
(2011)

Chlorophytum
borivilianum

Predicting and optimizing
shoot proliferation

GRNN, BPNN,
and
Elman-BPNN

The concentrations of sucrose,
pH of culture medium,
inoculum density, and
volume of medium per
vessel

Fresh weight of regenerated
plants

Rizvi et al.
(2012)

GF677 hybrid
rootstock

Predicting and optimizing
shoot proliferation

Neurofuzzy logic NO3
−, NH4

+, K+, PO4
2−, Cl−,

Ca2+, Mg2+, and SO4
2−

Total number of shoots,
number of healthy shoots,
and number of buds

Alanagh et al.
(2014)

Solanum
tuberosum

Predicting and optimizing
microshoot quality

MLP Photometric traits derived
from the digitized images

Chlorophyll content Gupta and
Pattanayak
(2017)

Actinidia deliciosa Predicting and optimizing
shoot proliferation

Neurofuzzy logic Culture media, number of
subcultures, BAP, and GA3

Shoot number and shoot
length

Arteta et al.
(2018)

Pistacia vera Predicting and optimizing
in vitro physiological
disorders

Neurofuzzy logic Two genotypes, BAP,
pyridoxine-HCl,
thiamine-HCl,
nicotinic-acid, glycine,
IBA, I−, NO3

−, PO4
2−,

NH4
+, K+, SO4

2−, Cl−,
Ca2+, Mg2+, Fe2+, Zn2+,
BO3

−, Mn2+, Cu2+, Na+,
MoO4

2−, Co2+, EDTA−

Shoot-tip necrosis, shoot
fasciation, basal callus
formation, leaf necrosis,
epinasty, leaf color, and
hyperhydricity

Nezami-Alanagh
et al. (2019)

Pistacia vera Predicting and optimizing
shoot proliferation

Neurofuzzy logic Two genotypes, NO3
−, NH4

+,
K+, PO4

2−, Cl−, Ca2+, I−,
Na+, Mg2+, Cu2+, SO4

2−,
Fe2+, BO3

−, Mn2+, Zn2+,
MoO4

2−, Co2+, EDTA−

Shoot quality, proliferation
rate, shoot length,
shoot-tip necrosis, and
basal callus

Nezami-Alanagh
et al. (2018)

G×N15 rootstock Predicting and optimizing
shoot proliferation

MLP-GA NO3
−, NH4

+, K+, PO4
2−, Cl−,

Ca2+, Mg2+, and SO4
2−

Length and number of
shoots, proliferation rate,
and quality index

Arab et al. (2016)

Pear rootstock MLP-GA
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Table 3 (continued)

Plant Species Purpose Model Inputs Output(s) Reference

Predicting and optimizing
shoot proliferation

NO3
−, NH4

+, K+, PO4
2−, Cl−,

Ca2+, Mg2+, and SO4
2−

Length and number of
shoots, proliferation rate,
and quality index

Jamshidi et al.,
(2016)

G×N15 rootstock Predicting and optimizing
shoot proliferation

MLP-GA BAP, KIN, TDZ, IBA, and
NAA

Length and number of
shoots, proliferation rate,
quality index, and basal
callus

Arab et al. (2017)

Pistacia vera Predicting and optimizing
shoot proliferation

Neurofuzzy logic
and MLP-GA

Thiamine-HCl, nicotinic-acid,
pyridoxine-HCl, glycine,
IBA, BA, NO3

−, NH4
+, K+,

PO4
2−, Cl−, Ca2+, Mg2+,

SO4
2−, Fe2+, BO3

−, Mn2+,
Zn2+, Cu2+, MoO4

2−, Na+,
Co2+, I−, EDTA−

Proliferation rate, shoot
length, total and healthy
fresh weight

Nezami-Alanagh
et al. (2017)

Corylus avellana Predicting and optimizing
shoot proliferation

RSM and
CHAID

NH4NO3, K2SO4,

Ca(NO3)2·4H2O,
CaCl2·2H2O, KH2PO4, and
MgSO4·7H2O

Shoot quality, multiplication
rate, shoot length, and
callogenesis rate

Akin et al. (2017)

Corylus avellana Predicting and optimizing
shoot proliferation

RSM, CHAID,
and
exhaustive
CHAID

Genotypes, H3BO3,
MnSO4·H2O,
Zn(NO3)2·6H2O
Na2MoO4·2H2O, and
CuSO4·5H2O

Shoot quality, multiplication
rate, shoot length, and
callogenesis rate

Akin et al. (2018)

Wolffia arrhiza
and Lemna
minor

Predicting and optimizing
shoot proliferation

Solving
multinomial
task

Genotypes, NH4NO3,
Zn(NO3)2·6H2O,
Ca(NO3)2·4H2O, KH2PO4,
CaCl2·2H2O,
MgSO4·7H2O,
MnSO4·H2O, K2SO4

H3BO3, CuSO4·5H2O,
Na2MoO4·2H2O,
thiamine-HCl,
nicotinic-acid,
pyridoxine-HCl, and
glycine

Biomass population, total
soluble protein, total yield
of TSP, dry weight, and
protein in dry weight

Khvatkov et al.
(2019)

Fragaria
bucharica,
Fragaria
chiloensis,
Fragaria x
ananassa

Predicting and optimizing
shoot proliferation

MARS Genotypes, NH4NO3,
KH2PO4, Ca(NO3)2·4H2O,
MgSO4·7H2O,
CaCl2·2H2O, and K2SO4

Shoot quality,
multiplication, and leaf
color

Akin et al. (2020)

Centella asiatica Predicting and optimizing
shoot proliferation

BPNN MgSO4, CuSO4, ZnSO4,
NO3, and sucrose

Growth indices Prasad et al.
(2017)

Pear rootstock Predicting and optimizing
shoot proliferation

GP and RBF-GA NO3
−, NH4

+, K+, PO4
2−, Cl−,

Ca2+, Mg2+, and SO4
2−

Length and number of
shoots, proliferation rate,
and quality index

Jamshidi et al.
(2019)

Chrysanthemum ×
grandiflorum

Predicting and optimizing
shoot proliferation

RBF-NSGA-II BAP, IBA, phloroglucinol,
and sucrose

Proliferation rate, shoot
length, shoot number, and
basal callus weight

Hesami et al.
(2019c)

Bryophyllum
daigremontian-
um, B.
tubiflorum, B.
daigremontian-
um × tubiflorum

Predicting and optimizing
shoot organogenesis

Neurofuzzy logic Genotype, IAA, and BAP Percentage of direct shoot
regeneration, percentage
of indirect shoot
regeneration, number of
direct shoots, number of
indirect shoots,
percentage of callus
formation, percentage of
rooting

García-Pérez
et al., 2020b

Triticum aestivum
L.

Predicting and optimizing
shoot proliferation

GRNN-GA Genotypes, explants, and
different concentrations
BAP, IAA, KIN, zeatin,

Shoot regeneration
frequency

Hesami et al.
(2020a)
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Table 3 (continued)

Plant Species Purpose Model Inputs Output(s) Reference

IBA, 2,4-D, NAA, and
CuSO4

Cucumis melo Predicting and optimizing
shoot organogenesis

MLP-GA Agar concentration, light
duration, culture
temperature, and relative
humidity

Percentage of indirect shoot
regeneration

Zhang et al.,
2020

Pinus taeda Predicting and optimizing
shoot organogenesis

MLP Total nitrogen concentration
and the ratio nitrate:
ammonium

Oxidation rate, regeneration
rate, callus proliferation
rate, buds-forming
capacity index, and
number of buds per
explant,

Barone (2019)

Solanum
lycopersicum

Predicting and optimizing
androgenesis

MLP Flower length, genotype,
KIN, 2,4-D, cold
pretreatment duration, and
gum arabic

Callogenesis rate and
number of regenerated
callus

Niazian et al.
(2019)

Glycyrrhiza glabra Predicting and optimizing
hairy root culture

MLP Explant fresh weight, explant
size, number of explants
per flask, the month of
inoculation, incubation
temperature, and pH and
volume of the medium

Total mean root fresh weight Mehrotra et al.
(2008)

Glycyrrhiza glabra Predicting and optimizing
hairy root culture

MLP and RNN volume of medium, pH,
inoculum density, and
sucrose level

Total mean root fresh weight Prakash et al.
(2010)

Rauwolfia
serpentina

Predicting and optimizing
hairy root culture

ANN-HMM The volume of medium per
vessel, density of initial
inoculum per vessel,
sucrose, pH of the medium,
and nitrate concentration

Total mean root fresh weight Mehrotra et al.
(2013)

Artemisia annua Predicting and optimizing
hairy root culture

MLP Mist On/Off cycle time, media
volume, initial sucrose
concentration in media,
initial packing density, and
culture time

Total mean root fresh weight Osama et al.
(2013)

Vinca minor Predicting and optimizing
hairy root culture

GRNN and
BPNN

Cyclooxygenase inhibitor and
hydroxylase/-
acetyltransferase elicitors
and along with different
precursors from secoiridoid
and shikimate secoiridoid
pools

Growth index, alkaloids,
and vincamine

Verma et al.
(2016)

Medicago sativa Predicting and optimizing
in vitro rooting

MLP CO2 and sucrose Leaf number, dry weight,
and root initiation stage

Tani et al. (1992)

Vitis vinifera L.,
cv. Albariño and
Mencia

Predicting and optimizing
in vitro rooting and
acclimatization

MLP-GA Cultivar, IBA concentrations,
and IBA exposure time

Mean number of roots, the
mean number of plantlets
leaves, the mean height of
the plantlets, and the
mean number of nodes of
the plantlets

Gago et al.,
(2010a)

G×N15 rootstock Predicting and optimizing
in vitro rooting

MLP-GA NH4
+, Ca2+, NO3

−, Cl−, and
K+

Number and length of roots,
as well as fresh and dry
weight of roots

Arab et al. (2018)

Wrightia tinctoria Predicting and optimizing
in vitro rooting

GP NAA and charcoal Basal callus diameter, the
rhizogenesis rate, the
longest root length, root
number, and lateral root
number

Mridula et al.
(2018)

Vitis vinifera L.,
cv. Mencia

Predicting and optimizing
in vitro rooting and
acclimatization

Neurofuzzy logic The type (IAA, IBA, NAA)
and concentration of auxins
and the sucrose level

Number and length of roots
after 28 days of in vitro
rooting, as well as plant
height and survival

Gago et al.
(2010b)
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chloramine B, and silver nitrate and various immersion time
were considered inputs and the percentage of contamination
and explant viability were taken as outputs. Also, a different
range from 9 to 19 of neurons in the hidden layer and function
activation (linear and sigmoid) were used for constructing the
MLP model. According to Ivashchuk et al. (2018), MLP
models with different neurons in the hidden layer and both
linear and sigmoid function activations can precisely predict
sterilization efficacy. Furthermore, they reported that there
were no significant differences between MLP and RBF for
modeling and predicting sterilization. In another study,
Hesami et al. (2019b) applied MLP-NSGA-II to model and
optimize in vitro sterilization of chrysanthemum. They con-
sidered NaOCl, nano-silver, HgCl2, AgNO3, Ca(ClO)2, H2O2,
and immersion times as inputs, and explant viability and con-
tamination rate as outputs. They used the 3-layer
backpropagation network to run the MLP model. For output
and hidden layers transfer functions of the linear (purelin) and
the hyperbolic tangent sigmoid (tansig) were used, respective-
ly. Furthermore, a Levenberg-Marquardt algorithm was used
to determine the optimum bias and weights. They reported
that the MLP model could precisely forecast contamination
frequency (R2 > 0.97) and explant viability (R2 > 0.94).
Moreover, they considered contamination frequency and ex-
plant viability as two objective functions in the NSGA-II pro-
cess to determine the optimum values of sterilants and immer-
sion time. One thousand generation, 200 initial population,
0.05 mutation rate, 0.7 crossover rate, two-point crossover
function, a binary tournament selection function, and the

uniform of mutation function were considered. The ideal
point of Pareto was selected such that explant viability and
contamination frequency became the maximum and
minimum, respectively. Based on sensitivity analysis,
Hesami et al. (2019b) reported that NaOCl was the best ster-
ilant for in vitro sterilization of chrysanthemum. Also, accord-
ing to MLP-NSGAII, 1.62% Sodium hypochlorite at 13.96
minutes immersion time can cause the highest explant viabil-
ity (99.98%) with no contamination. Moreover, according to
their validation experiment, in vitro sterilization can be pre-
cisely predicted and optimized by MLP-NSGA-II.

Microenvironment inside the culture medium
containers

Controlling microenvironments, such as level of ventilation,
air temperature, CO2 concentration, as well as light quality
and intensity, inside the vessels is a vital requirement for
growth and development under in vitro culture conditions
(Prasad and Gupta 2008a; Tani et al. 1991). A finite element
model (FEM) was built through the MLP model for forecast-
ing the distribution of temperature inside the containers. For
developing this approach, determined Nusselt numbers (Nu—
heat transfer coefficient) were needed for analyzing the tem-
perature distribution via forced convection (Murase et al.
1996; Murase and Okayama 2008). Up to four neurons as
input variables, representing the temperatures of nodes deter-
mined in the FEM, were selected. Based on the temperature at
various airspeeds, MLP determined the Nusselt equation and

Table 3 (continued)

Plant Species Purpose Model Inputs Output(s) Reference

percentage after 21 days
of acclimatization

Actinidia deliciosa Predicting and optimizing
acclimatization

Neurofuzzy logic Light intensity and sucrose
concentrations

survival rate, root length,
shoot length, in vitro and
ex vitro leaves per
microshoots, ex
vitro/in vitro leaves,
microshoot dry weight,
percentage of water
content, stomatal density,
percentage of open
stomata, Fv/Fm, F0, Chl a
+ b content, and
carotenoids content

Gago et al.,
(2014)

2,4-D: 2, 4-dichlorophenoxyacetic acid; BAP: 6-benzylaminopurine; IBA: indole-3-butyric acid; KIN: kinetin; TDZ: thidiazuron; NAA: 1-
naphthaleneacetic acid; IAA: indole-3-acetic acid; SNP: sodium nitroprusside;GA3: gibberellic acid;MS: Murashige and Skoog medium;WPM: woody
plant medium; ANN: artificial neural network;MLP: multilayer perceptron; RBF: radial basis function; GRNN: generalized regression neural network;
ANFIS: adaptive neuro-fuzzy inference systems; SVR: support vector regression; FNN: fuzzy neural network; SOM: self-organizing mapping; BPNN:
back propagation neural network; RNN: regression neural network; HMM: hidden Markov model; GP: genetic programming; GA: genetic algorithm;
NSGA-II: non-dominated sorting genetic algorithm-II;CHAID: chi-squared automatic interaction Detector;RSM: response surface methodology;MARS:
multivariate adaptive regression splines
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then mentioned coefficients were applied to estimate convec-
tive heat transmission to containers. About a 5% error was
observed between the predicted and observed temperatures,
demonstrating relatively accurate modeling. Different heat
transfer coefficient combinations were generated because of
the randomness of the MLP network input variables. During
the training process, the Nusselt equations were accurately
and directly defined during the experiment by measuring the
temperature (Murase and Okayama 2008). The environmental
conditions during plant tissue culture could be studied and
predicted with AI methodologies such as the mentioned
models.

Callogenesis and cell culture

Callus can be considered an irregular mass of parenchymatous
tissue with different types of cells and meristematic sites
(Hesami and Daneshvar 2018a; Bhojwani and Dantu 2013).
Although callus often presents cellular differentiation, it lacks
any organized structure. The multicellular nature of the ex-
plants used for callogenesis leads to the cellular heterogeneity
of the callus. The callus from the same cell or tissue may
present significant differences based on the texture (compact
or friable), color, and morphogenic and chemosynthetic po-
tential (Hesami and Daneshvar 2018b). The calli could be
friable or compact, light or dark colored, dry, or wet.
Moreover, these traits can change with passing time in cul-
tures with culture health, epigenetic or genetic changes, or
changes of the medium composition (Hesami et al. 2018a).
The callus can be reproduced as undifferentiated cells for an
endless period by cyclic subcultures on fresh media or formed
to differentiated organs (embryos, shoots, roots) by adjusting
and optimizing the composition of the media. Callus cultures
have many applications: (i) produce plant-derived metabo-
lites, (ii) somaclonal variations, (iii) provide a system for dif-
ferent physiological and morphogenetic studies, and (iv) pro-
vide the material for initiating single cell and suspension cul-
tures (Niazian 2019; Downey et al. 2019; Salehi et al. 2020b).
The behavior of callogenesis is non-linear, complex, and time
variant that cannot be clarified by simple stepwise algorithms.
Also, there are a plethora of factors that affect callus formation
(Hesami and Daneshvar 2018a; Munasinghe et al. 2020).
Callus formation and classification to the suitable
developmental phase has been implemented by using AI
models. A combination of MLP and image processing has
been used for modeling callogenesis in different plants.
Mansouri et al. (2016) applied a supervised feedforward
ANN trained with backpropagation methods to model
Cuminum cyminum L. callogenesis. They selected area, minor
axis length, feret diameter, weighted density, and perimeter
parameters as input variables and fresh weight and volume
of callus as outputs. They reported that the MLP model could
precisely predict fresh weight (R2 > 0.89), and volume (R2 >

0.94) of calli. Also, they comparedANNmodels withmultiple
linear regression and showed that ANN models had better
performance for modeling callogenesis. In another study
(Niazian et al. 2018b), an image-processing method was used
to investigate the morphological features of embryogenic calli
of Trachyspermum ammi (L.) Sprague. Different concentra-
tions of kinetin, 2, 4-Dichlorophenoxyacetic acid (2,4-D), and
sucrose as well as the age of explants were applied as input
variables, and MLP approach was used to forecast the
physical features of embryogenic callus. Niazian et al.
(2018b) reported that the lower values of MAE and RMSE,
and the highest values of R2 were obtained when all inputs
were used to forecast the true density, perimeter, roundness,
area, and Feret diameter of the callus in MLP models. Also,
according to the sensitivity analysis, the 2,4-D had the highest
importance in the callogenesis process that changed the phys-
ical characteristics of the embryogenic callus.

The benefit of AI models over traditional methods has been
shown during the measurement of plant cell growth (Albiol
et al. 1995). TheMLPmodel was constructed with one hidden
layer to determine the biomass growth ofDaucus carota cells.
The sigmoid function as the transfer function during training
set was considered to build MLP. The input layer was con-
structed via 8 neurons for data on concentration of sucrose,
fructose, and glucose, as well as the time of the initial biomass,
while the neurons number in the output layer consisted of 4
neurons for data on the glucose, sucrose, fructose, and final
biomass levels. Furthermore, the neurons number in the hid-
den layer was different and impacted the performance of the
network for solving the problem. To validate the ANN results,
cell growth was performed in the Celligen reactor with an
inoculum of 0.58 g/L. With the established conditions, cells
grew exponentially after a 29-day lag phase and biomass
reached the maximum value of 4.8 g/L after 49 days. Albiol
et al. (1995) reported that changes in biomass and sugar be-
havior were correctly identified by the network output, even
though biomass data in the lag phase are overestimated slight-
ly (with a mean absolute error of 0.94 g/L). Albiol et al. (1995)
method is a reliable and useful alternative model to the deter-
ministic mathematical method, even with minimum informa-
tion and experimental data (Prasad and Gupta 2008a;
Zielinska and Kepczynska 2013).

Recently, different AI models have been used for
predicting and optimizing in vitro secondary metabolite
production through callus culture. Kaur et al. (2020) applied
MLP for predicting and optimizing mangiferin, swertiamarin,
and amarogentin through Swertia paniculata Wall shoot cul-
ture based on various concentrations of chitosan (CS) and
salicylic acid (SA) as input variables. They reported that
MLP was able to accurately model and predict in vitro
secondary metabolite production. In another study, Salehi
et al. (2020a) employed MLP-GA for prediction and
optimization of in vitro secondary metabolite production via
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callus and cell culture of Corylus avellane. While callus dry
weight, total yield of paclitaxel, extracellular paclitaxel
portion, extracellular paclitaxel, and intracellular paclitaxel
were considered input variables, elicitor adding day,
intercept, cell suspension culture harvesting time, cell extract
level, and culture filtrate level were chosen as target variables.
Salehi et al. (2020a) reported that MLP-GA can be considered
a reliable and accurate model for in vitro production of sec-
ondary metabolites. In another study (García-Pérez et al.
2020a), the neuro-fuzzy model was successfully employed
for modeling and optimizing total phenolic content (TPC),
radical-scavenging activity (RSA), and flavonoid content
(FC) based on 11 input variables including eight ions (NO3

−,
NH4

+, K+, PO4
2−, Cl−, Ca2+, Mg2+, and SO4

2−), different ge-
notypes of Bryophyllum (B. tubiflorum, B. daigremontianum,
and B. daigremontianum × tubiflorum), various explants (ae-
rial parts and roots), and solvents. García-Pérez et al. (2020a)
reported that neuro-fuzzy logic could serve as a promising
approach for the prediction and optimization of secondary
metabolite production.

Somatic embryogenesis

In plants, the fusion of male (sperm) and female (egg) gametes
causes the production of a zygotic embryo. However, using
plant tissue culture, individual somatic cells can be induced to
go through similar developmental events to produce embryo-
like structures, referred to as “somatic embryos.” The process
of the formation of somatic embryos is considered somatic
embryogenesis. As with zygotic embryogenesis, somatic em-
bryogenesis consists of different developmental phases
(Hesami et al. 2020b). For dicots, these include including
globular, heart-shaped, torpedo, and cotyledonary stages,
while monocots and gymnosperms go through different stages
analogous to their respective zygotic embryogenic processes
(Raza et al. 2020).

Somatic embryogenesis is a multi-variable in vitro regen-
eration system controlled by numerous different chemical and
physical factors that change with the developmental stage of
the explant. It is an economically important and useful prop-
agation system for many plant species and has displayed
broad applications in different fields of plant science
(Hesami et al. 2019d). Althoughmany plant species have been
propagated by somatic embryogenesis, there are several prob-
lems such as low germination frequency which limits its wide-
spread applications. In vitro somatic embryogenesis and its
classification to the appropriate developmental phases have
been implemented with the application of AI models. MLP
model was used for the classification of non-embryogenic
structures and celery somatic embryos. Furthermore, this
model forecasted the time required for transferring the somatic
embryos to the further developmental phase (Uozumi et al.
1993; Honda et al. 2001). The ratio of length to width, area,

distance dispersion, and circularity from digitalized images of
somatic embryos was considered input variables. The devel-
oped model was able to classify non-embryogenic callus and
somatic embryos, and it recognized different phases (globular,
heart-shaped, and torpedo). After fourteen days in the second
embryogenesis phase, the MLP model with more than 92%
accuracy was successfully predicted the number of regenerat-
ed plants from the torpedo and heart structures with more than
92% accuracy.

Due to the fact that the identification of somatic embryos is
costly, tedious, and time-consuming, pattern recognition and
classification models developed by ANNs are already being
broadly applied in the plant in vitro culture (Prasad and Gupta
2008a; Zielinska and Kepczynska 2013; Osama et al. 2015).
Ruan et al. (1997) used AI technology, with 90% accuracy or
higher, to identify the morphological features and patterns of
carrot somatic embryos. A hierarchical decision tree including
four nodes and three layers was applied to achieve an optimal
classification. The developed model classified the somatic
embryos into different classes according to the Fourier coeffi-
cients, which distinguished the morphological embryogenic
structures. In analyzing the Fourier transform approach, these
coefficients were achieved. The somatic embryos, in the first
node, were divided into four classes: globular phase, torpedo
stage, callus, and “other structures”. In the second node, the
“other structures” class was grouped into three levels: "sec-
ondary", "heart and oblong" and "cluster and twin". The
ANNs, in the third and fourth nodes, have divided the existed
classes from the second node into individual classes. The
MLP, which was constructed by a backpropagation method,
engaged in each node. The input layer was constructed via 34
neurons representing the Fourier traits and the embryo size,
while the neurons number in the output layer related to the
number of classes on that node. Furthermore, the neuron num-
ber in the middle (hidden) layer was different and impacted
the capacity of the model for solving the problem. Zhang et al.
(1999) used a similar classification system for Pseudotsuga
menziesii somatic embryos. In Zhang et al. (1999) method, a
distinct and fast Fourier transform was used for transforming
the geometric characteristics of embryo's images to numerical
grades. Then, a hierarchical decision tree was constructed
based on some of the morphological traits and the
mentioned values were formed into the model included in
two nodes. The MLP, which was constructed by a
backpropagation method, engaged in each node. The input
layer was constructed via nineteen neurons corresponding to
the Fourier traits and the length, radius, circularity, width,
perimeter, and area, while the neurons number in the hidden
layer consisted of 30 or 25 neurons and influenced the
capacity of the network to distinguish between normal and
abnormal embryos. Zhang et al. (1999) method was assessed
as an applicable model to optimize the conifers somatic em-
bryogenesis and distinguish between normal and abnormal
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somatic embryos through this method could help to maximize
normal somatic embryogenesis.

Modeling and optimizing the medium composition and
environmental conditions is one of the most important
methods to maximize somatic embryogenesis. Niazian et al.
(2018b) used MLP to predict and optimize the number of
Trachyspermum ammi somatic embryo based on four inputs
including the concentrations of kinetin, 2,4-D, and sucrose as
well as explant age. They used different learning algorithms
(Momentum, Levenberg-Marquart, and Conjugate gradient),
activity function (LinearTanhAxon, SigmoidAxon,
TainhAxon, and LinearSigmoidAxon), and topology and re-
ported that the number of somatic embryo were predicted with
more than 90% accuracy via Levenberg-Marquart algorithm,
SigmoidAxon function, and 4-4-3-1 topology. In another
study, Hesami et al. (2019d) applied ANFIS-NSGA-II to
model and optimize somatic embryogenesis in chrysanthe-
mum. To construct the model, the Gaussianmembership func-
tion was used, and, also, fructose, 2,4-D, sucrose, 6-
Benzylaminopurine (BAP), glucose, and light quality were
considered input variables and callus formation rate, somatic
embryogenesis rate, and somatic embryo number were con-
sidered output data. Furthermore, the number of epochs in the
training process was set to ten. They reported that all of the R2

of both sets (training and validation) of studied parameters
were over 92%. Also, they linked the ANFIS to NSGA-II to
optimize somatic embryogenesis. 1000 generation, 200 initial
population, 0.05 mutation rate, 0.7 crossover rate, two-point
crossover function, the uniform of mutation function, and a
binary tournament selection function were chosen. Moreover,
they considered somatic embryogenesis rate and embryo
number as two-objective functions in the NSGA-II process
to determine the optimum values of phtohoemones, light qual-
ity, and carbohydrate sources. The ideal point of Pareto was
selected such that somatic embryogenesis frequency and the
number of somatic embryos became the maximum.
According to their validation experiment, somatic embryo-
genesis can be precisely optimized by ANFIS-NSGA-II.

Shoot growth and multiplication

The high efficiency of shoot multiplication is required for the
success of many micropropagation protocols. Shoot multipli-
cation can be obtained through: (i) direct shoot regeneration
from the explant, (ii) indirect regeneration from callus, and
(iii) forced axillary branching (Arigundam et al. 2020;
Zhang et al. 2020).

The shoot multiplication can be maximized and improved
via manipulating the culture media composition. Optimizing
the medium composition is too tedious, costly, laborious, and
time-consuming. Hence, optimizing and forecasting the cul-
ture conditions and the media composition are very useful for
selecting the most appropriate conditions and media

composition to obtain the maximum efficiency (Bhojwani
and Dantu 2013; Niazian 2019; Hesami et al. 2017b; Arteta
et al. 2018; García-Pérez et al. 2020b; Hesami et al. 2020a).
Different AI models have been successfully applied for fore-
casting and optimizing shoot regeneration.

Honda et al. (1997) purposed an ANN model to estimate
rice microshoot length derived from digitized images. Two
various kinds of fuzzy neural network (FNN) were employed
for modeling to discriminate between the different zones of
the regenerated shoots. The FNN-A approach consisted of one
model with three input variables and three outputs, while the
FNN-B approach was used to develop three individual models
for each output based on those three input variables. The sig-
moid function and the backpropagation algorithm were used
for the activation of every single neuron and training the mod-
el, respectively. The table rules of colors were applied as
weights in the trained model and comparisons among them
were performed to achieve the relations between the colors of
the calli, the differentiated zones, and the media. The com-
plexity range of the relations between the single elements of
the color was calculated from the joint weights of the devel-
opedmodel. In this system, the developed model had a greater
accuracy (95%) in the distinction of microshoots. The FNN-B
was more efficient in recognizing the calli zones than the
FNN-A model. A triplex image was rebuilt based on the out-
put data of the FNN-B, which was finally introduced to a two-
step process of thinning and the longest way extraction. The
length of shoot was determined based on separating the shoot
zone from the rest of the image. Elongated microshoots in the
regenerating calli were calculated and compared with amounts
predicted by the model. Honda et al. (1997) reported that the
mean error between the predicted and observed micro shoot
lengths was negligible.

One of the most important obstacles in the commercializa-
tion of in vitro culture protocols is the low quality of
microshoots. Microenvironmental factors inside the culture
medium such as temperature, light intensity, humidity, and
CO2 concentration have significant effects on the quality and
growth of microshoots (Niazian 2019; Bhojwani and Dantu
2013). The establishment of an automatic decision-making
model that corresponds to the microshoots quality was used
to improve the microshoot quality. An ANN model was con-
structed to qualify and estimate the quality of Saccharum
officinarum microshoots. The model was built based on pho-
tometric parameters which are true estimators assessing the
quality of regenerated plants (Honda et al. 1999). The inten-
sity of spectral brightness and a reflection of the leaf on dig-
itized imaged were considered inputs. In a similar study,
Gladiolus hybridus microshoots were sorted through photo-
metric behavior from the leaf images such as grayscale level,
mean brightness, the components of RGB (red, green and
blue) coding, and the maximum pixel count in luminosity
(Prasad and Gupta 2008b; Mahendra et al. 2004).
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Photometric variables were used as inputs to construct differ-
ent ANN models such as fuzzy ART and Kohonen self-
organizing networks (Prasad and Gupta 2008b), as well as
ART2-type resonance (Prasad and Gupta 2008b; Mahendra
et al. 2004). The ART2 models (Prasad and Gupta 2008b;
Mahendra et al. 2004) and fuzzy ART models (Prasad and
Gupta 2008b) were trained through the image extraction of
25 microshoots leaves as inputs, while 55 leaves were consid-
ered for the testing set. The ART2-type model classified the
testing set into two groups in a 19:36 ratio, while the fuzzy
ART algorithm was grouped into 7 classes. However, this
classification was incorrect because of the lack of a significant
correlation with the micro-shoot ability to induce corms
(Prasad and Gupta 2008b). The Kohonen self-organizing net-
work is one of the most common types of the network which
was used for clusteringmicroshoots. The self-organizingmap-
ping (SOM) with a linear function of distance network has a
sextuple topology. A 25-element set was considered input.
This type of model is a competitive algorithm that is depen-
dent on the patterns of input. The model generates the output
thusly to best rebuild dependence in the input vectors space.
The application of the Kohonen self-organizing network in the
SOM model organized a testing set of Gladiolus hybridus
microshoots into 2 classes in a ratio of 28:27 (Prasad and
Gupta 2008b). It was verified, via the biological validation
of the microshoot classes, which microshoot classes are more
competent for forming corms. Only in classes separated by the
ART2 model was there a remarkable variation: 36.8 and
69.4% of formed corms, which shows the reliability and ac-
curacy of this algorithm.

Gago et al. (2010b) used MLP-GA with one hidden layer
applying a fast adaptive resilient backpropagation learning
algorithm and a linear transfer function for modeling and op-
timizing shoot proliferation of Actinidia deliciosa. The con-
centrations of sucrose and light intensity were considered in-
puts and, also, proliferation rate, shoot number and shoot
length were considered output data. They reported that all of
the R2 of validation set of studied parameters were over 93%.
Therefore, they suggested that MLP-GA can be considered an
alternative to traditional statistical methods. In another study,
Gago et al. (2011) used hybrid neurofuzzy logic technology
for modeling and predicting shoot proliferation of apricot
through data mining strategy. The input variables were five
apricot varieties, different essential mineral components in the
culture media (NO3

−, SO4
2−, NH4

+, K+, Cl−, PO4
2−, Ca2+, and

Mg2+), and different concentrations of BAP, while the output
data were length and number of shoots and productivity (av-
erage shoot length × shoot number). According to Gago et al.
(2011), neurofuzzy method can be accurately predicted shoot
proliferation and also can be used to understand relationships
between different factors involved in shoot proliferation.
Furthermore, this method could be expanded and developed
by adding additional information on input variables and

output data, such as other growth regulators, additional min-
eral nutrient levels, additive compounds, physical conditions,
etc. (Gago et al. 2011). In another study, Rizvi et al. (2012)
app l i e d t h r e e ANN mode l s i n c l ud i ng GRNN,
backpropagation neural network (BPNN), and Elman-BPNN
for modeling and predicting shoot growth of Chlorophytum
borivilianum by using bioreactors of large volumes. The con-
centrations of sucrose, pH of culture medium, inoculum den-
sity, and volume of medium per vessel were considered inputs
and, also, fresh weight of regenerated plants was considered
output. Their results showed that Elman-BPNN predicted
fresh weight with better accuracy than GRNN and BPNN.
Gupta and Pattanayak (2017) analyzed photometric traits de-
rived from the digitized images of regenerated potato plantlet
leaves in order to non-invasively estimate the chlorophyll con-
tent by using the ANN strategy. A feed-forward,
backpropagation-type network was selected for an input layer
(three nodes), with one hidden layer (one node), and an output
layer corresponding to the forecasted chlorophyll content.
According to Gupta and Pattanayak (2017), training function
during the optimization of ANN construction had a significant
impact and, also, the best training function on the basis of
comparative analysis of root-mean-square error (RMSE) at
zero epoch, among the eleven training functions tested, was
achieved from “trainlm” function. In another study, Alanagh
et al. (2014) employed neurofuzzy logic by considering NO3

−,
NH4

+, K+, PO4
2−, Cl−, Ca2+, Mg2+, and SO4

2− as inputs and
also the total number of shoots, the number of healthy shoots,
and the number of buds as outputs for modeling shoot prolif-
eration of GF677 hybrid rootstocks. To train and construct the
model, structural risk minimization (SRM), a number of set
densities: 2, set densities: 2, 3, adapt nodes: TRUE, Max.
Inputs per SubModel: 4, and Max. Nodes per input: 15 were
considered the selection criteria, and also, ridge regression
factor: 1e−6 was considered the minimization parameters.
Alanagh et al. (2014) reported that R2 of testing sets of total
shoots, healthy number, and bud number were 77.48, 91.78,
and 90.78. Furthermore, they showed the neurofuzzy logic
technology can be employed to establish a new medium and
optimize in vitro culture protocols. A similar method
(neurofuzzy logic) was used for studying in vitro physiologi-
cal disorders of pistachio rootstocks (Nezami-Alanagh et al.
2019) and designing the culture medium for pistachio root-
stocks (Nezami-Alanagh et al. 2018). In similar studies, Arab
et al. (2016) and Jamshidi et al. (2016) tried to design a new
culture medium for G×N15 and pear rootstocks, respectively,
using the MLP-GA method by considering NO3

−, NH4
+, K+,

PO4
2−, Cl−, Ca2+, Mg2+, and SO4

2− as inputs and also growth
parameters such as length and number of shoots and
proliferation rate as outputs. Moreover, Arab et al. (2017)
applied MLP-GA for modeling and optimizing hormonal
combination for G×N15 shoot proliferation. Indole-3-butyric
acid (IBA), kinetin (KIN), BAP, thidiazuron (TDZ), and 1-
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naphthaleneacetic acid (NAA) were considered inputs; and
developed callus weight, number and length of micro-shoots,
and the quality index were considered outputs. In these studies
(Jamshidi et al. 2016; Arab et al. 2017), the feed-forward
back-propagation learning algorithm, the transfer function in-
cluded hyperbolic tangent sigmoid (tansig) and linear
(purelin) functions for the hidden and output layers, respec-
tively, a Levenberg-Marquardt algorithm for back-
propagation with a gradient descent with momentum weight
and bias learning function, 800-1000 epochs or iterations of
the network for training set, and 0.01 level MS error as the
performance function were considered to construct and devel-
op MLP model. Furthermore, the roulette wheel as a selection
method, 50 initial populations, 500 generations, 0.85 cross-
over rate, and 0.1 mutation rate were considered in the opti-
mization process using GA. In a similar study, Nezami-
Alanagh et al. (2017) employed neurofuzzy logic and MLP-
GA to design and optimize culture medium for Pistacia vera
by considering 26 factors (20 ions, 3 vitamins, and 2 PGRs) as
inputs and proliferation rate, shoot length, total and healthy
fresh weight as outputs. Nezami-Alanagh et al. (2017) report-
ed that a new pistachio optimized medium caused to 3.73 ±
0.48 shoots per explants which was approximately two-fold of
MS and DKW media. According to these studies, ANN-GA
can be considered a useful approach for modeling and opti-
mizing shoot proliferation.

Recently, different regression tree data mining techniques,
such as chi-squared automatic interaction detector (CHAID),
exhaustive CHAID, and classification and regression tree
(CART), along with response surface methodology (RSM)
have been used for modeling and optimizing macronutrients
(Akin et al. 2017) and micronutrients (Akin et al. 2018) in
hazelnut. Decision trees display better and superior analytical
approaches when the purpose is to study nonlinear and inter-
action impacts between dependent and independent parame-
ters (Kusiak et al. 2010). Moreover, there is no need for ana-
lytical assumptions (like normality assumption) between the
response and estimator data. Also, regression tree models are
able to control outliers and missing data. The algorithms can
analyze ordinal, continuous, and nominal data sets (Thomas
et al. 2020). Although RSM is capable of recognizing curva-
ture within the response besides linear effects, it cannot com-
bine nominal data such as cultivars; thus, it constructs separate
individual models for each cultivar, which causes the data
analysis more time-consuming and complex in plant tissue
culture study. In another study, Khvatkov et al. (2019) applied
the solvingmultinomial task from the series of quadratic equa-
tions for forecasting and optimizing the culture medium
compositions in duckweeds. Also, Akin et al. (2020) applied
multivariate adaptive regression splines (MARS) for
modeling and predicting macronutrient of culture medium in
strawberry. The MARS method is a nonparametric regression
model that explains complex nonlinear interactions and

relationships through a sequence of spline functions of the
independent values and handle both numerical and
categorical data, without the requirement of the normality
assumption of the linear models. In another modeling study,
Prasad et al. (2017) applied BPNN for maximum biomass
accumulation in multiple shoot cultures of Centella asiatica
where MgSO4, CuSO4, ZnSO4, NO3, and sucrose were taken
as inputs and growth indices were considered outputs. The
input layer was constructed via five input nodes, while the
nodes number in the single hidden layer and output layer
included three nodes and one node, respectively. Also, one
thousand epochs as maximum, output layer learning rate
(0.3), initial weight ± range (0.5), momentum and learning
rate (1), and data normalization between 0.1 and 0.9 were
used for optimizing the model. They reported that the high
correlation between the R2 of training, testing and validation
datasets showed the high efficacy of the ANN model used for
better predictability and performance. In another study,
Hesami et al. (2019c) used RBF-NSGA-II by considering
BAP, sucrose, IBA, and phloroglucinol as inputs and, also,
shoot number, proliferation frequency, basal callus weight,
and shoot length as outputs, for forecasting and optimizing
the composition of shoot proliferation medium for chrysan-
themum. They used K-fold cross-validation (K = 5) for the
validation set. They reported that all of the R2 of training
and validation sets of studied parameters were over 90%.
Also, they linked the RBF to NSGA-II to optimize shoot pro-
liferation. One thousand generation, 200 initial population,
0.05 mutation rate, 0.7 crossover rate, two-point crossover
function, the uniform of mutation function, and a binary tour-
nament selection function were considered. Moreover, they
considered proliferation rate, shoot number, shoot length,
and basal callus weight as four objective functions in the
NSGA-II process to determine the optimum values of BAP,
IBA, phloroglucinol, and sucrose. The ideal point of Pareto
was selected such that shoot length, proliferation rate, and
shoot number became the maximum, while basal callus
weight became the minimum. According to their validation
experiment, a medium composition can be precisely opti-
mized by RBF-NSGA-II. Also, Jamshidi et al. (2019) com-
pared the efficiency of multiple linear regression (MLR),
RBF, and genetic programming (GP) models in combination
with GA for predicting and optimizing the concentrations of
medium components for shoot proliferation of pear root-
stocks. According to their finding, GP and RBF methods led
to more accurate results and can be considered reliable and
accurate models for the shoot proliferation stage.

In vitro shoot organogenesis

Shoot organogenesis refers to the differentiation shoots from
undifferentiated cells. Shoot organogenesis depends on the
fact that the explant cells are highly differentiated because
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they are chosen from differentiated parts of plants (Hesami
et al. 2019a). When an explant is cultivated in the culture
medium, its differentiated cells dedifferentiate to form a cal-
lus. Then, the callus cells redifferentiate and produce shoots in
response to specific growth factors such as PGRs. Different
factors and their interactions play conspicuous roles in plant
tissue culture such as PGRs, environmental factors, medium
compositions (Piunno et al. 2019; Niazian 2019). Barone
(2019) employed multiple regression analysis and MLP
methods for forecasting and studying the effect of nitrogen
in shoot organogenesis ofPinus taeda. Total nitrogen contents
and the ratio nitrate: ammonium were considered inputs, and
also, the regeneration frequency, buds-forming capacity in-
dex, callogenesis frequency, number of buds per explant,
and oxidation frequency were taken as outputs. MLP was
constructed with a layer input with two neurons, one hidden
layer with three neurons, and one neuron output. Barone
(2019) reported that MLP, in comparison with multiple re-
gression analysis, presented a better precision to model and
predict shoot organogenesis, with higher R2 and lower RMSE
for all the studied parameters.

In vitro haploid plant production

Haploid plants can be produced in situ using various tech-
niques such as pollination with irradiated pollen or wide hy-
bridization with closely related, but sexually incompatible,
species. In these events, the pollen does not fertilize the egg,
but triggers embryo development, resulting in a haploid em-
bryo (Kalinowska et al. 2019). In most cases, the haploid
embryos abort and do not produce seed if left to mature in
the plant. As such, embryo rescue techniques using plant tis-
sue culture are usually required to recover haploid plants.
Alternately, haploid plants can be produced by regenerating
plants from maternal gametic tissues in vitro through gyno-
genesis (Kalinowska et al. 2019). Several cells within the egg
sac can theoretically develop into haploid plants, including the
egg cell, synergids, and antipodal cells, but it is the egg cell
that typically develops into a plant when this approach is used.
This can be done by culturing isolated ovules, placenta-
attached ovules, or even whole flowers from unfertilized
plants (Bhojwani and Dantu 2013). However, in most cases,
producing haploids from maternal tissues is relatively ineffi-
cient and regeneration from paternal gametes through andro-
genesis is more common. To produce haploid plants from the
male gametes, the developmental path of microspores is
redirected from developing into mature pollen grains into
plant regeneration, typically through somatic embryogenesis
(Bhojwani and Dantu 2013). This can be accomplished by
isolating the microspores at the appropriate stage of develop-
ment and culturing them, or the whole anther can be
established in culture. Whole anther culture provides a tech-
nically simple approach in which the anthers are surface

sterilized and cultured on semi-solid, liquid, or a 2-phase me-
dium. While whole anther culture introduces the potential to
regenerate diploid plants from the sporophytic tissues, making
the identification and verification of haploid plants more chal-
lenging, isolated microspores from many species do not re-
spond as well on their own and it can be the only viable
approach in some species. In the case of isolated microspore
culture, whole anthers are surface sterilized before being
mascerated to liberate the microspores. The microspores are
then isolated from the tissues and cultured using various tech-
niques, reducing the probability of regenerating plants from
parental tissues. Whether haploids are produced from isolated
microspores or whole anther culture, the primary requirement
is that the developmental process is re-directed from maturat-
ing into pollen toward plant regeneration (Wang et al. 2018).
While all regeneration systems are species, and even genotype
specific, this is particularly true in the case of haploid plant
production and the health and growing conditions of the donor
plant, optimal developmental stage of the specific explant, a
suitable media composition, appropriate environmental con-
ditions, and the right balance of plant growth regulators, are all
essential for success. Another factor that is somewhat unique
tomicrospore culture is the common need for thermal shock to
redirect developmental processes. Most microspore regenera-
tion systems require a cold shock, often applied to the flowers
prior to culturing, and/or a heat shock applied to the cultured
microspores (Kalinowska et al. 2019; Bhojwani and Dantu
2013).

While each species has their own unique requirements for
microspore regeneration, the technology has been developed
for a variety of taxonomically diverse species and several
requirements and patterns can be gleaned (Wang et al.
2018). The most critical factors in developing androgenesis
techniques are the identification/use of microspores at the ide-
al developmental stage and the use of a suitable stress treat-
ment to re-direct the microspores’ developmental pathway.
Niazian et al. (2019) employed the hybrid system of image
processing-ANN for a better understanding of callogenesis
and androgenesis of tomato. The accurate flower bud length
was estimated through the 4′,6-diamidino-2-phenylindole
(DAPI) analysis and the image processing method; and the
results demonstrated that the maximum rate of the mid- to
late-uninucleate microspore phase was obtained from the 5–
6.9-mm length of flowers. The MLP model was constructed
through three training algorithms (momentum, conjugate gra-
dient, and Levenberg–Marquardt) and four activation func-
tions (SigmoidAxon, LinearSigmoidAxon, TainhAxon, and
LinearTanhAxon). Flower length, plant cultivar, and different
concentrations of Kinetin, 2,4-D, and gum arabic, as well as
cold pretreatment duration, were considered inputs, and also,
callogenesis frequency and number of defferentiated callus
were selected as outputs for anther culture of tomato. Also,
the developed MLP model was trained and validated with
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various neurons in each layer and different numbers of hidden
layers. Their results showed that the best MLP model for both
outputs was a model with one hidden layer, Levenberg–
Marquardt learning algorithm, 12–15 neurons in the first hid-
den layer, and Tan-Sigmoid transfer function in the hidden
layer, based on the R2, RMSE, and mean absolute error
(MAE).

Hairy root culture

Callus and suspension cultures can be considered a method to
produce valuable secondary metabolites. However, secondary
metabolite production in a specific organ occurs when callus
is induced to organogenesis (Verma et al. 2016). For instance,
in Panax ginseng, root cultures are essential to produce the
secondary metabolite such as saponins. The roots are able to
accumulate a wide range of secondary metabolites, indicating
their biosynthetic potential. The main problem in in vitro sec-
ondary metabolite production is the slow growth rate of nor-
mal roots (Bhojwani and Dantu 2013). In contrast,
Agrobacterium rhizogenes which developed hairy roots are
characterized by a high growth rate under hormone-free con-
ditions, extensive branching, low doubling time, genetic sta-
bility, and ease of maintenance (Baek et al. 2020). Several
studies have tried to improve the efficiency of target products
through hairy root cultures by manipulation of culture medi-
um, O2 starvation, physical factors, and metabolic engineering
(Baek et al. 2020; Bhojwani and Dantu 2013; Solis-Castañeda
et al. 2020; Goswami et al. 2018). These studies showed that
optimized condition is a key factor in the success of hairy root
culture. Therefore, AI-OA can be considered a powerful tool
for this purpose.

Successful attempts have been made in modeling
Glycyrrhiza glabra hairy root cultures (Mehrotra et al. 2008;
Prakash et al. 2010). Mehrotra et al. (2008) employed anMLP
to predict the inoculum properties (explant fresh weight, ex-
plant size, and the number of explants per flask) and in vitro
culture conditions (the month of inoculation, incubation tem-
perature, pH of the medium, and volume of the medium per
vessel) for optimum root biomass production (the average of
root fresh weight). An input layer, an output layer, and a
hidden layer including seven neurons were used for construct-
ing the MLP model. A hyperbolic tangent activation function
(tansig) and a linear transfer function (purelin) were used for
the hidden layer and the output layer, respectively. Mehrotra
et al. (2008) reported that the model trained with the traincgb
method caused the greatest output range, while the network
trained and developed with the trainrp algorithm caused the
best-predicted results. In another study, Prakash et al. (2010)
employed two ANNs to assess culture parameters such as pH
of the medium, inoculum density, sucrose concentration, and
volume of medium for Glycyrrhiza glabra hairy root culture.
The MLP as one of the used models was constructed by using

a linear transition function (purelin), and the sigmoid activa-
tion function (logsig), while a regression neural network
(RNN) was the second model. Both models were determined
to be reliable for forecasting the optimum culture conditions to
induce hairy roots; however, the RNN model more accurately
predicted. Afterward, the hybrid model, a hidden Markov
model (HMM) in combination with ANN, was developed
for hairy root culture. The volume of culture medium per
vessel, pH, density of initial inoculum per culture vessel,
and sucrose and nitrate concentration in the medium were
taken as input, and also fresh weight biomass was considered
output for modeling Agrobacterium rhizogenes—mediated
hairy root cultures of Rauwolfia serpentina. Mehrotra et al.
(2013) reported that pure ANN models and ANN-HMM
could be precisely predicted the optimal conditions for the
maximum fresh weight production.

In vitro rooting and acclimatization of microshoots

Successful in vitro rooting and acclimatization as ultimate
stages are very important in plant tissue culture (Mridula
et al. 2018; Shukla et al. 2020). Both steps strongly depend
on different factors such as auxin concentrations (Gago et al.
2010a; Niazian 2019). Gago et al. (2010a) used MLP-GA to
model and optimize relevant factors in in vitro rooting and
acclimatization of grapevines (Vitis vinifera L., cv. Albariño
and Mencia). MLP model with the backpropagation learning
algorithm and one hidden layer with the asymmetric sigmoid
transfer function was constructed by considering cultivar, IBA
concentrations, and IBA exposure time as inputs and, also, the
mean number of roots, the mean number of plantlets leaves,
the mean height of the plantlets, and the average of node
number as outputs. For modeling, the data were grouped into
three sets including training, testing, and validation sets.
Furthermore, GA was employed to find the optimum IBA
level and the duration of IBA for in vitro rooting and acclima-
tization. Moreover, the ANN approach allowed the construc-
tion and development of a model corresponding both in vitro
rooting and acclimatization which was able to model and
forecast various in vitro conditions for both steps simulta-
neously and for different genotypes. It is possible to construct
the model by developing its databases such as environmental
factors, other PGRs, and different types of media as new in-
puts and, also, chlorophyll and carotene contents, stomata
analysis, and the weight of plants as new outputs (Gago
et al. 2010a). In another study, Arab et al. (2018) employed
the MLP-GA approach to predict and optimize a new culture
medium for in vitro rooting of G×N15 Prunus rootstock.
NH4

+, Ca2+, NO3
−, Cl−, and K+ were taken as inputs and, also,

the number and length of roots, as well as fresh and dry weight
of roots were considered outputs. The feed-forward back-
propagation learning algorithm, the transfer function included
hyperbolic tangent sigmoid (tansig) and linear (purelin)
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functions for the hidden and output layers, respectively, a
Levenberg-Marquardt algorithm for back-propagation with a
gradient descent with momentum weight and bias learning
function, 800–1000 epochs or iterations of the network for
training set, and 0.01 level MS error as the performance
function were considered to construct and develop MLP
model. Furthermore, the roulette wheel as a selection
method, 50 initial populations, 500 generations, 0.85
crossover rate, and 0.1 mutation rate were considered in the
optimization process using GA. Arab et al. (2018) reported
that all of the R2 of training and validation processes of studied
parameters were over 90%; therefore, they suggested that
ANN-GA can be used as a promising methodology for model-
ing and optimizing in vitro rooting step.

Comprehending the cause-effect relationships between
PGRs and culture conditions play an important role in
regenerating high-quality plantlets. Modeling and predicting
the in vitro rooting and acclimatization of grapevine
“Albariño” was continued through the neurofuzzy logic
(Gago et al. 2010a). The type (Indole-3-acetic acid (IAA),
IBA, NAA) and concentration of auxins and the sucrose
level in the media were considered the input variables, while
the number and length of roots after 28 days of in vitro
rooting, as well as plant height and survival percentage after
21 days of acclimatization, were taken as outputs. First, a
separate submodel was built for each output and then used
for the training set, during which the structural risk
minimization approach confirmed to be most precise. Gago
et al. (2010a) neurofuzzy technology generated four condi-
tional rule sets for in vitro rooting and acclimatization traits.
Furthermore, the model optimization was done by choosing a
combination so that the best traits were simultaneously
achieved for both in vitro rooting and acclimatization. The
developed neurofuzzy logic on the basis of these findings
provided a general rule: if the concentration of IAA, NAA,
or IBA and the level of sucrose is moderate, then length and
number of roots, plant height and survival rate in both steps
(in vitro rooting and acclimatization) obtain the highest value
(Gago et al. 2010a). In another study, Gago et al. (2014)
neurofuzzy logic employed for modeling the effects of light
intensity and sucrose concentrations (inputs) on the survival
rate, root length, soot length, in vitro and ex vitro leaves per
plantlet, ex vitro/in vitro leaves, plantlet dry weight, percent-
age of water content, stomatal density, percentage of open
stomata, Fv/Fm, F0, Chl a+b content, and carotenoid content
in the acclimatization of kiwifruit. To train and construct the
model, structural risk minimization (SRM), a number of set
densities: 2, set densities: 2, 3, adapt nodes: TRUE, Max.
Inputs per SubModel: 4, and Max. Nodes per input: 15 were
considered the selection criteria, and, also, ridge regression
factor: 1e−6 was considered the minimization parameters.
The mentioned studies showed that neurofuzzy logic method
has made it possible to achieve the best and optimal levels and

combination of factors for the highest values of growth and
development during in vitro rooting and acclimatization.

Conclusion and future perspective

Different plant tissue culture processes depend upon environ-
mental and genetic factors and are considered nondeterminis-
tic, complex, and nonlinear processes. Historically, this has
been addressed through sequentially optimizing various fac-
tors, a time-consuming and costly endeavor that fails to ad-
dress the highly interactive nature of the variables. As compu-
tational power and sophistication improve, AI and OA are
becoming the preferred and more promising approaches for
modeling and optimizing complex systems to achieve better
results in less time and using fewer resources. AI-OAmethods
provide a useful scope to analyze in vitro culture data, inter-
pret the gathered data, and give deep insight into the in vitro
biological systems. Moreover, the application of AI-OA
brings conspicuous benefits due to the AI’s ability to take
nondeterministic and nonlinear relationships between the in-
formation, regardless of their type or origin, and even among
incomplete datasets, without the need that the researcher has
previous knowledge about these datasets. AI-OAmethods can
also be applied to develop and construct models that can de-
scribe the relationship between biological responses and dif-
ferent factors, which can further be employed to forecast fu-
ture responses in particular circumstances. Furthermore, the
application of AI-OA can now be carried out with a finite
number of treatments, which subsequently cuts down the costs
and time of developing plant tissue culture protocols on an
industrial scale. Finally, adding new input variables and out-
put parameters to the database of the developed model can
easily improve the knowledge derived through the application
of AI-OA. This may also provide a new perspective aimed at
comprehending the regulatory, physiological, and develop-
mental in vitro culture processes.

In the future, combinations of AI models (data fusion strat-
egy) could be applied for developingmore precise models that
can forecast and optimize the outcome of tissue culture proto-
cols and in vitro biological processes. Although there are no
reports regarding the application of data fusionmodel, random
forest, Naive Bayes classifier, singular value decomposition,
convolutional neural networks, generative adversarial net-
work, and gradient boosting in plant tissue culture, these
models can be employed for solving classification and regres-
sion problems in in vitro culture study. Moreover, AI-OA
methods could be employed for the automation and mechani-
zation of in vitro plant breeding, genetic engineering, and
genome editing technologies such as clustered regularly
interspaced short palindromic repeats (CRISPR)- CRISPR-
associated protein 9 (Cas9). Gene transformation is a multi-
variable procedure that many factors such as in vitro
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regeneration parameters (PGRs, carbohydrate sources, medi-
um composition, light, and temperature), bacterial optical cell
density, antibiotic and chemical stimulants concentrations,
and inoculation duration (immersion time), can affect its effi-
ciency. Establishing and developing a suitable strategy for
genetic Agrobacterium-mediated transformation can be con-
sidered a highly complex system because it is critical to com-
prehend the effect of different factors prompting the T-DNA
delivery into various explants. Subsequently, further analyses
are essential to check T-DNA integration and stability and to
achieve the efficiency parameter of gene transformation.
Furthermore, optimizing gene transformation protocol is nec-
essary for being successful in genetic engineering. Therefore,
AI-OA as a powerful and reliable strategy can pave the way
for developing novel computational methodology in genetic
engineering and genome editing.
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