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Abstract
Within the marine sphere, host-associated microbiomes are receiving growing attention as prolific sources of novel biocatalysts.
Given the known biocatalytic potential of poriferan microbial inhabitants, this review focuses on enzymes from the sponge
microbiome, with special attention on their relevant properties and the wide range of their potential biotechnological applications
within various industries. Cultivable bacterial and filamentous fungal isolates account for the majority of the enzymatic sources.
Hydrolases, mainly glycoside hydrolases and carboxylesterases, are the predominant reported group of enzymes, with varying
degrees of tolerance to alkaline pH and growing salt concentrations being common. Prospective areas for the application of these
microbial enzymes include biorefinery, detergent, food and effluent treatment industries. Finally, alternative strategies to identify
novel biocatalysts from the sponge microbiome are addressed, with an emphasis on modern -omics-based approaches that are
currently available in the enzyme research arena. By providing this current overview of the field, we hope to not only increase the
appetite of researchers to instigate forthcoming studies but also to stress how basic and applied research can pave the way for new
biocatalysts from these symbiotic microbial communities in a productive fashion.

Key points
• The sponge microbiome is a burgeoning source of industrial biocatalysts.
• Sponge microbial enzymes have useful habitat-related traits for several industries.
• Strategies are provided for the future discovery of microbial enzymes from sponges.
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Introduction

Aquatic ecosystems are one of the final frontiers for
biodiscovery. Oceans and seas comprise more than 71% of
the Earth’s surface and 97% of its water content (Schmitt
1997; Costello et al. 2010). While fulfilling an important role
in global biogeochemical cycling (Falkowski et al. 2008), they

are also the largest and most ancient reservoirs of the planet’s
biodiversity (Costello and Chaudhary 2016). Human interest
in the sustainable exploitation of these marine environments
led to the birth of marine biotechnology: the use of marine
bioresources as a target or source of biotechnological applica-
tions (Gov and Arga 2014). These include novel bioactive
compounds, notably those with biopharmaceutical applica-
tions, and valuable processes based on marine-derived sys-
tems with multiple industrial uses, particularly in the energy,
food, nutraceutical and biorefinery sectors (Greco and
Cinquegrani 2016; Barcelos et al. 2018). The dawn of the
‘blue biotechnology’ era is particularly evident by the in-
creased interest in the field of marine natural products in the
last few decades (Hu et al. 2011; Choudhary et al. 2017) and
by the growing business interests in the global marine biotech-
nology market, which is projected to rise from $4.8 billion in
2020 to $6.4 billion for 2026 (Smithers Group 2015).

By definition, biocatalysts include free enzymes or whole
microbial cells involved in catalytic conversions, which can
be naturally found or formulated in different formats (extra- or
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intracellular, single or multiple) (Woodley 2017; Sheldon and
Brady 2018). Biocatalytic entities are amongst the most
sought after commodities in blue biotechnology. It is beyond
the scope of this review to discuss the entire array of applica-
tions resulting from marine-derived biocatalysts, details of
which can be found in several other reviews (Zhang and
Kim 2010; Trincone 2010, 2011, 2013, 2017; Wang et al.
2016; Bruno et al. 2019). Nonetheless, it is worth pointing
out that the variety of different environmental conditions that
microorganisms encounter within these ecosystems has result-
ed in the evolution and ultimate adaptation of their biochem-
istry to cope with these extremes. This has culminated in a
remarkable diversity of enzymatic entities and systems.
Halotolerance, pH stability, hyperthermostability, barophilic
behaviour, cold adaptivity, and, in particular, chemo-, regio-
and stereoselectivity stand out as the principal habitat-related
properties in many of these biocatalysts (Arnosti et al. 2014;
Trincone 2011, 2013). These traits favour the use of these
enzymes in commonly used harsh industrial reaction condi-
tions, resulting in lower energy requirement, waste reduction
and less highly toxic byproducts and, consequently, providing
more cost-effective and greener processes (Liszka et al. 2012;
Chapman et al. 2018).

Marine microorganisms are considered the primary source
of biocatalysts and bioprospecting efforts are heavily concen-
trated in this area (Trincone 2012; Wang et al. 2016). The
isolation and characterisation of carbohydrate-active enzymes
(CAZymes), a wide range of peptidases, esterases, lipases and
halogenases, have been increasingly reported from marine
microbiomes, with a significant number of these enzymes
exhibiting the aforementioned marine adaptation-associated
traits (Sana 2015; Beygmoradi and Homaei 2017). Together
with extremophiles and their multifarious extremozymes
(Dalmaso et al. 2015), symbiotic microorganisms have also
followed the same path of resilience in their immediate and
ever-changing habitats within their hosts, constituting the
holobiont unit (Rosenberg and Zilber-Rosenberg 2018). The
vast biocatalytic repertoire of these host-associated microbial
communities is directly responsible for a number of metabolic
lifestyles: from the bloom of deep-sea life through chemosyn-
thesis (Cavanaugh et al. 2013) to the thriving heterotrophic
establishment on the polysaccharide-enriched surface of the
coastal macrofauna (Egan et al. 2013).

Sponges (Porifera), the oldest phylum in the metazoan lin-
eage (Yin et al. 2015), are well-known to harbour complex,
diverse and, generally, stable microbial communities from all
the domains of life (Hentschel et al. 2012;Webster and Taylor
2012; Thomas et al. 2016). Mostly found in the sponge
connective-like multicellular layer, the mesohyl, these associ-
ated microorganisms can comprise approximately 35% of the
sponge biomass (Vacelet 1975). Up to now, more than 50
prokaryotic phyla have been detected in association with these
invertebrates, with Proteobacteria (and its Gamma- and

Alpha- classes), Actinobacteria, Chloroflexi, Nitrospirae,
Cyanobacteria and Poribacteria being the most abundant
bacterial phyla and Thaumarcheota the dominant archaeal
phylum (Pita et al. 2018). Conversely, eukaryotic members
of these symbiotic communities, most notably fungi, have
received much less attention (Taylor et al. 2007;
Suryanarayanan 2012). Ascomycota and, to a minor extent,
Basidiomycota are the most reported divisions, with the ubiq-
uitous presence of the genera Aspergillus, Trichoderma,
Penicillium and Cladosporium (Gao et al. 2008; Li and
Wang 2009; Nguyen and Thomas 2018).

Not so reliant on taxonomic affiliation, a ‘core’ and func-
tionally equivalent microbiota is a crucial player in the homeo-
stasis of the sponge holobiont (Fan et al. 2012). These func-
tions can be mainly categorised as follows: (i) metabolic fea-
tures, involving mainly carbon and nitrogen metabolism, in-
cluding degradation of recalcitrant carbohydrates, photoauto-
trophic pathways, ammonia oxidation, nitrogen fixation, nitri-
fication, denitrification and vitamin biosynthesis, and (ii) de-
fensive features, ranging from the presence of restriction-
modification and clustered regularly interspaced short palin-
dromic repeat (CRISPR)–Cas systems, phages and other mo-
bile genetic elements to the production of secondary metabo-
lites (Webster and Thomas 2016; Moitinho-Silva et al. 2017a;
Pita et al. 2018), with the latter probably being the driver by
competition as a means of shaping the symbiotic microbial
assemblages (Lurgi et al. 2019).

These spongemicrobe-derived bioactive metabolites are an
ongoing source of interest from a biotechnological standpoint
but do not form the specific focus of this review. This review
will cover enzymes that are produced from these sponge-
inhabiting microorganisms with applications in various indus-
trial sectors. Modular biosynthetic enzymes, such as polyke-
tide synthases (PKS), non-ribosomal peptide synthetases
(NRPS) and/or hybrid PKS/NRPS, implicated in the produc-
tion of antimicrobial and other therapeutically relevant sub-
stances, the whole-cell biocatalysts (recently reviewed by
Birolli et al. 2019), enzymes directly isolated from sponges
(and not their associated microbial communities) and enzyme
inhibitors (Pandey et al. 2014; Ruocco et al. 2017), will also
not form part of this review.

Up until now, there have been few attempts to compile a
report on industrial enzymes from the sponge microbiome.
Wang (2006) was the first to review this topic, reporting pri-
marily on hydrolases from cultivable marine sponge bacterial
isolates. Eight years later, in an all-encompassing review on
the biotechnological potential of the sponge-associated bacte-
rial microbiota, Santos-Gandelman et al. (2014) reported on
different enzyme classes, including some from sponge
metagenomes as well. To the best of our knowledge, the latest
summarisation was carried out by Karthik and Li et al. (2019)
on a handbook chapter about the symbiotic microbial commu-
nities of reef ecosystems. Despite considerably updating the
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number of reports, including non-bacterial enzymatic pro-
ducers, enzymes from the coral microbiome and those related
to the biosynthesis of natural products were also included,
with the sponge microbiome not constituting the sole focus
as an enzymatic reservoir.

The present review aims to summarise the biocatalytic ca-
pacity of the sponge microbiome and discuss the potential
industrial application of these enzymes. A number of repre-
sentative enzyme groups will be highlighted, including their
biochemical characterisation following purification and their
industrially relevant features, when available. Alternative ap-
proaches to isolate novel biocatalysts from the sponge micro-
biota will also be critically presented. In doing this, we hope to
lay the foundations for the further establishment of sponge
microbial enzymology as an emerging resource for enzyme
discovery.

The sponge microbiome as a source
of industrial enzymes: a bird’s eye view

The biocatalytic potential of the marine sponge microbiomes is
chronologically outlined in Supplementary Table 1. Figure 1
depicts the number of (non-redundant) publications in the years
1997–2020 when searching the accessible literature in PubMed
and Web of Science databases (search filters used were the
words ‘sponge’, ‘microorganism’, ‘bacteria’, ‘enzyme’ and/or
‘biocatayst’ in the Title/Abstract fields and the words ‘sponge-
associated micro*’, ‘biocatalyst*’, ‘industrial*’ and
‘biotechnol*’ in the TextWord field, applying the asterisk wild-
card to extend the term selection). Given the full 23-year inter-
val, it is clear that there was a sudden rise in the number of
studies between 2008 and 2013, with 2019 alone exceeding the
number of reports from the beginning of the decade.

Moving to the enzyme class, hydrolases dominate the field,
followed by oxidoreductases (Fig. 2a). Amongst the hydro-
lases, glycoside hydrolases (GHs) and carboxylesterases to-
gether constitute almost 63% of the studies reported, followed

by peptidases and studies where several exoenzymatic activi-
ties were detected, mostly following screening on solid media
(Fig. 2b). For most of the GHs that were analysed, the com-
plex biopolymer (starch, carboxymethylcellulose, chitin) was
tested as substrate, both for qualitative detection and biochem-
ical characterisation, which does not rule out the concomitant
participation of other CAZymes, such as polysaccharide ly-
ases (PLs) and the oxidative enzymes within the auxiliary
activities (AAs) class to fully degrade the polysaccharide.
Around a third of the studies involved enzyme purification
and/or confirmation of activity with crude extracts, which
were often supernatants recovered from the selected produc-
tion media in which the isolate was cultured (Fig. 2c).

With respect to the microbial sources, to date, biocatalytic
research from the sponge microbiome has relied substantially
on cultivable strains, which account for around 75% of the
total, followed by either DNA libraries and metagenomes,
all of which were screened by a functional-based approach
(Fig. 2d). Considering the taxonomic affiliation of the micro-
bial producers, the domain Bacteria is, unsurprisingly, the
most investigated (66%), followed by the fungal eukaryotes
(25%) and Archaea (9%) (Fig. 2e). The bacterial enzyme pro-
ducers are predominantly from the phylum Proteobacteria,
with most members from the Gamma- class, followed by
Actinobacteria, with the majority belonging to the
Streptomyces genus, and Firmicutes, all belonging to the fam-
ily Bacillaceae. Ascomycota is the dominant fungal division,
chiefly involving the genera Aspergillus, Cladosporium,
Cadophora and Penicillium. For the five archaeal cases, one
was assigned to the phylum Thaumarchaeota (Schleper et al.
1997) and the other four toEuryarchaeota (Malik and Furtado
2019a, 2019b; Gaonkar and Furtado 2018, 2020).

Finally, only two reports implicated non-demosponge spec-
imens (Borchert et al. 2017a; Cretoiu et al. 2012), which is to be
excepted as the Demospongiae class covers up to 82.7% of the
9320 accepted poriferan species (van Soest et al. 2020), and is
also overrepresented in the Sponge Microbiome Project
(Moitinho-Silva et al. 2017b). Aplysinia, Dendrilla and

Fig. 1 Profile of the studies
selected for the current review for
the period 1997–2020. * =
ongoing
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Haliclona are the leading sponge genera from which enzyme-
producing associated microorganisms have been isolated.
Regarding the geographic origin of the source sponge speci-
mens, the coastlines and sea zones of India, Brazil, Ireland and
China are the most represented (Table S1).

Expanding on the hydrolytic CAZyme
repertoire

As previously mentioned, most of the studies to date have
focused on hydrolases, with almost 40% of these directed

towards the activity of a GH and, in particular, those with
broad polysaccharide-degrading capabilities. Following the
first two reports (Mohapatra and Bapuji 1997; Schleper et al.
1997), a study was conducted to investigate a mild acid and
salt-requiring glucoamylase-producingMucor sp. strain asso-
ciated with the intertidal sponge Spirastrella sp. The activity
was estimated in crude extracts, with subsequent thin layer
chromatography (TLC) analysis of the mono- and oligosac-
charide hydrolysis products produced (Mohapatra et al. 1998).

A subsequent report involving a CAZyme from a sponge
microbial symbiont occurred 5 years later. In a two-part par-
allel study, a Streptomyces sp. DA11 strain was isolated from

Fig. 2 A bird’s eye view of the
industrial enzymes reported from
the sponge microbiome. a
Enzyme classes. b Groups of
hydrolases. c Status of the
enzyme. d Microbial source. e
Taxonomic distribution of
microbial producers
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the South China Sea sponge Craniella australiensis and had
its antifungal chitinase activity investigated by optimising en-
zyme production from the wild-type strain through Plackett–
Burman and Box–Behnken designs (Han et al. 2008). A PCR-
based cloning approach, followed by the heterologous expres-
sion, purification and biochemical characterisation of the en-
zyme, was then performed, with the recombinant chitinase
showing an optimum pH 8.0 and temperature of 50 °C (Han
et al. 2009). While rarely employed in other studies (Zhang
et al. 2009; Selvin et al. 2012; dos Santos et al. 2016), even for
other enzyme classes (Bonugli-Santos et al. 2010), this
coupled strategy exemplifies the positive outcomes that can
be achieved by applying statistical design on a large scale. In
this case, chitinase production was 39.2-fold higher than the
basic medium following optimisation, with a yield of 1559.2
U/g (36.43 U/mL) after 72 h of incubation (Han et al. 2008).

The enhancement of fermentation was also achieved by the
incorporation of raw plant-derived biomass. In pursuit of cel-
lulolytic enzymes produced by fungal strains isolated from the
Egyptian sponge Latrunuculia corticata, a combination of
solid-submerged fermentation (SSF) and saccharification with
classical genetic engineering was employed (El-Bondkly and
El-Gendy 2012). A hypercellulolytic mutant (Tahir 25) was
generated by protoplast fusion of the three best producers,
which were selected following a primary screen. Rice straw,
wheat straw, corn straw, corncob and sugarcane bagasse were
collected, processed and added to the fermentation media. A
higher yield of all the enzymes from the cellulase complex
was observed using the mutant strain, with sugarcane bagasse
being the best inducer and giving stability up to 65 °C and pH
8.0. After a week of saccharification, the released reducing
sugars were efficiently converted into ethanol by the
Saccharomyces cerevisiae strain NRC2, and the enzymes
were shown to be resistant to extraction with Tween 80.
Thus, the combination of genetic engineering and ethanol
production using cheap agricultural residues resulted in a re-
liable recombinant strain that could be used as a broad enzy-
matic cocktail, fulfilling some of the key needs for the
biorefinery value chain (Cherubini 2010).

Batista-García et al. (2017) also incorporated agro-
industrial lignocellulosic byproducts (maize stover and wheat
straw) as substrates for SSF when characterising lignocellu-
losic enzymes from three deep-sea psychro- and halotolerant
sponge-derived ascomycetes. As well as confirming the activ-
ities of carboxymethylcellulase (CMCase), xylanase, peroxi-
dase and phenol oxidase, the authors also included a sacchar-
ification step with alkali-processed pure cotton fibres and the
culture supernatants as the crude enzyme, adapted under im-
proved cultivation conditions for each fungal strain. Beyond
all relevant properties of broad pH tolerance for the xylanase
and broader salt tolerance for the CMCase in each isolated
case, the higher fibre saccharification was verified when the
c u l t u r e s u p e r n a t a n t w a s s u p p l em e n t e d w i t h

carboxymethylcellulose (CMC). Remarkably, the concentra-
tion of the produced reducing sugars released after treatment
of the cotton fibres with the culture supernatants were 5–6
μmol, while commercial cellulolytic cocktails, such as
AccelleraseTM 1500 (Genencor International Corporation),
produced 4.5 μmol of reducing sugars directly from CMC
(Molina et al. 2014). This highlights the real potential of these
lignocellulosic-degrading enzymes from sponge-associated
ascomycetes to act directly on raw substrates, which would
be particularly useful for biofuel production.

A similar approach was employed with two marine
sponge-derived fungal isolates, confirming the efficient re-
moval of lignin by pre-treatment of sugarcane bagasse,
followed by their saccharification (Santos et al. 2017). Not
conducted systematically in the same fashion as with the
aforementioned ascomycetes (El-Bondkly and El-Gendy
2012; Batista-García et al. 2017), fungi isolated from an
Antarctic sponge had their xylanases tested with wheat bran,
wheat straw, oat bran (Del-Cid et al. 2014), sugarcane bagasse
and rice straw (dos Santos et al. 2016). The xylanolytic en-
zymes displayed a mild acid behaviour and relatively wide
thermostability, which was apparently dependent on the pres-
ence of low molecular weight solutes in the culture media.
One xylanase, produced by a Cladosporium sp. strain,
retained 30% of its activity at low temperatures, a clear
habitat-adaptative feature (Del-Cid et al. 2014).

Cellulase and xylanases have been successfully used to-
gether for the production of biofuels and probiotics, food pro-
cessing and in the bio-deinking of waste paper (Bajaj and
Mahajan 2019). However, the synergistic applications of these
two multi-component enzymes may not always be desirable.
Active at higher temperatures and under alkaline conditions,
cellulase-free xylanases are highly favoured for biobleaching
and are involved in the selective degradation of the hemicel-
lulose matrix, minimising the requirement for chlorine treat-
ment, which results in a superior grade dissolving of pulp and
increased paper brightness (Walia et al. 2017). After
confirming a lack of CMCase or cellobiase activities on solid
media, Malik and Furtado (2019b) tested the xylanase produc-
tion in Cinachyrella cavernosa-associated haloarcheons in
liquid media. The crude extract of one of the strains,
Halococcus thailandensis GUMFAS7, produced a salt-
dependent and relatively thermotolerant multimeric xylanase,
with maximum activity at pH 5.0. The same research group
reported a xylanase-free cellulase from another haloarchaeal
isolate, Haloferax sulfurifontis, with activity at 5 M NaCl and
throughout a broad range of pH and temperature (Malik and
Furtado 2019a). Despite not being alkaliphilic, both endo-type
enzymes have an extreme halophilic nature that would be of
particular interest for xylanases applied in marine/salt food
processing and waste treatment (Teo et al. 2019) and cellu-
lases in the direct recovery of cellulose pre-treated with dena-
turing ionic liquids during biofuel production (An et al. 2015).
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The focus on plant-derived or lignocellulosic biomass sub-
strates for the reported GH examples reveals an aspect of the
ongoing research that remains largely underexplored: a sur-
prising disregard for marine polysaccharides, particularly the
constituents of algae cell walls. Given the ecological interac-
tions between sponge andmacroalgae (Easson et al. 2014) and
the constant flow of seaweed detritus as dissolved organic
carbon (DOC) through the sponge loop (Pawlik and
McMurray 2020), it is puzzling that little effort has to date
focused on prospecting enzymes involved in the degradation
of marine biomass by sponge-inhabiting microorganisms.
They are likely to release GH and/or PLs to initially convert
these recalcitrant polysaccharides, encountered through the
sponge filtering activity, into simpler organic carbon sources
that can subsequently be transported into the bacterial cell and
assimilated via central metabolic pathways. In fact, some of
the major bacterial members found in the sponge microbiome,
most ly f rom the Alpha- , Gammaproteobacter ia
(Proteobacteria) and Flavobacteria (Bacteroidetes) classes,
are recognised producers of biochemically characterised
agarases (Jahromi and Barzkar 2018), carrageenases (Zhu
et al. 2018), alginate-lyases (Zhu and Yin 2015),
laminarinases (Labourel et al. 2015), fucosidases (Dong
et al. 2017) and ulvan-lyases (Reisky et al. 2019).

To date, there have been just two reports of exoagarases
from sponge-derived Cytophaga (Imhoff and Stöhr 2003) and
Bacillus (Li et al. 2007) strains, both observed following
screening on solid media. Putative gene sequences of β-
agarases (family GH50), α- (families GH5 and GH36) and
β-galactosidases (family GH2) and α-L-fucosidases (family
GH95) have been detected in single-amplified genomes
(SAGs) of the candidate phylum “Poribacteria”, still regarded
as a role model for true sponge symbionts (Kamke et al. 2013;
Podell et al. 2019). Considering the variety of industries where
marine carbohydrate-hydrolysing enzymes can be applied
(Trincone 2018), particularly with respect to the anionic oli-
gosaccharides with human health-related bioactivities that can
be produced by these enzymes (Michel and Czjzek 2013;
Imran and Ghadi 2019), the isolation, identification and sub-
sequent biochemica l charac te r isa t ion of mar ine
polysaccharide-depolymerising and modifying biocatalysts
from the sponge microbial consortium should be receiving
more attention.

In relation to discovering new CAZyme entities by using
other saccharidic substrates, glycoconjugates have emerged as
compelling alternatives. Sialic acid, a derivative of N-acetyl-
neuraminic acid (Neu5Ac) and an example of this wide group
of chemically modified sugars, has been identified in sponges
(Garrone et al. 1971; Harrison and Cowden 1981), while
sialyltransferases (STs) appear to be essential in cellular ag-
gregation events in these invertebrates (Müller et al. 1977,
1978, 1979; Petit et al. 2015). Other sulphated and acidic
glycans, such as chondroitin, also mediate cellular adhesion

and recognition resulting from their interactions in marine
sponges (Kamerling and de Souza 2011). Genomic data from
certain sponge microbial symbionts have uncovered their po-
tential capacity to degrade sialylated molecules and other
glycosaminoglycan/proteoglycan components of the sponge
extracellular matrix. This is believed to be achieved through
the coordinated action of exosialidases (family GH33), other
specific disaccharidases, galactosamine and uronic acid hy-
drolases, together with sulfatases and N-acetylneuraminate ly-
ases (Kamke et al. 2013; Bayer et al. 2018; Podell et al. 2019).
Catabolising these glycosylated ligands is one of the strategies
used by these microorganisms to interact with their eukaryotic
hosts, similar to what has been characterised in the human
microbiome (Ndeh and Gilbert 2018) and bacterial pathogens,
in the case of sialic acids (Haines-Menges et al. 2015).
Chemoenzymatic synthesis of valuable sialoconjugates (in-
cluding surface antigens, recombinant fusion proteins and ol-
igosaccharides) and in-depth analysis of glycan structures are
amongst some of the promising applications of marine bacte-
rial sialidases, in particular STs (Fukano and Ito 1997;
Yamamoto 2010; Kamimiya et al. 2013; Kang et al. 2015).
Given the fact that sponge mesohyl is a selective microenvi-
ronment for microorganisms that are capable of degrading
these glycoconjugates, it is clear that poriferan-associated mi-
croorganisms should be further explored as a source of en-
zymes involved in glycoconjugate metabolism.

Employing various -omics-based approaches to the discov-
ery of novel GHs from the spongemicrobiome is likely to be a
useful strategy in the immediate future. This could range from
an initial PCR-based detection of the genes encoding the en-
zymes being targeted (Sibero et al. 2019), to the application of
functional and genetic screening of metagenomic libraries fo-
cusing on the biocatalyst-coding gene (Cretoiu et al. 2012) to
ultimately using genome mining of cultivable bacterial iso-
lates, coupled with the heterologous expression and character-
isation of the industrially relevant enzyme (Borchert et al.
2017a). In this sense, lessons can be learned from recent re-
ports, such as exploration of the genome, transcriptome and
secretome of the laccase-producing Peniophora sp. CBMAI
1063 associated with the marine sponge Amphimedon viridis.
The multi-omics strategy confirmed that this strain is a strong
candidate for the production of a cocktail of lignocellulolytic
enzymes, corroborated by testing the purified oxidoreductase
on pre-treated sugarcane bagasse (Brenelli et al. 2019).

CAZymes comprised 3.7% of the metaproteome analysed
from the Mediterranean sponge Aplysinia aerophoba. From
the detected CAZyme families, those involved in the metab-
olism of chitin and N-acetylglucosamine, followed by en-
zymes responsible for the bioconversion of glycoproteins
and glycolipids and the degradation of complex polysaccha-
rides were the most predominant groups present (Chaib De
Mares et al. 2018). Despite the low frequency of GH verified
for the microbiome of marine sponges in relation to other
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habitats (Berlemont and Martiny 2016), it should not be ig-
nored the huge amount of information steadily accumulated
from the -omics surveys. It is fundamental to increase efforts
in biochemically characterising these putative carbohydrate
hydrolases, adopting rational strategies similarly to those that
have been employed recently (Schultz-Johansen et al. 2018;
Helbert et al. 2019; Nguyen et al. 2019).

Versatile carboxylesterases

Carboxylesterases are conventionally classified as lipases (EC
3.1.1.3, triacylglycerol hydrolases), which are active onwater-
insoluble longer fatty acid chains and subject to interfacial
inactivation, and esterases or non-specifically esterases (EC
3.1.1.1, carboxyl ester hydrolases) with short acyl chain
(>C6) as substrates (Chahinian and Sarda 2009). There has
been a growing interest in marine-derived carboxylesterases,
as they can be employed in food and feed preparation, in the
detergent industry, in leather and textile processing, in phar-
maceutical synthesis and in biodiesel production (Navvabi
et al. 2018). Open and deep-sea waters, coastal sediments
and hydrothermal vents are amongst the leading microbial
sources of carboxylesterases (Patnala et al. 2016; Zhang
et al. 2017). After the polysaccharide-degrading CAZymes,
carboxylesterases are the second most common group of hy-
drolases that have been characterised from the sponge
microbiome (Fig. 2b), and have mostly been identified by
functional metagenomics-based approaches. Except for a de-
fensive phospholipase A2 (PLA2) from the Streptomyces
MSI051 strain and the extract of its original sponge (Selvin
2009), together with a report of antibacterial activity credited
to lipase-encoding genes in the Cymbastela concentrica
metagenome (Yung et al. 2011a), the other characterised
sponge microbial lipases and esterases possess at least three
or more habitat-adapted features, such as alkaliphily,
halotolerance and stability to surfactant agents and organic
solvents.

In addition to its alkaline and psychrophilic nature, the
lipase purified from the Dendrilla nigra-associated
Pseudomonas sp. MSI057 strain had its relative activity in-
creased by approximately one third at low concentrations of
detergents, including Triton-X and SDS, and was quite stable
under acetone extraction (Kiran et al. 2008). A moderately
alkaline lipase was also detected from a Bacillus pumilus
B106 strain, a biont from the South China Sea sponge
Halichondria rugosa (Zhang et al. 2009). In stark contrast to
the Pseudomonas case, the enzyme had an optimum temper-
ature of 50 °C and was remarkably stable at high salt concen-
trations, retaining 78% activity from 0 to 150% g/kg of KCl,
and was inducible in the presence of 10% methanol.

Following the screening of a Haliclona simulans
metagenomic library, Selvin et al. (2012) identified a novel

halotolerant lipase. The enzyme exhibited a broad pH and
thermotolerance associated with an extreme halotolerance
(99% activity retained at up to 5 M NaCl). The activity was
also positively influenced by detergents and organic solvents,
revealing a biocatalyst with potential utility in various indus-
trial scenarios, such as the manufacturing of marine products.
Another functional metagenomics-based study resulted in the
isolat ion and identif ication of a l ipA gene, with
carboxylesterase activity from the microbiome of the sponge
Ircina sp., sampled in the South China Sea (Su et al. 2015).
Biochemical characterisation of the heterologously expressed
LipA protein determined the thermostability and alkaline na-
ture of the Ca2+-dependent lipase, whose activity was also
enhanced by methanol, isopropanol and acetone, a particular
advantage for biodiesel production and transesterification and
ester synthesis by eliminating the need for solvent removal or
solvent-free systems.

A mildly alkaline active acetylcholinesterase producing
Arthrobacter ilicis was isolated from the marine sponge
Spirastrella sp. (Mohapatra and Bapuji 1998), and two recom-
binant esterases, named EstB1 and EstB2, were isolated fol-
lowing the extensive screening of a genomic library from an
A. aerophoba-associated Bacillus sp. strain (Karpushova et al.
2005). Both these short-chain fatty acid-hydrolysing esterases
differed in their sequence-based classification, which was
reflected in minor differences in their biochemical properties:
EstB1 is slight thermophilic, while EstB2 exhibited more
mesophilic characteristics. Despite their similar properties in
terms of substrate affinity, inhibition by metal ions and stabil-
ity in the presence of organic solvents (stability up to 50% of
DMSO), EstB1 had a relatively higher NaCl and KCl toler-
ance than EstB2.

Another functional-directed screening of a metagenomic
library of Hyrtios erecta using a substrate formulation of
Tween 20 and CaCl2 resulted in the isolation of an esterase-
coding gene, estHE1 (Okamura et al. 2010). The His-tagged
EstH1 protein was found to have specificity towards >C6 fatty
acids (excluding triglycerides and tributyrin—C4), and
retained activity when kept between 25 and 55 °C. It also
attained 55% of its activity at 40 °C after 12 h, a thermosta-
bility that would be convenient in industrial set-ups demand-
ing longer storage times. What is particularly unique about
this esterase is its interesting behaviour under rising concen-
trations of NaCl: with up to 1.9 M of the salt, enzyme activity
decreased steadily; however, a subtle recovery took place
when the NaCl concentration was adjusted to 3.8 M. A likely
structural flexibility inherent to this esterase family was sug-
gested as the true explanation behind this peculiar property
(Okamura et al. 2010).

In another study, Borchert et al. (2017b) isolated a novel
esterase, 7N9, from the metagenome of the deep-sea sponge
Stelletta normani. The combined slight alkaliphily, salt toler-
ance, reactivity to metal ions and, mainly, psychrophily
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highlighted its potentiality for low-temperature processes,
such as in the manufacture of food, thermolabile pharmaceu-
tical products and cold-wash detergents. Subsequent protein
homology, phylogenetic analysis and molecular docking anal-
yses indicated the potential relatedness of the 7N9 esterase
with sequences from the not-yet cultured sponge bacterial
symbiont Candidatus “Entotheonella”, also hinting the role
of this esterase in niche adaptation in harsh conditions.

An interesting esterolytic enzyme from a sponge-
associated microorganism has recently published (Almeida
et al. 2019). Underpinned by the discovery of a polyethylene
terephthalate (PET)-hydrolytic strain, Ideonella sakaiensis
(Yoshida et al. 2016), and subsequent structure elucidation
of its PETase (IsPETase) (Liu et al. 2018), several research
groups have attempted to identify PETase homologues from
different ecosystems. Following an in silico-based screening
to reveal potential PETase homologues from both terrestrial
and marine Streptomyces isolates, Almeida et al. (2019) inter-
rogated the genomes of 52 streptomycete strains.
Heterologous expression of one candidate PETase-like gene,
sm14est, which was derived from a Haliclona simulans-asso-
ciated Streptomyces sp. SM14 strain, was carried out and the
protein was shown to have polyester-degradation activity on
polycaprolactone (PCL), a preliminary substrate used for the
screening of plastic hydrolysis. It is likely that marine sponge-
derived Streptomyces isolates may have had previous expo-
sure to plastics and/or microplastics present in seawater,
resulting from their association with the filter-feeding animal
(Almeida et al. 2019). Enzyme promiscuity, a term which
describes an enzyme with a broad substrate range and a pref-
erence for accepting bulkier substrates, has been reported for
esterases and may provide an explanation for the PCL hydro-
lysis observed with SM14 (Martínez-Martínez et al. 2017b). It
should also be noted that PCL is considered a biodegradable
polymer, whereas PET has a complex structure, with proper-
ties such as aromaticity and crystallinity remaining a key chal-
lenge in enzymatic PET degradation (Goldberg 1995; Kawai
et al. 2019). Upon comparison of the SM14 amino acid se-
quence and overall structure with IsPETase, both enzymes
were shown to contain the conserved catalytic triad as well
as the serine hydrolase motif (Almeida et al. 2019). This work
opens up a new area of exploration for polyesterases from
sponge-derived microbial strains, offering a supplementary
microbial source to solve the crisis caused by the ever-
increasing plastic pollution on aquatic environments
(Amaral-Zettler et al. 2020).

Leveraging up the proteolytic reservoir

Despite being the most economically important group of
marketed enzymes (Razzaq et al. 2019), proteases derived
from sponge-associated microorganisms have been largely

overlooked when compared with the aforementioned hydro-
lase groups. Most work to date on the purification and bio-
chemical characterisation of marine sponge-derived proteolyt-
ic enzyme has centred on a virulence-related collagenase
(Bhattacharya et al. 2018), with little focus on its potential
industrial uses.

Thus, Webster et al. (2002) initially isolated this
collagenolytic Pseudoalteromonas agarivorans NW4327
strain (Choudhury et al. 2015) from a necrotising Great
Barrier Reef sponge, Rhopaloeides odorabile, fulfilling the
Koch’s postulates of its pathogenic potential by electron mi-
croscopy and an Azocoll-degrading assay. Next, this collage-
nase was purified, biochemically characterised and found to
have a mildly acidic, mesophilic and high proteolytic profile.
It demonstrated an ability to degrade gelatin, casein, bird
feather and collagenous spongin obtained from different
demosponge skeletons. Interestingly, collagenase production
reached its peak when natural seawater and the specific host
spongin were supplemented to the production media of the
strain NW4327, reflecting the importance of the original sym-
biont microenvironments for expression of the enzyme
(Mukherjee et al. 2009). Finally, the purification and charac-
terisation of this collagenase were completed by integrating
structural prediction and functional sequence analysis, identi-
fying them within the U32 peptidase family (Bhattacharya
et al. 2018, 2019). Additionally, four collagenase-producing
bacterial isolates (Vibrio spp. and Bacillus sp.) have also been
isolated from the demosponge Cymbastela concentrica, with
one gene homologous to an annotated collagenase formerly
found on the host metagenome which may be a potential
colonisation/virulence factor (Yung et al. 2011b).

Apart from their ecological importance, microbial collage-
nases have a wide range of applications in the food and nutri-
tion industries, particularly in the extraction of bioactive
collagen-derived ingredients, in the preparation of collagen
hydrolysate and in meat and seafood processing (Pal and
Suresh 2016). Laboratory treatments for the detachment of
tissue culture cells and the medical healing of burns, ulcers
and diseases with an accumulation of fibrous plaques are
amongst the commercially available uses for these enzymes.
Marine environments are likely to be a good source of
collagenolytic proteases since this polymer does not appear
to accumulate in these habitats (Zhang et al. 2015; Bhagwat
and Dandge 2018). Indeed, collagenases of some free-living
Pseudoalteromonas strains have been successfully applied in
meat tenderisation (Zhao et al. 2012) and for the production of
antioxidant hydrolysates from seafood waste (Yang et al.
2017); it is, therefore, likely that novel biotechnologically rel-
evant collagenases can be discovered in sponge-associated
microbial strains.

Industrially relevant peptidases from sponge-associated
prokaryotes for their part have been the focus of some research
interest. Many of the proteases discovered from sponge
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microbiomes display biochemical properties matching with
the previously related industrial proteases, such as resistance
to elevated temperatures and non-aqueous organic solvent-
based media (Barzkar et al. 2018). Shanmughapriya et al.
(2008) purified a thermotolerant and alkaline protease from
a potential gelatinolytic Roseobacter strain, isolated from the
marine sponge Fasciospongia cavernosa. The enzyme
retained almost 92.5% and 89% of its activity, respectively,
under pH 9.0 and at 50 °C.

Working with halophilic microbial strains isolated from
Haliclona specimens sampled in the Indian seashore,
Gaonkar and Furtado (2018) confirmed the proteolytic activ-
ity in the crude extract of the Halococcus sp. GUGFAWS-3
strain, following cultivation in a liquid media supplemented
with 25%NaCl. This protease was subsequently characterised
as an extremozyme (Gaonkar and Furtado 2020). The 65-kDa
monomeric cysteine protease retained 85% of its activity at
5 M NaCl, had an optimum temperature of 70 °C and attained
82.4% of its activity at 80 °C. Moreover, this thermotolerant
enzyme was unaffected by organic solvents, being stimulated
in particular by acetone and sodium benzoate, and even re-
maining high levels of stability in the presence of detergents
and surfactants, making it ideally suited in the detergent in-
dustry or elevated temperature-dependent processes. In addi-
tion, inhibitory/disruptive activities on the formation and mat-
uration of Staphylococcus aureus biofilmwere also confirmed
for this haloarchaeal protease.

Marine sponge-derived bacteria have also been the source
of proteolytic enzymes with biomedical applications, with fi-
brinolytic proteases being particularly important in this re-
spect. A fibrinolytic protease was isolated from a highly
caseinolytic Streptomyces radiopugnans strain, following the
screening of proteolytic bacteria isolated from three different
demosponges. Besides the ability to degrade casein plasmin-
ogen, this moderately alkaline and thermostable protease was
shown to be able to release the red blood cells (RBCs) at a
higher efficiency (91, 100 and 100% at 10, 20 and 30 min)
than the drug streptokinase (Sigma-Aldrich) (87, 94 and 100%
at 10, 20 and 30 min) in the clot lysis assay. Thus, it is clear
that this enzyme could be useful as a thrombolytic agent for
cardiovascular disorders, such as acute myocardial infarction
and strokes (Dhamodharan et al. 2019). New bacterial fibri-
nolytic proteases have been reported for a number of bacterial
genera, particularly Bacillus (Singh and Bajaj 2017), and, in
truth, this Indian research group has been successful in finding
potential antithrombotic actinoproteases in several marine-
and sponge-derived Streptomyces strains (Jemimah Naine
et al. 2016; Mohanasrinivasan et al. 2017; Verma et al.
2018), which prompted their screening of different sponge
specimens (Dhamodharan and Chandrasekaran 2018,
Dhamodharan et al. 2019).

The action of L-asparaginases reduces one of the main nu-
trients required by cancer cells, L-asparagine, making them

important antitumor agents, specifically in the treatment of
acute lymphoblastic leukaemia (ALL). Marine microorgan-
isms have been shown to be prolific producers of these hydro-
lases, which to date have mostly been identified from the
Actinobacteria and Ascomycete phyla (Izadpanah Qeshmi
et al. 2018). One such example is an L-asparaginase which
has been characterised from Streptomyces noursei MTCC
10469, isolated from Callyspongia diffusa. The optimal activ-
ity of the enzymewas shown to be 50 °C and pH 8 (Dharmaraj
2011). Two distinct L-asparaginases were characterised from
an Aspergillus sp. strain ALAA-2000 associated with the ma-
rine soft sponge Aplysinia fulva. One of the purified L-
asparaginases, AYA-1 (25 kDa), was thermostable (67 °C)
and had an optimal alkaline pH (pH 10.0), while AYA-2 (31
kDa) was optimally active at more neutral pH values (pH 6.0)
and was less thermostable (47 °C). Neither activities were
affected by EDTA, indicating that both AYA-1 and AYA-2
were not metalloproteases (Ahmed et al. 2015). In this way, it
is clear that sponge-associated microbes are potentially good
reservoirs of chemotherapeutical enzyme-based drugs, such as
L-asparaginases.

Other hydrolases

Ethyl carbamate (urethane) is a highly toxic byproduct re-
leased from urea during the alcoholic fermentation of several
beverages and food, generally under low pH conditions
(Weber and Sharypov 2009). Acidic and alcohol-tolerant ure-
ases and urethane hydrolases (EC 3.5.1.75) are thereby valu-
able in helping to reduce or eliminate the levels of these harm-
ful carcinogens (Zhang et al. 2016). One of the first reports of
a marine-derived urethanase came from a Spirastrella spp.-
derivedMicrococcus sp. strain (Mohapatra and Bapuji 1997).
The enzyme was partially purified and shown to be optimally
active at pH 5.0 and 45 °C, as well as being unaffected by the
presence of 10% ethanol, and retained around 82% of its ac-
tivity at levels of 20% alcohol.

Unfortunately, no urease has to date been purified and bio-
chemically characterised from a sponge-associated microbial
strain or from a sponge metagenome. Beyond the sole confir-
mation of producers by solid media screening (Feby and Nair
2010; Gaonkar and Furtado 2018), Su et al. (2013) assayed
urea utilisation by the sponge Xestospongia testudinaria and
performed a functional microbial diversity analysis, by con-
structing genomic and cDNA libraries of the ureC gene,
which encodes the alpha and largest urease subunit. The
sponge slurry was positive for urea elimination, which coin-
cided with an ureolytic Marinobacter litoralis strain being
isolated from the same host species. The common ureC-pos-
itive operational taxonomic units (OTUs) to both libraries
matched with the sequences of the same gene in
Proteobacteria, also found as predominant in the microbial
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community, affirming the active transcription of the urease
genes. It is believed that urea degradation is a widespread trait
in sponge-associated microorganisms (Moitinho-Silva et al.
2017a), and urease expression has been employed as a marker
to track the effects of ocean acidification in sponge-associated
microbial communities (Botté et al. 2019). However, a pleth-
ora of biotechnological applications known for this enzyme
has not yet been fully recognised in this holobiont, such as
biocementation (Sarayu et al. 2014), diagnostic determination
of urea levels in organic fluids (Qin and Cabral 2002), remov-
al of heavy metal (Li et al. 2013) and insecticides (Kappaun
et al. 2018).

Non-hydrolase universe

Lignin is a polyaromatic component of plant cell walls and its
degradation is achieved through the concerted action of three
sets of ligninolytic enzymes, namely lignin peroxidases (LiP,
EC 1.11.1.14), manganese peroxidases (MnP, EC 1.11.1.13)
and multicopper oxidases, in particular laccases (EC 1.10.3.2)
(Janusz et al. 2020). These enzymes are mostly employed in
biorefinery, food and textile and in paper industry applica-
tions; notwithstanding, their other biotechnological uses in-
clude enzyme-based diagnostics, nanotherapeutic biofuel cells
and the generation of personal-care cosmetics and in the prep-
aration of paint resins and furniture drying (Mate and Alcalde
2016).

A diversity of crude ligninolytic activities have been re-
ported from a number of basidiomycetes strains isolated from
the sponges Amphimedon viridis and Dragmacidon reticulata
(Bonugli-Santos et al. 2010). Further screening involving
Remazol Brilliant Blue R (RBBR), a dye commonly
discharged by the textile industry, confirmed both MnP and
LiP activities by these demosponge-derived fungi (Bonugli-
Santos et al. 2012). One of these, the strain Tinctoporellus sp.
CBMAI 1061, had the RBBR degradation products isolated
and characterised by spectroscopic analysis, confirming the
potential of the fungal ligninolytic arsenal in the
metabolisation of this synthetic dye (Rodriguez et al. 2015).

Subsequent RT-PCR of laccase gene expression in the fun-
gi isolated fromD. reticulata resulted in the identification of a
basidiomycete strain, namely Peniophora sp. CBMAI 1063,
which displayed good levels of laccase expression (Passarini
et al. 2015). Increased MnP and laccase expression in this
strain were accompanied by decolorisation of the azo dye
Reactive Blue 5 (RB5) (Bonugli-Santos et al. 2016). Marine
sponge-derived fungal strains have also been reported to be
able to remove polycyclic aromatic hydrocarbon (PAH) under
saline and alkaline conditions. For example, the strains
Tolypocladium sp. strain CBMAI 1346 and Xylaria sp.
CBMAI 1464 were shown to remove pyrene and benzo-a-
pyrene, with the former degrading 95% of the pyrene present

following 7 days of incubation, highlighting the potential of
marine sponge-associated fungi to degrade environmental
pollutants in saline environments (Vasconcelos et al. 2019).
Following further transcriptome (Otero et al. 2017), fermen-
tative scaleup (Mainardi et al. 2018), genome and secretome
studies (Brenelli et al. 2019) on the aforementioned
Peniophora sp. CBMAI 1063 strain, a laccase was purified
and biochemically characterised from this marine basidiomy-
cete which displayed a very good ability to degrade sugarcane
lignin. Hence, these outcomes indicate the utility of this
laccase as an efficient biocatalyst for the bioconversion of
industrial waste streams containing lignin and, especially,
those generated by the feedstock-processing biorefineries
(Brenelli et al. 2019).

Due to the presence of a halogen group, naturally occurring
organohalogens exhibit a diversity of pharmaceutical-related
bioactivities, including important antimicrobial, anticancer,
immunomodulating, hormonal and halogen-harbouring
agents currently on the market (Gribble 2004; Wagner et al.
2009). Generally classified in agreement with their required
coenzymes or chemical cofactors, halogenases are responsible
for the incorporation of these halides into organic molecules,
often as tailoring reactions in the final steps of biosynthetic
pathways. Nowadays, these biocatalysts are being targeted
due to their potential use as environmentally friendly alterna-
tives for selective chemical synthesis (Schnepel and Sewald
2017; Gkotsi et al. 2018). Marine sponges with other sessile
organisms, such as corals, seaweeds and hemichordates, have
been majorly prospected as sources of these biologically ac-
tive halogenated molecules (Gribble 2015), where they are
believed to play a defensive role (Atashgahi et al. 2018).
Several different classes of organohalogens, many of which
are brominated, have thus far been characterised in sponges
and their associated microbiota (Li and Shi 2020).

While there have been reports on the detection of
halogenases from sponge microbial symbionts, coupled with
the characterisation of the microbial diversity associated with
the host (Öztürk et al. 2013; Rua et al. 2018; Gutleben et al.
2019), there are limited reports on the isolation and biochem-
ical characterisation of halogenases in these holobionts. One
such report (Smith et al. 2017) involves a gene cluster
encoding a putative flavin-dependent halogenase from the
metagenome of a specific chemotype of the marine sponge
Theonella swinhoei, the alleged source of cytotoxic
keramamides (Wakimoto et al. 2015). Whereas the authors
speculate that a specific microbial symbiont is the likely
source of the gene cluster encoding this singular halogenase,
no microbial analysis was performed on T. swinhoei, preclud-
ing the assignment of the enzyme to a microbial source (Smith
et al. 2017).

Using functional metagenomics and single-cell genomics,
Bayer et al. (2013) discovered several FADH2-dependent
halogenases from the microbial consortia of several
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Mediterranean and Caribbean sponges. The spongemicrobial-
derived halogenase sequences segregated into four unique
clusters, that were phylogenetically unrelated to previously
known halogenases. Additionally, they were assigned to bac-
terial symbionts from various bacterial phyla and were sug-
gested to have different functions than the expected halogena-
tion of defensive secondary metabolites. Tryptophan
halogenase sequences were identified in the metagenome of
Crambe crambe specimens and in one cultivable
Psychrobacter isolate, despite this genus not being abundant
amongst the bacterial communities within the sponge
microbiome. The identities of the predicted halogenases also
varied considerably with those deposited in the databases,
indicating some degree of novelty in these biocatalysts and
that they might be engaged in the biogenesis of yet
uncharacterised active halogenated compounds (Öztürk et al.
2013).

Employing metagenomics sequencing, Rua et al. (2018)
have determined the distribution pattern of halogenases and
the associated microbiomes in the Brazilian demosponges
Agelas spp. and Tedania spp., from which several bioactive
bromopyrrole alkaloids had previously been identified. They
observed a higher abundance of flavin-dependent
halogenases, mostly from rare members of the sponge micro-
bial communities. Phage genes were found to be enriched in
one species, namely Tedania brasiliensis, supporting the au-
thor’s hypothesis that the presence of these halogenated com-
pounds in this sponge could bemediated by viral transduction.

Subsequently, four distinct clades of tryptophan
halogenases were detected by pyrosequencing in six
Mediterranean and Caribbean Aplysinia specimens, most of
which were distantly related to hitherto described microbial
halogenases (Guttleben et al. 2019). Further correlation with
16S rRNA gene-based diversity data demonstrated some spe-
cific sponge microbial-specific taxons, such as Chloroflexi, as
the main sources of these putative halogenases. Interestingly,
the dominant tryptophan halogenase sequences in the
Mediterranean A. aerophoba were closely related to the
above-mentioned C. crambe-derived Psychrobacter
halogenase (Öztürk et al. 2013).

While halogenases are generally regarded as having key
physiological roles in the biosynthesis of natural products,
dehalogenases for their part are often associated with respira-
tory processes and have in particular been shown to be in-
volved in the degradation of anthropogenic-derived toxic
compounds (Agarwal et al. 2017). Considering the pressure
imposed by the high contents of natural and man-made halo-
genated compounds in marine ecosystems and their accumu-
lation in sponges due to their filter-feeding activity, it would
seem likely that certain members of the sponge microbiota
would be capable of metabolising these organohalides.

After a long-term enrichment culture regime from the
brominate-containing A. aerophoba sponge, Ahn et al.

(2003) isolated an anaerobic deltaproteobacterium that could
degrade several halophenols. This isolate was subsequently
described as a new species, namely Desulfoluna spongiiphila
AA1T, which was exclusively found in sponges and was
characterised as a sulfidogenic non-obligate organohalide-re-
spiring bacterium, capable of using various brominated com-
pounds, but not other halogens as electron acceptors (Ahn
et al. 2009). Subsequent ‘-omics’-based approaches (Liu
et al. 2017, 2020; Peng et al. 2020) uncovered the genetic
organisation and metabolic requirements for the synthesis
and action of this diverse array of reductive dehalogenases
(RDases). Regrettably, none of these D. spongiiphila-derived
RDases have as of yet been biochemically characterised or
studied for their potential use in bioremediation strategies.

Irrespective of this, there are reports on the purification and
biochemical characterisation of dehalogenases from other
sponge bacterial cultivable isolates. With an adapted
enrichment medium, Huang et al. (2011a) initially isolated
potential bacterial dehalogenase producers from the sponge
Hymeniacidon perlevis, sampled in a highly polluted area
containing chlorinated industrial waste. Firstly, a
Paracoccus sp. DEH99 strain showed a 2-haloacid
dehalogenase activity, which was characterised from the crude
cell extracts (Huang et al. 2011b). The enzyme showed a
broad substrate specificity, including iodoacetic acid and 2-
chloropropionic acid (CPA), which was selectively active on
the S enantiomer of 2-CPA. A putative group 2 dehalogenase
gene was subsequently PCR-amplified from the Paracoccus
sp. DEH99 genome. In addition, another H. perlevis-associat-
ed strain, Pseudomonas stutzeri DEH130, was reported to
contain two dehalogenases in its cellular supernatant, both
with different stereospecificities and with traits that were
completely unrelated to bacterial dehalogenases which had
been described up until then. One of these, dehalogenase II,
was subsequently purified and was shown to be a dimer, with
an optimum pH 10 and temperature at 40 °C and with a high
substrate specificity for L-2-CPA (Zhang et al. 2013).

There have only been a few reports of the characterisation
of sponge microbial transferases. While focused on elucidat-
ing the symbiont physiology, Schleper et al. (1997)
characterised a non-thermostable single strand-specific DNA
polymerase from a fosmid library of the psychrophilic strain
Cenarchaeum symbiosum, an archaeon that was firstly discov-
ered in the Californian Axinella mexicana sponge (Preston
et al. 1996), which later helped with the establishment of the
phylum Thaumarchaeota (Brochier-Armanet et al. 2008).
Recently, Gavin et al. (2019) have identified a potential trans-
aminase in the genome of a sponge-associated Pseudovibrio
sp. aiming at overcoming the challenging stereospecific reso-
lution of active pharmaceutical ingredients (API) and other
drugs. The purified alkaline ω-transaminase displayed strict
enantioselectivity for the remote stereocentre of various
aminated substrates, including intermediates in the synthesis
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of sertraline, one of the most commonly prescribed antidepres-
sant agents. Thereby, this transferase appears to be a good
candidate for a ‘first in class’ biocatalyst to be ameliorated
in future rational design and directed evolution.

Where should we strive to succeed?

Building on the successes to date in prospecting the marine
sponge microbiome as an important source of biocatalysts, it
is important to focus on the approaches that may lead to break-
throughs in this field. We have addressed this from two dif-
ferent perspectives (Fig. 3). Firstly, from the perspective of the
biocatalyst (Fig. 3a), several strategies will be proposed to
enhance the efforts in the discovery, optimisation and practical
use of these biocatalysts. A plurality of these approaches are
cornerstones of contemporary applied enzymology and have
already been employed and in some instances already de-
scribed in this review (e.g. the use of crop residues for
optimising enzyme production in fermentation experiments).
The second perspective will focus on surveying the biology of
the sponge–microbe partnership to help in the unravelling of a
wealthy enzymatic toolbox. In that sense, we will pinpoint the
use of classical microbial bioprospecting techniques, the ex-
ploitation of the rapidly growing data generated by themodern

-omics approaches and the search in as yet poorly assessed
environments.

As previously discussed regarding the use of marine poly-
saccharides and acidic complex sugars in uncovering new
CAZymes, the incorporation of non-conventional substrates
may prove to be a valuable resource in the identification of
other enzyme groups and classes from the spongemicrobiome
(Fig. 3a). For example, the use of protein components of the
sponge mesohyl, as verified for the P. agarivorans-collage-
nase active on spongin (Mukherjee et al. 2009) and type IV
collagen (Bhattacharya et al. 2018), could be important in
testing the specificity of peptidases, with potential utility in
the healthcare or cosmetic sectors. Amorphous mineral ele-
ments present in the mesohyl matrix and external sponge body
layers could also be employed to identify other biocatalysts,
such as calcium-precipitating enzymes, that have been report-
ed in sponge bacterial symbionts (Uriz et al. 2012; Garate
et al. 2017), and silicases, naturally produced by sponge
specialised cells to control the skeletal formation (Schröder
et al. 2003; Wang et al. 2012). Silica-degrading proteins are
interesting for nanobiotechnological applications, with poten-
tial uses mainly in the preparation and encapsulation for the
modification of medical biomaterials (Schröder et al. 2007)
and even the removal of electronic waste (Spangle 2018).
Amongst the silicase patents, one (US 8,822,188 B2) was

Fig. 3 Future strategies for the sponge microbial enzymology: a the biocatalyst and b microbial perspectives
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derived from Bacillus plakortidis (Toender and Borchert
2009), an alkaline-tolerant strain first described from the ma-
rine sponge Plakortis simplex (Borchert et al. 2007) and later
reclassified by genome-based taxonomy to Bacillus
oshimensis (Liu et al. 2019). This silicase displayed carbonic
anhydrase-like activity on silica-based materials, such as
aerosil (fumed silica) and Sipernat® 22S (hydrated silica),
sand and glass wool. This is an excellent example of how
potential products from sponge-derived microorganisms, not
confined to antimicrobial secondary metabolites, can tran-
scend the academic sphere and lead to the generation of intel-
lectual property.

Despite the examples outlined here, where enzyme produc-
tion has been optimised by simpler one-parameter-at-time or
using various complex statistical design strategies, there are
no reports in the literature about the utilisation of immobilisa-
tion for any of these sponge-derived microbial biocatalysts.
Enzyme immobilisation offers several benefits, notably reuse
of the biocatalyst and enhancement of stability and efficiency
in the presence of organic solvents and under extremes of pH
and temperature, together with minimisation of enzyme con-
tamination on its products and low or no allergenicity
(Sheldon and van Pelt 2013). Utilisation of different types of
enzyme immobilisation for marine microbial enzymes has in-
creased in recent years, including α-amylases (Chakraborty
et al. 2014), alginate-lyases (Li et al. 2019), β-agarases
(Xiao et al. 2018), chitinases (Beygmoradi et al. 2019), lipases
(Hassan et al. 2018) and esterases (Rahman et al. 2016), to
name a few examples.

In this regard, immobilisation has been acknowledged to
yield superior catalytic features and recycling of lipases, espe-
cially in solvent mixtures (Thangaraj and Solomon 2019).
Given the tolerance or complete resistance of the majority of
the hitherto described sponge microbial-derived lipases and
esterases to various organic solvents and harsh chemical
agents, the adoption of an immobilised biocatalytic system is
likely to prove extremely worthwhile (Fig. 3a). Recently,
agro-industrial residues have been suggested as useful support
carriers for virtually all enzyme immobilisation methods.
After their use as carriers, they can be redirected as substrates,
rendering cheaper, more sustainable and efficient biocatalytic
processes (Girelli et al. 2019). In this respect, plant waste
material could be applied as immobilisation supports for the
lignocellulosic-degrading GHs and copper oxidases produced
by sponge-associated microorganisms.

Information on the structure of a protein is paramount in
defining the potential heterologous host and conditions for
expression of a recombinant enzyme; nonetheless, this knowl-
edge can be also taken to delineate adequate enzyme engineer-
ing strategies (Ali et al. 2020). In this respect, the
P. agarivorans NW4327 U32 collagenase is a good example
of such a strategy. Initial characterisation of the enzyme struc-
ture and function was determined by a series of

complementary computational tools, inferring some of the
main traits of this peptidase, which were later confirmed fol-
lowing biochemical characterisation of the purified enzyme
(Bhattacharya et al. 2018, 2019). Modelling the protein based
on its primary structure can provide clues regarding the poten-
tial catalytic mechanism involved which can then be further
altered to enhance or specifically engineer the enzyme’s per-
formance (Fig. 3a). The Pseudovibrio sp. WM33-ω-
transaminase (Gavin et al. 2019) is another example for such
approach. The selective activity of this enzyme with respect to
the remote stereocentres, which is novel when compared to
other transaminases, could potentially be adapted by directed
evolution approaches, focusing on the already identified key
catalytic residues. This could permit an increase in the range
of possible substrates for the enzyme and other pharmaceuti-
cally active aminated products. The aforementioned PETase-
like SM14est enzyme (Almeida et al. 2019) could also be a
good target for protein engineering in order to allow the rec-
ognition of other polyesters, including PET, thereby enhanc-
ing its degradation ability, in a similar fashion to approaches
that have been successfully employed with the IsPETase
(Austin et al. 2018).

The study of the cultivable fraction of microbes associated
with sponges has to date largely hinged upon the use of
broad, rich-based media or a myriad of different culture me-
dia, with their compositions varying in line with the physio-
logical and metabolic requirements of the target group of
microorganisms in a culturomics-like approach (Laport
2018). Selective isolation of environmental microbes who
are producers of enzymes is one of the most traditional
methods employed in the discovery of industrially relevant
biocatalysts (Steele and Stowers 1991). This saves a consid-
erable amount of time when examining large numbers of
strains in primary and secondary screening rounds (Schafer
and Borchet 2004). Selective media have been purposely
used for the isolation of specific enzyme microbial producers
from sponge specimens. However, their use is still incipient
and the growing adoption of selective isolation media may
prove to be useful, particularly for enzymatic activities
adapted to extreme conditions (Fig. 3b).

In this context, a particular good example was the addition
of 25% crude salt/NaCl in the basal medium to isolate bacte-
rial and archaeal bionts from sponges collected along the
Indian seashore (Malik and Furtado 2019a; Gaonkar and
Furtado 2018). These strains, and notably the archaea, were
subsequently shown to possess extremely halophilic cellulase
(Malik and Furtado 2019a), xylanase (Malik and Furtado
2019b), lipase (Gaonkar and Furtado 2018) and protease ac-
tivities (Gaonkar and Furtado 2018, 2020). Coupling a quali-
tative pH indicator method and applying the chlorinated sub-
strate, 2-CPA, as the sole carbon source in enrichment cultures
resulted in the successful isolation of specific dehalogenase-
producing bacterial strains (Huang et al. 2011a), from which
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enzymes were subsequently purified (Huang et al. 2011b;
Zhang et al. 2013). In addition, a quantitative high-
performance liquid chromatography (HPLC) method was
adopted to follow the 2-CPA degradation. In fact, detecting
chlorine (Cl−) in seawater is a challenge during the isolation of
dehalogenating microorganisms from marine sources; by
quantifying the degradation of the substrate, the group addi-
tionally circumvented this obstacle (Huang et al. 2011a). The
sole use of starch casein agar (SCA), a classic actinobacterial
isolation medium, by Dhamodharan et al. (2019) to retrieve
the fibrinolytic Streptomyces sp. reflects another good exam-
ple of selective isolation in aiming at a specific microbial
taxon, considering the former knowledge of the huge potential
of these thrombolytic actinoproteases (Dhamodharan et al.
2015).

By shifting away from the culturing and screening of pure
isolates, an appealing alternative would be the use of micro-
bial consortia, which is the natural state of these microbial
communities in their sponge hosts. Strategies involving con-
sortia containing different microbial strains have successfully
been employed for the production of antimicrobial molecules;
metabolism of biopolymers; production of biodiesel, organic
acids, pigments and enzymes; and also importantly, environ-
mental elimination of dyes, oil spills and other organic pollut-
ants (Bhatia et al. 2018). Co-culture between sponge-
associated bacteria originated from the same sponge (Dashti
et al. 2014; Matobole et al. 2017; El-Hawary et al. 2018) or
with other strains (Abdel-Wahab et al. 2019; Frank et al. 2019;
Yu et al. 2019) has proven fruitful in inducing the expression
of the so-called silent or cryptic gene clusters encoding phar-
macologically active secondary metabolites. The association
of microbial isolates—derived from the same, various sponge
specimens, or other unrelated strains—for the degradation of
complex polymeric substrates or the multi-step co-utilisation
of two chemically different substrates would be relevant to
assess their biocatalytic potentialities for some applications
to which these microbial consortia are particularly suitable
(Fig. 3b), such as for biorefinery and industrial effluent
treatment.

While the classic concept of ‘genome mining’ had proven
useful in the natural products discovery field (Ziemert et al.
2016), the exploitation of the huge and exponentially increas-
ing amount of genomic data has also been successfully direct-
ed to reveal new industrial enzymes with singular properties.
This ‘mining’ approach is a particularly powerful when ratio-
nally used, and when employing the broad arsenal of bioin-
formatics resources which are currently available to interro-
gate the genome sequences deposited in several databases
(Zaparucha et al. 2018). This in silico initially guided strategy
has been effectively applied in some cases which have previ-
ously been highl ighted in this review, with the
Pseudovibrio-ω-transaminase being a fine example (Gavin
et al. 2019). Their strategy was different than the one adopted

to recover the cold-adapted glucosidase from a
Pseudoalteromonas sp. EB27 (Borchert et al. 2017a), where
the authors followed the classic route from the isolation of the
sponge-associated microorganisms to the purification of the
biocatalyst following the genome screening of a number of
strains. Gavin et al. (2019) focused on the genome sequence of
culturable deep-sea sponge bacteria in the databases,
searching specifically for aminotransferase genes, which re-
sulted in the identification and subsequent characterisation of
a promising enzyme with an extraordinary substrate specific-
ity. Hence, if resources are employed in examining the hun-
dreds of available sponge-associated microbial genomic se-
quences for functional enzymes, it is likely that we uncover
more ‘first in class’ biocatalysts in a faster and more cost-
effective fashion (Fig. 3b).

The potential of some already well-characterised metabolic
aspects of sponge-associated microorganisms has recently
been reported in numerous (meta)-omics–based approaches
(Moitinho-Silva et al. 2017a; Chaib De Mares et al. 2018).
While being crucial in furthering our comprehension of the
nature of the host–microbe interactions, some of these features
could also be employed and exploited from a biotechnological
standpoint (Fig. 3b). As an example, more insights into the
nitrification mediated by sponge-associated Thaumarchaeota
have been recently gained (Feng et al. 2016; Moeller et al.
2019). Given that nitrilases are one of the most abundant pu-
tatively predicted cluster of orthologous genes (COGs) in a
survey of enzymes with biotechnological potential from envi-
ronmental microbiome samples (Parages et al. 2016), coupled
with the fact that nitrile-converting catalysts lie at the core of
many green chemistry processes (Nigam et al. 2017), attempts
to isolate and characterise industrial interesting nitrifying en-
zymes from these sponge microbial symbionts could prove
worthy, particularly from a functional metagenomics-based
perspective. The contributing role of the RDases from
D. spongiiphila AA1T in the organohalide cycle involved in
the sponge host/environment interface has also been well sub-
stantiated by recent genomic and transcriptomic surveys (Liu
et al. 2017, 2020). Notwithstanding, their characterisation for
any biotechnological prospect still remains an open question.
Key enzymes in other biogeochemical cycles driven by these
host-associated microbial communities could also be targeted
accordingly.

Biotechnological innovation is accelerated primarily
through novelty in microbial diversity, commonly brought to
light by ‘tapping into’ and exploiting unusual environments,
in other words, environments that are poorly explored, taxo-
nomically distant from the human-associated microbiome and
which are exposed to extremophilic conditions (Tanner et al.
2017). In this respect, freshwater sponges have recently been
shown to harbour richer bacterial communities when com-
pared to their marine counterparts (Laport et al. 2019).
However, there are only a few reports on the microbiota of
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these sponges as potential enzymatic reservoirs. Two of these
studies have focused on the detection of chitinase genes (chiA)
in distinctive gammaproteobacterial symbionts from the fresh-
water sponge Ephydatia fluvialis (Cretoiu et al. 2012) and the
amylolytic fungal strains isolated from mangrove sponges
(Sibero et al. 2019). Thus, the microbiome of sponges
inhabiting inland waters may provide a profitable source of
novel enzymes in the future.

Marine phages, the largest biological entity in the oceans
and the Earth (Breitbart et al. 2018), have been credited as
valuable repositories of putative endolysins with broad activ-
ity against both Gram-positive and Gram-negative strains
(Fernández-Ruiz et al. 2018) and polysaccharidases active
on exopolyssacaride (EPS) (Lelchat et al. 2019). Lately,
sponge viromes have proven to constitute a completely new
universe thriving in this holobiont, with each sponge having a
unique, host-specific and functionable pleomorphic viral fin-
gerprint (Jahn et al. 2019). The yet largely underexplored
virosphere coupled with the fact that a phage likely mediated
the incorporation of a halogenase gene between two phyloge-
netically distant sponges (Rua et al. 2018) expose the hidden
biocatalytic potential of these sponge-associated viral commu-
nities with respect to another potential source of novel
enzymes.

Conclusions

The implementation of biotechnology in industrial sectors is
estimated to rise by 40% in 2030. This will lead to an inherent
increase in the annual demand for new enzymes, which has
been calculated to grow at an annual rate of approximately
10% by 2030 (Martínez-Martínez et al. 2017a), with the in-
dustrial enzyme market expected to reach global $7.0 billion
by 2023 (BCC Research 2018). Marine environments are an
excit ing emerging alternative source for enzyme
biodiscovery, particularly due to their ecosystem-driven prop-
erties, which make them useful for application in multiple
industrial settings (Trincone 2017). The marine microbial
realm represents the most propitious enzymatic source
(Ferrer et al. 2019), and amongst the infinity of habitats found
therein, the sponge microbiome remains as yet a largely un-
derexploited source of novel biocatalysts.

From the current scientific literature, it is difficult to pre-
cisely quantify the significance of the sponge microbiome as a
reservoir of enzymes when compared to other marine-
associated sources, which are receiving increasing interest in
the last few years. This is reflected in major strategic and
collaborative initiatives for the specific discovery of novel
biocatalytic entities in oceanic habitats, such as the recently

Table 1 Examples of biochemically characterised enzymes from the sponge microbiome with industrial-related features comparable to commercially
available enzymes

Enzyme (microbial
producer)

Topt
(°C)

T
range
(°C)

pHopt pH
range

Salt tolerance/
dependence

Comparable
commercial
enzyme

Potential applications of
sponge microbial enzyme

References

Chitinase (Streptomyces
sp. DA11)

50 30–60 8.0 6.0–9.0 45 g‰ psu Chitinase from
Streptomyces
griseus

Phytopathogen control Han et al.
(2008, 2009)

Laccase Pnh_Lac1
(Peniophora sp.
CBMAI 1063)

30 30–60 5.0 4.0–6.0 Dependence on
ASW for
production

MetZyme®
LignO™

Treatment of lignocellulosic
waste; biorefinery

Mainardi et al.
(2018), Brenelli
et al. (2019)

Lipase (Pseudomonas
sp. MSI057)

37 20–50 9.0 5.0–12.0 Highest enzyme
production at
1.5 M NaCl

CalB lipase Food, detergent,
pharmaceutical, chemical
synthesis industries

Kiran et al. (2008)

Lipase Lpc53E1 (not
identified—Bacteria)

40 4–60 7.0 3.0–8.0 Increased with 5 M
NaCl

CalB lipase Production of marine goods Selvin et al. (2012)

Lipase LipA (not
identified—Bacteria)

40 30–55 9.0 7.0–12.0 NA CalB lipase Detergent industry and
enzyme-mediated organic
synthesis

Su et al. (2015)

Protease (Halococcus
sp. GUGFAWS-3)

70 20–80 7.0 3.0–13.0 Optimum activity
at 3 M NaCl

Alcalase Detergent/pharmaceutical
industries

Gaonkar and
Furtado (2020)

Protease (Roseobacter
sp. MMD040)

50 27–50 8.0 6.0–9.0 Highest enzyme
production at
3 M NaCl

Alcalase Aquaculture Shanmughapriya
et al. (2009)

L-Asparaginase AYA-1
(Aspergillus sp.
ALAA 2000)

47 20–70 6.0 3.0–12.0 NA PEG-asparaginase Pharmaceutical industry Ahmed et al. (2015)

L-Asparaginase AYA-2
(Aspergillus sp.
ALAA 2000)

67 20–70 10.0 3.0–12.0 NA PEG-asparaginase Pharmaceutical industry Ahmed et al. (2015)

ASW, artificial seawater; NA, not available. pHopt, optimum pH; psu, practical salinity unit; T range, temperature range; Topt, optimum temperature
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concluded INMARE (Industrial Applications of Marine
Enzymes) project (Ferrer et al. 2019) and the recently
launched MARIKAT (https://bluebioeconomy.eu/marikat-
new-catalytic-enzymes-and-enzymatic-processes-from-the-
marine-microbiome-for-refining-marine-seaweed-biomass/),
both funded by the European Union’s Horizon 2020 Research
and Innovation Programme. The inclusion of sponge
specimens amongst the samples for bioprospecting in
projects such as those just mentioned will expand the
number of new catalytic hits originating from their microbial
symbionts and raise interest both from the academy and
industry.

In this context, sponge microbial enzymes have surely not
beenwell surveyed.Most research efforts to date have focused
on the heterotrophic role of the sponge-associated microbial
communities in consuming organic matter and their released
enzymes involved in aiding the energetics of the sponge host
(Wang 2006; Santos-Gandelman et al. 2014). What has been
largely overlooked is the multitude of microbial metabolic
lifestyles flourishing in this holobiont and, consequently, the
biocatalytic reservoir available therein for a wide range of
biotechnological purposes. From this premise, we have
endeavoured to highlight the biocatalytic reservoir of the
sponge microbiome, by drawing attention to the most relevant
industrial traits of these enzymes, which have to date being
isolated and characterised, together with describing potential
important and suitable approaches, that could further help in
accelerating applied research in this arena.

Some of the enzymes reported here have biochemical fea-
tures comparable to those found in currently available com-
mercial enzymes (Table 1). For instance, lipases discovered
either from a cultivable sponge-associated strain (Kiran et al.
2008) or by functional metagenome screening of sponge mi-
crobiota (Selvin et al. 2012; Su et al. 2015) have close optima
pH and temperature to the commonly industrially employed
CalB lipase, which has similar activity in the alkaline pH
range. The biochemical profile of two thermotolerant and al-
kaline proteases from bacteria isolated from sponge specimens
are also equivalent from an activity perspective to Alcalase,
the sole accessible thermophilic peptidase currently on the
market (Barzkar et al. 2018). The Peniophora laccase meets
all the needs for a lignocellulose-degrading catalyst, similar to
those found in the recently launched MetZyme® LignO™
(MetGen), a genetically engineered thermotolerant alkaline
bacterial laccase particularly designed to efficiently optimise
pulp/paper processing and lignin valorisation (Hämäläinen
et al. 2018). Additional kinetics assays with the same sub-
strates tested for these benchmark enzymes, in particular for
the ones with broad substrate specificity (lipases, esterases and
proteases), and safety/cytotoxicity tests, specifically for those
applicable in pharmaceutical and food industries (e.g.
asparaginase), would be indispensable to truly access this
equivalence or even potential superiority with respect to the

performance of the sponge microbial enzymes in comparison
to their equivalent industrial counterparts.

Undoubtedly, halotolerance is the most common habitat-
related trait in the majority of these biochemically
characterised enzymes derived from sponge microbial symbi-
onts. In many cases, salt is also required by the producing
strain for enzyme production. Enzymes with salt tolerance
are also known to possess other interesting properties such
as increased thermo-, pH or solvent stability, which signifi-
cantly broadens the biotechnological potential of these en-
zyme beyond their use at high salt concentrations (Oren
2010). Thus, further exploitation of the representative micro-
bial enzymes mentioned throughout this review is warranted
given that their salt tolerance may also result in them having
some of the aforementioned properties that may make them
useful in other industrial applications.

In summary, the poriferan microbiome is a burgeoning
source of industrial biocatalysts. Future research involving
screening, isolation, purification and complete characterisa-
tion of novel enzymes from this microbiome is therefore clear-
ly warranted. Research in this area is likely to increase our
repertoire of sponge microbial-derived biocatalysts, with
many of these new enzymatic entities likely to have a multi-
plicity of potential biotechnological applications.
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