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Abstract
Kluyveromyces marxianusCCT 7735 shows potential for producing ethanol from lactose; however, its low ethanol tolerance is a
drawback for its industrial application. The first aim of this study was to obtain four ethanol-tolerant K. marxianus CCT 7735
strains (ETS1, ETS2, ETS3, and ETS4) by adaptive laboratory evolution. The second aim was to select among them the strain
that stood out and to evaluate metabolic changes associated with the improved ethanol tolerance in this strain. The ETS4 was
selected for displaying a specific growth rate higher than the parental strain under ethanol stress (122%) and specific ethanol
production rate (0.26 g/g/h) higher than those presented by the ETS1 (0.22 g/g/h), ETS2 (0.17 g/g/h), and ETS3 (0.17 g/g/h)
under non-stress condition. Further analyses were performed with the ETS4 in comparison with its parental strain in order to
characterize metabolic changes. Accumulation of valine and metabolites of the citric acid cycle (isocitric acid, citric acid, and cis-
aconitic acid) was observed only in the ETS4 subjected to ethanol stress. Their accumulation in this strain may have been
important to increase ethanol tolerance. Furthermore, the contents of fatty acid methyl esters and ergosterol were higher in the
ETS4 than in the parental strain. These differences likely contributed to enhance ethanol tolerance in the ETS4.

Key points
• K. marxianus ethanol-tolerant strains were selected by adaptive laboratory evolution.
• Valine and metabolites of the TCA cycle were accumulated in the ETS4.
• High contents of fatty acids and ergosterol contributed to enhance ethanol tolerance.
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Introduction

Energy crisis and environmental issues have raised the demand for
alternative renewable energies such as ethanol, the most commer-
cialized biofuel in the world (Taylor 2008; Mussatto et al. 2010;
Valdivia et al. 2016). Currently, ethanol is commonly produced
from sugarcane and corn, thus creating a competition between the
production of biofuels and food. Ethanol production from other
feedstocks such as whey and its derivatives have been considered
an alternative to increase its production and reducing the environ-
mental impact of their disposal (González-Siso 1996; Prazeres et al.
2012; Parashar et al. 2016). Kluyveromyces marxianus strains iso-
lated from dairy environments can convert lactose to ethanol.
Kluyveromyces marxianus CCT 7735 has stood out as a good
ethanol producer from whey permeate (Diniz et al. 2013; Silveira
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et al. 2005) and a mixture of sugarcane bagasse hydrolysate and
ricotta whey (Ferreira et al. 2015). In this strain, the increase of the
expression of the lactose permease genes under hypoxia leads to a
higher specific lactose consumption rate and specific ethanol pro-
duction rate (de Paiva et al. 2019). Nevertheless, in contrast to
Saccharomyces cerevisiae, a yeast widely used for ethanol produc-
tion, K. marxianus is less tolerant to the ethanol, which is a draw-
back for its use. The K. marxianus CCT 7735 growth is severely
impaired in ethanol concentrations above 4% (v/v) (Costa et al.
2014; Silveira et al. 2005).

Ethanol alters cell membrane structures by affecting the
lipid-water interface, increasing lipid interdigitations, and re-
ducingmembrane thickness (Dong et al. 2015; Henderson and
Block 2014; Ma and Liu 2010). Protein structure/function are
also targets of ethanol (Ma and Liu 2010; Stanley et al. 2010).
Most studies that assess cellular responses to ethanol in yeasts
have focused on S. cerevisiae (Ma and Liu 2010; Stanley et al.
2010; Snoek et al. 2016).

Changes in ergosterol content, the major sterol in yeast
membranes, as well as in fatty acids content and composition
are important to counteract the damages provoked by ethanol
in S. cerevisiae (Stanley et al. 2010; Vanegas et al. 2012;
Caspeta and Nielsen 2015). Diniz et al. (2017) observed that
both ergosterol and unsaturated fatty acids contents did not
change upon ethanol exposure in K. marxianus. Since in
S. cerevisiae, the ergosterol and unsaturated fatty acids levels
increase in response to ethanol, the authors claimed that these
differences might be related to the low ethanol tolerance of
K. marxianus.

Moreover, the accumulation of metabolites as proline, leu-
cine, alanine, glutamate, valine, and the tricarboxylic acid
(TCA) cycle-related metabolites confers cellular protection
against ethanol stress (Zhao and Bai 2009; Ma and Liu
2010; Stanley et al. 2010; Lourenço et al. 2013; Ohta et al.
2015; Kim et al. 2016).

Over the last years, adaptive laboratory evolution (ALE)
has been widely used to obtain yeast strains tolerant to stress
conditions (Barrick et al. 2009; Dragosits and Mattanovich
2013; Caspeta et al. 2014; LaCroix et al. 2017). Herein, we
selected ethanol-tolerant strains of K. marxianus (ETS) by
ALE. The genome analysis, as well as metabolic and fatty
acids profiles of unstressed and ethanol-stressed cells provid-
ed insights into the mechanisms involved in the acquisition of
ethanol tolerance in K. marxianus.

Materials and methods

Yeast strain, maintenance, and culture media

Kluyveromyces marxianus CCT 7735 used in this work, pre-
viously designated as UFV-3, belongs to the culture collection
of Microbial Physiology of the Department of Microbiology

at the Federal University of Viçosa (UFV). It is stored in the
Tropical Cultures Collection André Tosello Foundation, São
Paulo, Brazil.

For the adaptive laboratory evolution (ALE) experiments,
K. marxianus CCT 7735 strains were cultivated in a synthetic
defined medium (SD), SD agar, and SDE. SD consisted of
g/L: yeast nitrogen base—YNB—without amino acids
(Sigma Chemical Co., MO, USA) 6.7, and lactose 20. To
prepare the SD agar medium, agar (15 g/L) was added to the
SD medium. The SDE medium was prepared by adding eth-
anol (4% v/v) to the SD medium. For chemostat cultivation,
we used the defined medium described by Verduyn et al.
(1992) containing 20 g/L of lactose (CBS) and CBSE, in
which ethanol (4% v/v) was added to the CBS medium.

Determination of specific growth rate and dry weight

The cell growth was monitored by measurement of optical
density at 600 nm (OD600), using a UV-visible spectropho-
tometer (BECKMAN DU series 600). Biomass and specific
growth rate were determined as previously described by da
Silveira et al. (2018).

Adaptive laboratory evolution (ALE): yeast strains,
growth media, and cultivation conditions

For the ALE experiments, K. marxianus CCT 7735 was cul-
tivated in the SD agarmedium and incubated at 37 °C for 48 h.
After incubation, four colonies of K. marxianus CCT 7735
were randomly selected and grown for 1 day in 125-mL
Erlenmeyer flasks containing 25 mL of SD medium at 37 °C
with a stirring rate of 200 rpm (rpm) in an orbital incubator.
Subsequently, the cells were harvested at 12,000 g at 4 °C for
5 min, diluted into fresh medium to give an OD600 of about
0.2. The four selected colonies were cultivated in 125-mL
Erlenmeyer flasks containing 25 mL of SD plus 4% (v/v)
ethanol (SDE), at 37 °C and 200 rpm up to reach 4–7 gener-
ations (exponential phase). One aliquot of the culture was
diluted into a fresh SDE medium and transferred to a new
Erlenmeyer flask containing SDE at OD600 of 0.2 and grown
under the conditions aforementioned. The pH of medium was
set to 5.5 with 3 M KOH before the outset of cultivation.
Passage cultures were performed under ethanol stress during
85 days, the period in which there was a significant increase
(above 50%) in the specific growth rate (Fig. 1). This period
corresponded in ETS1, ETS2, ETS3, and ETS4 to 340, 310,
328, and 335 number of generations, respectively. Samples
were taken every 10–20 generations to determine changes in
specific growth rates under ethanol stress. Subsequently, the
ethanol tolerant strains obtained by ALE were stored in YNB
culture medium with 50% glycerol (v/v) at −80 °C.
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Physiological characterization

The physiological characterization of ETSs and parental
strains were carried out by the determination of both kinetic
and fermentative parameters. These strains were cultured in
50 mL of SD medium in 250-mL Erlenmeyer flasks and in-
cubated at 37 °C, 200 rpm for 24 h, and initial pH of 5.5.
Aliquots of 2 mL were collected every 1 h for the first 12 h.
These samples were centrifuged at 4 °C, 16,000 g for 5 min,
and then the supernatants were filtered (pore size 0.22 μm)
and stored at −20 °C.

Lactose and ethanol quantification

The lactose consumption and ethanol production of ETSs and
parental strain were determined by high-performance liquid
chromatography (HPLC)—chromatograph Shimadzu TA-20
(Kyoto, Japan) coupled to refractive index detector and col-
umn ion exchange Rezex ROA-Organic acid H+ 8% (300 ×
7.8 mm, Phenomenex, California, USA), temperature of
45 °C, using 0.005 M sulfuric acid as mobile phase, flow rate
of 0.6 mL/min, and injection volume of 10 μL. Lactose and
ethanol quantification was obtained by calibration curves
using external standards.

Determination of fermentation parameters

The ethanol yield (YP/S ethanol, g/g) was determined by the
angular coefficient from a linear regression of the plot ethanol
concentration (g/L) versus lactose consumption (g/L). Cell
biomass yield (YX/S, g/g) was determined by the angular coef-
ficient from a linear regression of the plot dry cell weight
(DCW) versus lactose consumption (g/L). Specific ethanol

production rate (qp, g/g/h) was determined by multiplying
the respective yield by the specific growth rate (μ, per hour).
Specific lactose consumption rate (qs, g/g/h) was obtained
dividing μ by YX/S. Linear regressions were adjusted at the
exponential growth phase. Ethanol volumetric productivity
(Qp ethanol, g/L/h) was calculated by maximum ethanol pro-
duction divided by time.

Chemostat cultivation

Both ETS and parental strain were cultivated in a chemostat in
order to identify the metabolic changes in response to ethanol.
Exponentially growing cells in CBS medium were inoculated
with an initial OD600 of 0.2 into 2 L of CBS medium in a 5 L
Labfors 5 bioreactor system from INFORS HT (Bottmingen,
Switzerland). Air flow was set to 1 vessel volume per minute
(vvm), and the dissolved oxygen (DO) levels were kept > 15%
throughout the experiments. Both temperature and pH were
kept constant at 37 °C and 5.5 by adding either NaOH (10%
w/v) or H2SO4 (10% v/v), consequently. The cultivation
started as a batch culture with a stirring rate of 200 rpm.
When the lactose concentration reached 5 g/L, the chemostat
mode was started. The chemostat was operated at a dilution
rate of 0.05 (per hour); the feed medium was the same de-
scribed for the batch phase, except for lactose concentration,
5 g/L instead 20 g/L. Sampling for intracellular (n = 5) and
extracellular (n = 3) metabolites as well as fatty acids methyl
esters (FAMEs) (n = 3) analysis were performed in steady-
state through at least two residence times (two culture volumes
of fresh medium). After sampling, an ethanol pulse in steady
state was carried out to reach the final ethanol concentration of
4% (v/v). Subsequently, the feed medium was changed from
CBS to CBSE. The steady state was reached when the cell
mass was kept constant after two residences times and then
samples were withdrawn in steady state for intracellular and
extracellular metabolites as well as FAMEs analysis.

Sampling and extraction procedures for metabolite
analysis

For intracellular metabolite analysis, we adopted the protocol
described by Smart et al. (2010) and Villas-Bôas and Bruheim
(2007). Samples containing intracellular metabolites were
freeze-dried and concentrated using a VirTis freeze-dryer
from SP Scientific (Newtown Square, PA, USA). The
freeze-dried samples were stored at −80 °C for posterior
analysis.

The obtainment of extracellular metabolites was performed
according to Smart et al. (2010). The samples were freeze-
dried on a VirTis freeze-dryer (SP Scientific, Newtown
Square, PA, USA) and stored at −80 °C. Twenty microliters
of 2, 3, 3, 3-d4-alanine (internal standard) were added to both
intracellular and extracellular samples.

* * * *

Fig. 1 Adaptive laboratory evolution of K. marxianus CCT 7735 under
ethanol stress (4% v/v). The specific growth rates of the ethanol-tolerant
strains (ETS1, ETS2, ETS3, and ETS4) under ethanol stress were higher
than of the parental strains (P1, P2, P3, e P4). “*” indicates statistically
results according to Student’s t test (P value < 0.05)
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Derivatization and GC-MS analysis

The metabolites were derivatized as described by Smart et al.
(2010). The derivatized samples were analyzed by using a
GC-MS using a GC7890 gas chromatograph coupled to a
MSD5975 mass spectrometer (Agilent Technologies, Santa
Clara, CA, USA).

Metabolite identification and data analysis

The deconvolution of GC-MS chromatograms and metabolite
identification was carried out by the AMDIS software using
an in-house MCF mass spectral library. The GC peak values
of selected reference ions of identified metabolites were used
to determine the relative abundance by ChemStation (Agilent
Technologies, Santa Clara, CA, USA). The data analysis and
normalization of both intracellular and extracellular metabo-
lites were carried out as described Smart et al. (2010). The
entire data-mining, normalization, and statistical analysis
were automated in the R software as described by Aggio
et al. (2011) and Smart et al. (2010).

Fatty acids methyl esters analysis

For FAME analysis, the samples from the chemostat in steady
state were freeze-dried on a VirTis freeze-dryer (SP Scientific,
Newtown Square, PA, USA). Direct-transesterification meth-
od was performed according to Lepage and Roy (1986) with
modifications. The freeze-dried samples were weighed into
glass tubes, 1 and 5 mg of parental strain, and ETS, respec-
tively. The internal standard concentration (tridecanoic acid—
C13:0) dissolved in 2 mL of methanol-toluene 4:1 (v/v) ranged
from 50 to 300 μg. Finally, the samples were injected into
GC-MS using a GC7890 gas chromatograph (Agilent
Technologies, Santa Clara, CA) coupled to a MSD5975 mass
spectrometer (Agilent Technologies, Santa Clara, CA, USA).

Ergosterol analysis

Ergosterol of both ethanol-tolerant and parental strains was
extracted according to Diniz et al. (2017) with some modifi-
cations. The frozen samples were freeze-dried on a LIOTOP
L101 freeze-dryer (Liobras, São Carlos, SP, Brazil). Freeze-
dried cells were weighed (40–50 mg) and subjected to extrac-
tion. The ergosterol content determination was performed by
high-performance liquid chromatography (HPLC)—chro-
matograph Shimadzu TA-20 (Kyoto, Japan) coupled to
SPD-10A UV–visible detector at 282 nm and column
Kine tex RP-C18 column (250 × 4 .6 mm, 5 μm,
Phenomenex, California, USA), at 30 °C, using 98% (v/v)
methanol solution as the mobile phase, flow rate of 1 mL/
min, and an injection volume of 10 μL. Ergosterol was

quantified by a calibration curve obtained from external stan-
dards (0.01 to 1.0 mg/mL). The data were normalized with
biomass.

Pathways analysis

We used MetaboAnalyst (www.metaboanalyst.ca), a web-
based data analysis platform, for pathway analysis to predict
and compare the activity of different pathways in ETS and
parental strain. This tool uses metabolomics data, as well as
lists of genes or KEGG orthologs to support integrative anal-
ysis, using the relative abundances of intracellular and extra-
cellular metabolite profiles to predict which pathways may be
active in the yeast. Graphical representations of these results
were performed by the R software 3.2.5 (www.r-project.org).

DNA-seq analysis

The whole genomes of both parental (P4) and ethanol-tolerant
(ETS4) strains were sequenced. Total DNA was extracted and
purified according to Promega Wizard® Genomic DNA
Purification Kit (Wisconsin, USA). DNA samples were se-
quenced by GenOne Biotechnologies (Rio de Janeiro,
Brazil) using the Illumina HiSeq2500 platform using the 2 ×
150 paired-end method, with an insert size of 350 bp. Paired-
end reads were quality-analyzed by FastQC v.0.71 (Andrews
2010). The P4 strain genome was assembled by MIRA v4.0.2
(Chevreux et al. 1999; Chevreux et al. 2004), by mapping to
the previously available K. marxianus CCT 7735 genome
(Silveira et al. 2014). Genome assembly quality metrics were
computed by QUAST v.4.6.3 (Gurevich et al. 2013) and
REAPR v.1.0.18 (Hunt et al. 2013). Protein-coding genes
were predicted ab initio by BRAKER2 (Altschul et al. 1990;
Lomsadze et al. 2005; Stanke et al. 2006; Stanke et al. 2008;
Ter-Hovhannisyan et al. 2008; Camacho et al. 2009; Hoff
et al. 2016) and by the homology-based predictor GeMoMa
v.1.5.3 (Keilwagen et al. 2016; Keilwagen et al. 2018), using
the p r ev ious genome anno t a t i on as r e f e r ence .
EVidenceModeler v.1.1.1 (Haas et al. 2008) was used to gen-
erate an annotation consensus. Genome assembly and anno-
tation completeness was evaluated by BUSCO v.3.0.2 (Simão
et al . 2015; Waterhouse et al . 2018) against the
Saccharomycetales dataset. To detect mutations in the ETS4,
the reads were aligned to the P4 strain assembly by BWA-
MEM v.0.7.17 (Li 2013). Alignments were filtered by
SAMtools v.1.9.52 (Li et al. 2009) to a minimum mapping
quality of 60. Variant calling was performed by Freebayes
v.1.2.0–4-gd15209e (Garrison and Marth 2012), and the
resulting VCF file was filtered by VCFtools v.0.1.17
(Danecek et al. 2011) and VCFlib (Garrison 2018) according
to the dDocent pipeline (Puritz et al. 2014a, b; Puritz et al.
2014a, b). The detected variants were annotated by SnpEff
v.4.3 (Cingolani et al. 2012) using a custom database with a
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900 bp flank in the gene sequences included. The gene vari-
ants were then identified by DIAMOND v.0.9.21 (Buchfink
et al. 2015) searches against K. marxianus UniProt datasets
(The UniProt Consortium 2008). GO terms assigned by
Blast2GO v.5.2 (Conesa et al. 2005; Conesa and Götz 2008;
Götz et al. 2008; Götz et al. 2011) and plotted by REVIGO
(Supek et al. 2011). The whole-genome sequencing data has
been deposited at NCBI under the BioProject PRJNA553996.
Genome quality assessment results and software parameters
can be found on Supplementary Information (Tables S3 and
S4).

Results

Physiological characterization of ethanol tolerant
strains

We used four different populations from individual clones of
K. marxianus CCT 7735 wild-type in order to select strains
more tolerant to ethanol stress by ALE. The specific growth
rates of ETS1, ETS2, ETS3, and ETS4 increased above 125,
58.3, 90, and 122.2%, respectively, compared to their respec-
tive parental strains.

Beyond mutations that lead to the acquisition of the desir-
able phenotype in microbial cells evolved by ALE, trade-off
phenotypes have been reported. To address this issue, we
evaluated whether the ETSs had an alteration in their fermen-
tative capacity. In general, we observed that the physiological
parameters of ETS and parental strain were similar (Table 1);
thereby, their fermentative capacities were not altered.
However, ETS1 and ETS4 displayed the highest maximum
ethanol production and volumetric ethanol productivities
(Table 1). In addition, we verified that the specific ethanol
production rate presented by ETS4 was higher than those ob-
tained by other ETSs (Table 1); therefore, we chose this strain
for further analysis.

Genomic alterations in the ethanol-tolerant
K. marxianus CCT 7735 strain

We aligned the evolved strain (ETS4) reads to the parental
(P4) genome to search mutations that could be related to the
phenotype of ethanol tolerance. In total, we found 19 variant
types such as single nucleotide variants (SNVs), insertions
and deletions (InDels), and mixed mutations. These variants
were predicted to have 103 different effects, occurring in 99
different genes. We then classified the variants according to
SNPeff annotation, and observed that many mutations oc-
curred in regulatory regions, such as regions directly upstream
or downstream of a coding sequence (CDS) (Table S6). We
also identified GO terms that are over- or under-represented in
the data (Fig. S4, Fig. S5 and Fig. S6). In “Molecular

Function” category, the GO terms “catalytic activity”,
“nucleic acid binding”, and “transcription regulatory region
RNA binding” were enriched. In “Biological Function” cate-
gory, we found the enriched terms “nitrogen compound bind-
ing”, “alcohol metabolism”, “endosomal transport”, and “pro-
tein glutathionylation”. In “Cellular Component” category,
the enriched terms were “membrane” and “integral compo-
nent of membrane”. A spreadsheet containing all predicted
genes and their corresponding mutations is available as
Online Resource 1.

Metabolic changes caused by ethanol exposure

We identified 155 intracellular metabolites and 55 unknown
metabolites from chemostat cultures of ETS4 and P4 strain
under both ethanol and non-ethanol stress (Table S1). For
the exometabolome, 145 metabolites and 47 unknown metab-
olites were identified under the aforementioned conditions
(Table S2). The intracellular and extracellular profiles of me-
tabolites were compared by principal component analysis
(PCA). The four groupings formed on both intracellular and
extracellular metabolites PCA plots (Fig. S2A and Fig. S2B)
are composed of two strains under non-ethanol stress (P4 and
ETS4) and ethanol stress (P4 stress and ETS4 stress). All
groups were separated by principal components 1 (PC1) and
2 (PC2), which accounted for the total variance of 61.30% and
14.09% for intracellular metabolites, 90.45% and 4.24% for
extracellular metabolites, respectively. Notably, we observed
that the P4 stress strain was in a distinct cluster for both intra-
cellular and extracellular metabolites (Fig. S2) and that the
ETS4 stress was close to ETS4/P4 cluster (Fig. S2A).
Indeed, we observed some ellipses overlap on ETS4 and
ETS4 stress clusters. Importantly, PC1 contains the higher
total variance value, indicating that the components signifi-
cantly influenced the separation of the strains. β-alanine, cys-
tathionine, threonine, proline, and alanine (intracellular me-
tabolites); and malonic acid, leucine, 2-hydroxybutiric acid,
lactic acid, and nicotinic acid (extracellular metabolites) were
the most influential metabolites that contributed positively to
PC1. We observed higher levels of those metabolites in P4,
ETS4, and ETS4 stress, suggesting that their decrease in the
parental strain subjected to the ethanol stress seems to be
related to its lower ethanol tolerance compared to ETS4.

We performed a hierarchical cluster analysis (HCA) to an-
alyze the different groups of intracellular and extracellular
metabolites (Fig. 2). Regardless of type strain and stress con-
dition, the intracellular metabolites identified were similar;
however, their relative abundance was group dependent.
Most of the intracellular amino acids and derivatives, amine/
amide compounds, and organic acids had their relative abun-
dance strongly reduced in the P4 strain under ethanol stress
(Fig. 2a and b). Meanwhile, the extracellular abundance of
those metabolites remarkably increased upon ethanol

7487Appl Microbiol Biotechnol (2020) 104:7483–7494



exposure (Fig. 2c and d), suggesting that ethanol-induced a
leakage of metabolites in the parental strain by altering the
permeability of its membrane. Interestingly, the relative abun-
dance of most intracellular amino acids and derivative also
decreased under stress in ETS4 but to a lesser degree than in
the P4 strain under stress (Fig. 2a). Otherwise, most of amine/
amide compounds and organic acids in ETS4 had their rela-
tive abundance enhanced under ethanol stress (Fig. 2b), indi-
cating that they are likely related to its improved tolerance to
ethanol. Consistent with this, we observed that the ethanol
stress led to a decrease in the biomass of both parental and
ETS4; however, this drop was higher in the parental strain
(Table S5). Taken together, these results indicate that the
membrane permeability of the ethanol-tolerant strain was less
affected by ethanol compared to the parental strain.

Remarkably, the amino acid valine and some organic acids
of the citric acid cycle (TCA cycle) such as isocitric acid, citric
acid, and cis-aconitic acid had their levels increased intracel-
lular and extracellularly. Therefore, those metabolites seem to
have been secreted due to metabolic overflow, indicating that
the metabolic fluxes of the pathways involved with their syn-
thesis was enhanced (Fig. 2). In agreement with the valine
accumulation (Fig. 2), we detected changes in the gene
encoding the acetolactase synthase small subunit, ILV6 (single
substitution downstream of CDS), which is related to the
branched-chain amino acid biosynthetic process (Fig. S5).
We analyzed the relative abundance of intracellular and extra-
cellular metabolite profiles under ethanol and non-ethanol
stress to generate a comparative metabolic pathway analysis
(Fig. S3). TCA cycle was affected in ETS4 under ethanol
stress (Fig. S4, Fig. S5, Online Resource 1), which is consis-
tent with the accumulation of isocitric acid, citric acid, and cis-
aconitic acid (TCA intermediates).

Alterations in both membrane fatty acids and
ergosterol content

The membrane fatty acid abundance in the ETS4 was remarkably
higher than in the P4 strain. Notably,monounsaturated fatty acidswere
more abundant under both non- and ethanol stress in the P4 strain
(Fig. 3a and b). Their abundance was also higher in the ETS4 that
had not been exposed to ethanol; however, decreased upon ethanol
stress. According to those results, pathways associated with fatty acid
metabolism and biosynthesis, unsaturated fatty acids biosynthesis, and
glycerolipidmetabolism in theP4strainwere less affecteduponethanol
stress than in theETS4 (Fig. S3). In addition,we detected that the long-
chain FAMEsweremore abundant in the two strains regardless of the
stress condition (Fig. 3b). These results are consistent with the fact that
most common fatty acids from yeast phospholipids bilayers are long-
chain fatty acids such as palmitic acid (C16:0), palmitoleic acid (C16:1),
stearic acid (C18:0), and oleic acid (C18:1). Additionally, their abundance
washighest in theETS4.However, their abundancedecreasedonce the
strains were subjected to ethanol stress.

Ergosterol plays a crucial role in response to ethanol stress in
S. cerevisiae (Stanley et al. 2010; Vanegas et al. 2012). Ergosterol
was more abundant in ETS4 than in P4 under both conditions
(Fig. 4). In agreement with this result, we detected mutations in
the gene RRI1, that encodes the COP9 signalosome complex sub-
unit 5, which is associated with positive regulation of ergosterol
biosynthesis. The predicted mutation is a deletion in the upstream
region of the coding sequence.

Variants detected in the genome of the ethanol-tolerant strain
were consistent with the FAMEs results. We identified in the
ETS4 mutations in the genes KLMA_10136 (insertion upstream
of CDS), and PXA2 (insertion downstream of CDS), which are
respectively associated with the lipid metabolic process GO term
(Fig. S5).

Table 1 Physiological parameters of ethanol-tolerant K. marxianus
strains (ETS1, ETS2, ETS3, and ETS4) and parental strains (P1, P2,
P3, and P4). To determine the specific growth rates, all strains were
cultured under ethanol stress conditions (μethanol; /h) and non-ethanol
stress conditions (μ; /h). To calculate the other parameters, all strains were

cultivated under non-ethanol stress conditions: lactose consumption
(g/L), maximum ethanol production (g/L), ethanol volumetric productiv-
ity (Qp; g/L/h), ethanol yield per lactose (YP/S ethanol; g/g), biomass yield
per lactose (YX/S; g/g), specific ethanol production rate (qp, g/g/h), and
specific lactose consumption rate (qs, g/g/h)

Strain μ ethanol (/h) μ (/h) Lactose consumption
(g/L)

Ethanol production
(g/L)

Qp (g/L/h) YP/S ethanol

(g/g)
YX/S (g/g) qp ethanol

(g/g/h)
qs lactose
(g/g/h)

P1 0.08 ± 0.04 0.54 ± 0.02 20.33 ± 0.89 6.16 ± 0.69 0.56 ± 0.06 0.32 ± 0.07 0.18 ± 0.02 0.19 ± 0.02 3.14 ± 0.34

P2 0.12 ± 0.03 0.53 ± 0.01 20.34 ± 0.90 6.07 ± 0.51 0.55 ± 0.05 0.33 ± 0.02 0.14 ± 0.01 0.18 ± 0.01 3.93 ± 0.17

P3 0.10 ± 0.01 0.56 ± 0.02 20.36 ± 0.94 5.81 ± 0.03 0.53 ± 0.03 0.32 ± 0.04 0.20 ± 0.01 0.15 ± 0.01 3.05 ± 0.20

P4 0.09 ± 0.01 0.57 ± 0.03 20.34 ± 0.97 6.41 ± 0.16 0.58 ± 0.01 0.32 ± 0.03 0.14 ± 0.01 0.19 ± 0.02 3.97 ± 0.31

ETS1 0.18 ± 0.03 0.50 ± 0.03 21.68 ± 0.14 7.16 ± 0.32 0.66 ± 0.01 0.36 ± 0.01 0.16 ± 0.02 0.22 ± 0.01 3.19 ± 0.21

ETS2 0.18 ± 0.02 0.52 ± 0.01 21.38 ± 0.27 5.53 ± 0.55 0.52 ± 0.02 0.31 ± 0.03 0.17 ± 0.01 0.17 ± 0.02 3.10 ± 0.02

ETS3 0.19 ± 0.01 0.48 ± 0.05 21.48 ± 0.56 6.43 ± 0.37 0.57 ± 0.01 0.32 ± 0.03 0.17 ± 0.01 0.17 ± 0.01 2.79 ± 0.04

ETS4 0.20 ± 0.01 0.53 ± 0.04 22.60 ± 1.06 7.42 ± 0.20 0.67 ± 0.01 0.34 ± 0.01 0.13 ± 0.02 0.26 ± 0.01 3.92 ± 0.33
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Discussion

Kluyveromyces marxianus CCT 7735 (UFV-3) is capable of
converting lactose from whey permeate to ethanol efficiently
under hypoxia, that is, with yields close to the theoretical
value (Diniz et al. 2013; Silveira et al. 2005). Nevertheless,

its low ethanol tolerance is the main drawback for its applica-
tion at an industrial level. Herein, ALE was suitable to select
K. marxianus CCT 7735 ethanol-tolerant strains (ETS),
highlighting its efficiency in improving the robustness of
yeasts (Mo et al. 2019).

Fig. 2 Hierarchical cluster analysis of intracellular metabolites grouped
based on chemical properties: (a) amino acids and derivatives; and (b)
amine/amide and organic acids; and extracellular metabolites groups: (c)
amino acids and derivatives; and (d) amine/amide and organic acids. P4:
parental strain under non-ethanol stress; P4 stress: parental strain under
ethanol stress; ETS4: ethanol-tolerant strain under non-ethanol stress; and
ETS4 stress: ethanol-tolerant strain under ethanol stress. A dendrogram

was added to the left side to reorder the group of metabolites according to
the set of abundance values and show the correlation among them.
Metabolites with similar abundance were placed close to each other and
metabolites with different abundance were placed farther apart under
ethanol and non-ethanol stress. The highest (green color) and lowest
(red color) abundance values are shown on row-Z score
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Under stress conditions, the overproduction of metabolites
can be associated with an adaptive response. Notably, the
metabolic profiles were significantly different between the
ETS4 and P4 strain. In addition, the ETS4 under ethanol
stress, contrary to the P4 strain, displayed higher levels of
the following metabolites both intracellular and extracellular-
ly: valine and TCA cycle intermediates (isocitric acid, citric
acid, and cis-aconitic acid). It has been reported in
S. cerevisiae that valine accumulation enhances ethanol toler-
ance (Ohta et al. 2015). Based on this evidence, we propose
that its accumulation also improved ethanol tolerance in the
ETS4. Importantly, the TCA cycle was increased significantly
in the ETS4 under ethanol stress (Fig. S3). Therefore, the
accumulation of those metabolites seems to have contributed
to the acquisition of ethanol tolerance by the ETS4. Consistent
with our results, previous studies have related the accumula-
tion of metabolites of the TCA cycle with ethanol tolerance in
S. cerevisiae (Lourenço et al. 2013; Ohta et al. 2015; Ming
et al. 2019).

a b

c

*

* *

*

* *

*

*

*

*

*

Fig. 3 Fatty acidsmethyl esters profiles of P4 strain and ETS4 under non-
and ethanol stress. (a) total of FAMEs (saturated, monounsaturated, and
polyunsaturated); and (b) length of FAMEs: medium-chain fatty acids
(MCFA) ranging from 6 to 12 carbons; long-chain fatty acids (LCFA)
ranging from 13 to 21 carbons and very long chain fatty acids (VLCFA)

> 21 carbons; and (c) palmitic acid (C16:0), stearic acid (C18:0), palmitoleic
acid (C16:1), and oleic acid (C18:1) profiles. Relative abundance values
from each sample were divided by value of biomass detected in P4 and
ETS4 samples (specific relative abundance by biomass). “*” indicates
statistically results according to Student’s t test (P value < 0.05)

*

*

Fig. 4 Ergosterol concentration of ETS4 and P4 strain under non- and
ethanol stress. “*” indicates statistically results according to Student’s t
test (P value < 0.05)
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The yeast cellular membrane is the main target of ethanol.
Its integrity is compromised upon ethanol exposure leading to
metabolite leakage (Dong et al. 2015; Henderson and Block
2014; Salgueiro et al. 1988). In the parental strain, the de-
crease of most intracellular metabolites and their increase ex-
tracellularly indicate a metabolite leakage. Notably, we did
not observe this effect in the ETS4, suggesting that the ethanol
has a less pronounced effect on its membrane compared to the
parental strain (Fig. 2). Likely, this is associated with the fact
that the ETS4 had a higher relative abundance of membrane
fatty acids than the P4 strain (Fig. 3a), irrespective of the
ethanol presence in culture medium.

In the P4 strain, the ethanol stress did not change the con-
tent of both palmitoleic and oleic acids (Fig. 3c). Likewise,
Diniz et al. (2017) observed that the level of unsaturated fatty
acids in the batch culture of K. marxianus CCT 7735 was not
altered upon ethanol exposure. Remarkably, the relative abun-
dances of both palmitoleic acid and oleic acids were higher in
ETS4 than in P4 (Fig. 3c). In S. cerevisiae ethanol-stressed
cells, high levels of palmitoleic acid and oleic acid have been
considered an important adaptive response against ethanol to
avoid the formation of interdigitations, as well as keeping the
optimal thickness of yeast membranes (Dong et al. 2015;
Henderson and Block 2014; Kim et al. 2016; Lahtvee et al.
2016). The fatty acids metabolism and biosynthesis of unsat-
urated fatty acids in the ETS4 were induced under both non-
and ethanol stress (Fig. S3), indicating that the metabolism of
mono-unsaturated fatty acids is upregulated to adapt to the
stress caused by ethanol. In agreement with our results, Mo
et al. (2019) observed that genes involved in membrane lipid
biosynthesis were upregulated in the ethanol-tolerant
K. marxianus FIM1 strain even when it was grown in an
ethanol-free medium.

In S. cerevisiae, ergosterol concentration increases under
ethanol stress, which is considered an important adaptive
response to ethanol, because it reduces both lipid interdigi-
tations and transition phase of phospholipid bilayers there-
by promoting membrane stabilization (Prakash et al. 2011;
Vanegas et al. 2012; Caspeta et al. 2014; Caspeta and
Nielsen 2015; Liu et al. 2019). Contrary to S. cerevisiae,
ergosterol concentration was reduced in both ethanol
to le ran t and paren ta l s t ra ins . Never the less , the
concentration of ergosterol was remarkably higher in the
tolerant strain than in the parental strain, which seems to
be related to its highest ethanol tolerance. Consistent with
these results, genes related to ergosterol biosynthesis were
upregulated in the strainK. marxianus FIM1 tolerant to high
ethanol concentrations, highlighting its importance for
standing up the ethanol stress. Indeed, Alvim et al. (2019)
pointed out that the overexpression of gene encoding en-
zymes of the ergosterol biosynthesis pathway in
K. marxianus is a promising metabolic engineering strategy
to enhance its capacity to tolerate ethanol.

In conclusion, the ethanol-tolerant K. marxianus CCT
7735 strain accumulates valine and metabolites of the TCA
cycle in response to ethanol. In addition, the contents of
FAMEs and ergosterol were higher in this strain than in the
parental strain, indicating that these differences may be asso-
ciated with increased ethanol tolerance displayed by the
ethanol-tolerant strain. As such, our findings helped to identi-
fy metabolic changes that contributed to ethanol tolerance in
the tolerant strain obtained by adaptive laboratory evolution.
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