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Abstract
Astaxanthin is a natural pigment, known for its strong antioxidant activity and numerous health benefits to human and animals.
Its antioxidant activity is known to be substantially greater than β-carotene and about a thousand times more effective than
vitamin E. The potential health benefits have generated a growing commercial interest, and the escalating demand has prompted
the exploration of alternative supply chain. Astaxanthin naturally occurs in many sea creatures such as trout, shrimp, and
microalgae, some fungi, bacteria, and flowering plants, acting to protect hosts against environmental stress and adverse condi-
tions. Due to the rapid growth and simple growth medium requirement, microbes, such as the microalga, Haematococcus
pluvialis, and the fungus Xanthophyllomyces dendrorhous, have been developed to produce astaxanthin. With advances in
metabolic engineering, non-carotenogenic microbes, such as Escherichia coli and Saccharomyces cerevisiae, have been pur-
posed to produce astaxanthin and significant progress has been achieved. Here, we review the recent achievements in microbial
astaxanthin biosynthesis (with reference to metabolic engineering strategies) and extraction methods, current challenges (tech-
nical and regulatory), and commercialization outlook. Due to greenness, sustainability, and dramatic cost reduction, we envision
microbial synthesis of astaxanthin offers an alternative means of production (e.g. chemical synthesis) in the near future.
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Introduction

Astaxanthin, a red xanthophyll or oxygen-containing caroten-
oid, is known for its potent antioxidant activity, of about 100–

1000-fold higher than coenzyme Q10 or vitamin E.
Astaxanthin was initially discovered in 1938 and was first
used as a pigment for aquaculture. Since 1991, astaxanthin
has been approved as a colouring for food supplement. It
has diverse biological activities and potential health benefits
(e.g. antioxidant, anti-inflammatory, and antitumour activities)
to humans and animals and have been extensively investigated
(Fakhri et al. 2018; Ng et al. 2020; Nouchi et al. 2020;
Yamashita 2015).

In view of potential health benefits of astaxanthin, its demand
is increasing rapidly in food industries, medicine, cosmetics, and
animal feeds (e.g. salmon and prawns). Its global market is ex-
pected to reach $2.57 billion worldwide by 2025 (Park et al.
2018). Hence, multiple routes have been explored to produce
astaxanthin. This includes direct extraction from crustacean
waste (such as krill, shrimp, and crab); cultivation of natural
producers such as Haematococcus pluvialis (microalgae),
Paracoccus sp. (bacteria), and Xanthophyllomyces dendrorhous
(yeasts); and chemical synthesis. The direct extraction from crus-
tacean wastes is limited by low yields and high costs. Similarly,
cultivation of natural producers also has relatively high produc-
tion costs. For example, the production cost of astaxanthin
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produced from H. pluvialis is $2500–7000/kg (Bauer and
Minceva 2019; Koller et al. 2014; Molino et al. 2018). Hence,
the current commercially available astaxanthin is still dominated
by chemical synthesis (~ $1000/kg) by various companies (e.g.
BASF and DMS) (Khoo et al. 2019). Currently, over 95% of
astaxanthin available in the market is produced synthetically.
Synthetic astaxanthin was produced by a double Wittig reaction
of a 3-methyl-5-(2,6,6-trimethyl-3-oxo-4-hydroxy-1-
cyclohexenyl)-2,4-pentadienyltriphenylphosphonium salt (asta-
C15-triphenylphosphonium salt) and 2,7-dimethyl-2,4,6-
octatrienedial (C10-dial) (Krause et al. 1997).

It was reported that synthetic astaxanthin has a lower antiox-
idant capacity than its natural counterpart, possibly because syn-
thetic astaxanthin is a racemic mixture, containing three isomers,
i.e. 3S,3′S-, 3R,3′S-, and 3R,3′R-astaxanthin in the ratio of 1:2:1,
while astaxanthin from H. pluvialis is predominantly 3S,3′S ste-
reoisomer (Koller et al. 2014). In addition, there are safety con-
cerns about the use of synthetic astaxanthin for direct human
consumption due to potential carryover of synthesis intermedi-
ates and by-products (Shah et al. 2016). To date, synthetic
astaxanthin has not been approved for human consumption
(Koller et al. 2014; Rajesh et al. 2017). Therefore, the demand
for natural astaxanthin is growing more rapidly than that for
synthetic astaxanthin in recent years. The growing demand has
driven researchers to improve on existing bioproductionmethods
using natural hosts and explore non-native industrial workhorse
microbes (such as Escherichia coli, Saccharomyces cerevisiae,
and Yarrowia lipolytica) for astaxanthin production. The main
challenge for astaxanthin production inH. pluvialis (microalgae)
is the complexity of the bioprocess and difficulty to scale up, as it
requires two-stage cultivation with high-intensity light. In addi-
tion, as microalga growth rate is slow, the production phase is
relatively long (several weeks) and practically more susceptible
to contamination. Although the astaxanthin content can reach ~
50 mg/g DCW in microalgae under optimal conditions (on aver-
age, 15–30 mg/g DCW) (Molino et al. 2018), the biomass is
relatively low, usually below 15 g/L in about a month of cultiva-
tion, hence limiting the rate and titre of astaxanthin production.
As a comparison, non-native microbes such as E. coli and some
yeasts can readily achieve > 100 g/L biomass within a few days
of fermentation. These are ideal industrial chassis microorgan-
isms because of their competitive advantages such as their rapid
growth in cost-effective media, ease to reach high cell density,
and, more critically, amenability to genetic engineering. The
comparison of the advantages and disadvantages of different
microbes in astaxanthin biosynthesis is summarized in Table 1.
With the advances in metabolic engineering, enzyme engineer-
ing, and synthetic biology, the biosynthesis of astaxanthin in
aforementioned non-nativemicrobes has achieved exciting prog-
ress (e.g. high yields) in the past decade.

This review is an attempt to capture recent progress in
microbial astaxanthin biosynthesis and examine the critical
issues and challenges when producing astaxanthin in native

and non-native microbes, extraction of astaxanthin from mi-
crobes, and commercialization opportunities, focusing on
metabolically engineered microbes.

Natural biosynthetic pathways of astaxanthin

Before diving into the metabolic engineering strategies for
astaxanthin production, we firstly need to have a clear apprecia-
tion of the biosynthetic pathways of astaxanthin in natural hosts.
In nature, astaxanthin is found in many animals, such as marine
animals including salmon, shrimp, lobster, crab, and krill; and
birds like flamingos and quails (Zhang 2018). However, these
animals do not synthesize astaxanthin but acquire astaxanthin
from their diets which contain natural astaxanthin producers.
The natural producers of astaxanthin include microalgae (H.
pluvialis and Chlorella zofingiensis) (Han et al. 2013), fungi
(the basidiomycetous yeast, X. dendrorhous, also known as
Phaffia rhodozyma) (Visser et al. 2003), and bacteria
(Paracoccus spp. and Brevundimonas spp.) (Ide et al. 2012). In
addition, some flowering plants (Adonis aestivalis and Adonis
annua) (Cunningham Jr. and Gantt 2011) and protists
(Aurantiochytrium sp.) (Watanabe et al. 2018) produce
astaxanthin, despite at small amounts.

In aforementioned natural producers, astaxanthin (a terpe-
noid) biosynthesis starts from the two common terpenoid pre-
cursors, i.e. isopentenyl pyrophosphate (IPP) and dimethylallyl
pyrophosphate (DMAPP). IPP and DMAPP are synthesized
from two independent biosynthetic pathways: the mevalonate
pathway and the 2-C-methyl-D-erythritol 4-phosphate (MEP)
pathway, also referred to as the non-mevalonate or the 1-de-
oxy-D-xylulose 5-phosphate (DXP) pathway. Here we do not
elaborate the two terpenoid pathways as they are extensively
explained in previous articles (Ajikumar et al. 2008; Chen et al.
2020; Kirby and Keasling 2009). IPP and DMAPP are con-
densed into geranylgeranyl pyrophosphate (GGPP) by farnesyl
pyrophosphate (FPP) and GGPP synthases. GGPP is converted
into phytoene by phytoene synthase and further into lycopene
by desaturases (Zhang et al. 2013). Lycopene is further trans-
formed into β-carotene by lycopene β-cyclase (Fig. 1)
(Cunningham Jr. et al. 1996). Untilβ-carotene, the biosynthetic
pathway is linear and essentially the same in different organ-
isms. However, starting from β-carotene, the biosynthetic
routes differ among different organisms, especially between
flowering plants and others (Fig. 2). In bacteria, fungi, and
algae, the β-ionone ring of β-carotene can be firstly oxidized
into 4-keto intermediates or 3-hydroxyl intermediates by β-
carotene ketolases and hydroxylases, respectively. In total, there
are two hydroxylation and two ketolation reactions. Both hy-
droxylation and ketolation can occur sequentially (e.g. hydrox-
ylation1-hydroxylation2-ketolation1-ketolation2) or non-
sequentially (e.g. hydroxylation1-ketolation1-hydroxylation2-
ketolation2). As such, there are 7 intermediates between β-

5726 Appl Microbiol Biotechnol (2020) 104:5725–5737



carotene and astaxanthin in bacteria, fungi, and algae: β-
cryptoxanthin, zeaxanthin, adonixanthin, echinenone, cantha-
xanthin, 3-hydroxyechinenone, adonirubin (Figs. 2 and 3)
(Zhang et al. 2018b). In bacteria, the β-carotene ketolases and
hydrolyases are encoded by genes crtW and crtZ, respectively
(Breitenbach et al. 1996;Misawa et al. 1995; Scaife et al. 2009).
Similarly, these enzymes are encoded by genes crtO (or bkt)
and chyb (or crtR-B) in algae, respectively (Han et al. 2013). In
the fungus X. dendrorhous, the β-carotene ketolase and
hydrolyase are the same bifunctional cytochrome P450 en-
zyme, encoded by crtS (Alvarez et al. 2006). It is also known
as astaxanthin synthase, where the activity is facilitated by a
cytochrome P450 reductase, encoded by the gene crtR.

In contrast, the astaxanthin biosynthetic pathway is proposed
to be linear in the flowering plants A. aestivalis and A. annua
(Cunningham Jr. and Gantt 2011). Firstly, β-carotene is convert-
ed into a 4-hydroxyl product isocryptoxanthin, isozeaxanthin and
successively into 3,4,-tetradehydroisozeaxanthin and further into
3,4,3′,4′-tetradehydroisozeaxanthin, by two carotenoid β-ring 4-
dehydrogenases (CBFD) encoded by cbdf1 and cbdf2. The in-
termediate, 3,4,3′,4′-tetradehydroisozeaxanthin, is further cata-
lyzed into canthaxanthin via 4′-hydroxyechinenone by two ca-
rotenoid 4-hydroxy-b-ring 4-dehydrogenases (HBDF), encoded
by hbdf1 and hbdf2. Astaxanthin is finally produced from can-
thaxanthin via adonirubin by CBDF1 and CBDF2, and the two
steps are known to converge in other organisms (Fig. 2)

Table 1 Comparisons of different microbes for astaxanthin production

Microbes Advantages Disadvantages Uniqueness

Native
hosts

Haematococcus
pluvialis

Well accepted for human consumption;
non-GMO method

Complex 2-stage process; slow growth;
low biomass; contamination issue;
difficult to scaling up; producing
astaxanthin ester

Its astaxanthin has been
approved for human oral
consumption

Chlorella
zofingiensis

Higher growth rate when cultivated in
heterotrophic conditions, non-GMO
method

Complex 2-stage process; relatively low
biomass; contamination issue; diffi-
cult to scaling up; producing
astaxanthin ester

Its astaxanthin has been
approved for human oral
consumption

Xanthophyllomyces
dendrorhous

Easier to scale up and achieve high
biomass; can act as a non-GMO
method

Mixture of carotenoids produced; harder
to obtain pure free astaxanthin;
unknown regulatory pathways and
thus harder to be rationally
engineered

A non-GMO yeast, the only
microbe that naturally pro-
duces 3S,3′S-astaxanthin

Paracoccus spp. Easier to scale up and achieve high
biomass; can act as a non-GMO
method

Less acceptable as compared with algae
and yeasts; harder to be rationally
engineered

A non-GMO bacterium to
produce astaxanthin

Non-native
hosts

Escherichia coli Easier to scale up and achieve high
biomass; fastest growth; genetically
tractable and thus can be engineered to
produce high-purity free astaxanthin

A GMO method; multiple purification
steps are required to remove
recombinant DNA and endotoxin

The first microbe engineered
to produce astaxanthin and
has achieved higher titre
and yield among all the
hosts

Saccharomyces
cerevisiae

Easier to scale up and achieve high
biomass; faster growth; genetically
tractable and thus can be engineered to
produce high-purity free astaxanthin

AGMOmethod; purification is required
to remove recombinant DNA, etc.

Widely used and accepted in
food industry; relatively
high titre achieved

Yarrowia lipolytica Easier to scale up and achieve high
biomass; faster growth; genetically
tractable and thus can be engineered to
produce high-purity free astaxanthin

AGMOmethod; purification is required
to remove recombinant DNA, etc.

Endogenous lipid bodies to
store astaxanthin

Corynebacterium
glutamicum

Easier to scale up and achieve high
biomass; fastest growth and
gram-positive bacterium; genetically
tractable and thus can be engineered to
produce high-purity free astaxanthin

AGMOmethod; purification is required
to remove recombinant DNA, etc.

Native pathway to produce
C50 carotenoids

Kluyveromyces
marxianus

Easier to scale up and achieve high
biomass; faster growth; genetically
tractable and thus can be engineered to
produce high-purity free astaxanthin

AGMOmethod; purification is required
to remove recombinant DNA, etc.

Thermotolerant and able to
co-utilize lactose and glu-
cose

Synechococcus sp. Easier to scale up and achieve high
biomass; faster growth; genetically
tractable and thus can be engineered to
produce high-purity free astaxanthin

AGMOmethod; purification is required
to remove recombinant DNA, etc.

CO2 fixation and a fastest
growing cyanobacterium
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(Cunningham Jr. and Gantt 2011). In sum, in flowering plants,
there are seven intermediates between β-carotene and
astaxanthin. However, five of these intermediates are different
in algae, bacteria, and fungi. It is worthy to note that X.
dendrorhous naturally produces the 3R,3′R-astaxanthin isomer
unlike other organismswhere (3S,3′S)-astaxanthin is the product.

Microbial biosynthesis of astaxanthin

In this section, we explain the recent examples and scientific
breakthrough of microbial production of astaxanthin. These
examples nicely illustrate different strategies in both
bioprocess development andmetabolic engineering. For better
explanation and comparison of these strategies, we classify
the microbes into two main classes: native astaxanthin pro-
ducers and non-native producers. For native producers,
targeted genetic engineering is rather challenging; hence, the
common strategies are from bioprocess development and
untargeted methods (e.g. random mutagenesis). In addition,
native producers often produce modified astaxanthin (e.g.
astaxanthin esters), which is difficult to be controlled and
modified. In contrast, the main strategies for non-native pro-
ducers are on the basis of rational genetic engineering or met-
abolic engineering. The challenges for non-natural producers
are mainly attributed to inefficiency of heterologous enzymes
and pathway complexity (over 10 genes), with the possibility
of accumulating many structurally similar intermediate carot-
enoids (Figs. 2 and 3). Therefore, many novel metabolic en-
gineering and synthetic biology strategies have been devel-
oped to address these challenges.

Astaxanthin biosynthesis in native microbes

H. pluvialis, a unicellular freshwater microalga, has been used
to produce astaxanthin for many years. The production of
astaxanthin in H. pluvialis has been recently reviewed (Khoo
et al. 2019; Shah et al. 2016), and we will briefly introduce
several recent findings. H. pluvialis cultivation contains two
distinct stages: green phase and red phase. In green stage or
green motile stage, the biomass increases with vegetative
growth without accumulating astaxanthin. In red stage or red
non-motile stage, the cells are known as haematocyst, wherein
astaxanthin is accumulated in the membrane (Khoo et al.
2019). The transition happens due to stress conditions intro-
duced, which can be nutrient (nitrogen and phosphorus) star-
vation, high salinity, temperature ramping, or combination of
multiple stress factors. The need of this two-stage cultivation
approach inevitably prolongs the production period and often
results in modest final biomass. Due to the lack of engineering
tools, genotype improvement is highly reliant on the more
traditional approaches such as random mutagenesis and
screening (Khoo et al. 2019). As such, a great deal of effort

has instead been focusing on the optimization of abiotic con-
ditions and bioprocess development. Nitrogen limitation
(Ding et al. 2018) and high temperature growth conditions
(Hong et al. 2015) have been routinely adopted to optimize
astaxanthin production. A recent study applied a pattern of
combining high illumination at green stage with low illumi-
nation and high CO2 levels at the red stage to optimize pro-
duction. This resulted in a significant improvement (~ 36 mg/
g DCW) of about 2–3 times over control conditions (Christian
et al. 2018). Another recent study optimized the photoinduc-
tion process by tuning the light path and illumination mode to
achieve high astaxanthin content in H. pluvialis (5.6%, or 56
mg/g DCW) (Wang et al. 2019b). In addition, ethanol supple-
mentation was recently found to dramatically increase
astaxanthin accumulation in microalga cells by upregulating
the expression of carotenogenesis genes (Liu et al. 2019).
Similarly, iron(II) supplement was found to boost astaxanthin
content under outdoor thermal conditions (Hong et al. 2016).

Chromochloris zofingiensis is another promisingmicroalga
to produce astaxanthin (Zhang et al. 2019).C. zofingiensis can
be cultivated in heterotrophic conditions with glucose as the
carbon source. In heterotrophic conditions, it has a higher
growth rate and is feasible to attain high cell density. The main
limitation ofH. pluvialis culture is the low production rate and
low biomass where 20 g/L of biomass is already considered as
“ultrahigh” (Han et al. 2013).

As compared with microalgae, the yeast X. dendrorhous
grows faster and is easier to scale up in bioreactors and rela-
tively amenable to genetic engineering. Similar to microalgae,
the media (e.g. carbon sources, C/N ratio, and phosphate) and
abiotic factors (e.g. oxygen levels, temperature, and pH) can
be optimized to increase astaxanthin production in the yeast
(Schmidt et al. 2011). Furthermore, genetic engineering
methods have been applied to this yeast. The first review of
metabolic engineering of X. dendrorhous for astaxanthin pro-
duction was more than a decade (Visser et al. 2003). Due to
the lack of efficient molecular biology tools, metabolic engi-
neering strategies were mainly limited to the overexpression
of the carotenogenesis genes like the bifunctional phytoene
synthase/lycopene cyclase (crtYB) and phytoene synthase
(crtI) (Verdoes et al. 2003). At that time, the highest
astaxanthin content achieved in X. dendrorhous was only
about 3–4 mg/g DCW. From 2000 to 2010, several novel
strategies were developed, including the use of flow cytome-
try to screen high producer X. dendrorhous strains based on
florescence emission of astaxanthin (Ukibe et al. 2008). Since
then, several major steps forward have been made. The com-
bination of classical mutagenesis and genetic engineering
(overexpression of 3-hydroxymethyl-3-glutaryl coenzyme A
reductase, GGPP synthase, phytoene synthase/lycopene cy-
clase, and astaxanthin synthase) enabled the astaxanthin con-
tent to reach ~ 9mg/gDCW (Gassel et al. 2014) (Table 2). The
overexpression of astaxanthin synthase (crtS) was able to
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boost astaxanthin production by 33.5% by direct activity and
interestingly, indirectly upregulated the carotenoid pathway
genes (Chi et al. 2015). Furthermore, the deletion of a C22
sterol desaturase reduced ergosterol biosynthesis and in-
creased astaxanthin production due to the alleviation of nega-
tive feedback of ergosterol to the mevalonate pathway genes
(Yamamoto et al. 2016). In addition, a recent study identified

glutamate feeding can enhance astaxanthin biosynthesis by
affecting tricarboxylic acid cycle and increasing the channel-
ling of carbon fluxes into acetyl-CoA, the precursor to terpe-
noids (Wang et al. 2019a).

In addition to microalgae and fungi, the bacterium
Paracoccus sp. has also been used to produce astaxanthin.
By random mutagenesis and overexpression of astaxanthin

Table 2 A summary for strain engineering strategies for astaxanthin biosynthesis

No. Methodology Hosts Titre (mg/L) Content (mg/g
DCW)

Culture
conditions

References

1 Gene overexpression and RBS engineering Corynebacterium
glutamicum

/ 1.6 2 days, flasks Henke et al.
(2016)

2 Combinatorial screening of 12 β-carotene
ketolases and 4 hydroxylases

Escherichia coli 2.9 1.99 2 days, flasks Scaife et al.
(2009)

3 Expression of crtEBIYalong with the
β-carotene-ketolase and hydroxylase

Escherichia coli 2.1 1.41 2 days, flasks Lemuth et al.
(2011)

4 Screening different β-carotene hydroxylases Escherichia coli / 0.31 2 days, flasks Scaife et al.
(2012)

5 Combinatorial screening of RBS library Escherichia coli / 2.64 2 days, flasks Zelcbuch et al.
(2013)

6 Multidimensional heuristic process and
novel screening method

Escherichia coli 320 15 2 days,
bioreactors

Zhang et al.
(2018b)

7 Protein fusion and model-based gene amplification Escherichia coli 432.8 7.1 2 days,
bioreactors

Park et al. (2018)

8 Repeated genome integration of the key genes Kluyveromyces
marxianus

/ 9.9 3 days,
bioreactors

Lin et al. (2017)

9 Introduction of CrtZ and CrtW together
with BTS1, CrtI, and CrtYB

Saccharomyces
cerevisiae

/ 0.03 5 days, flasks Ukibe et al.
(2009)

10 Co-expression of crtI, crtYB, cytochrome
P450 crtS, and cytochrome P450 reductase crtR

Saccharomyces
cerevisiae

/ Detectable 3 days, flasks Ukibe et al.
(2009)

11 Combining protein codon optimization,
gene copy number adjustment, and iron
supplementation

Saccharomyces
cerevisiae

/ 4.7 3–4 days,
flasks

Zhou et al.
(2015)

12 Combining classical mutagenesis with
genetic engineering of the complete pathway

Saccharomyces
cerevisiae

47.2 8.1 3–4 days,
flasks

Zhou et al.
(2017)

13 Combinatorial expression of crtZ and crtW from
diverse species and tuning the relative ratio
between crtZ and crtW gene

Saccharomyces
cerevisiae

81 4.5 7 days,
bioreactors

Wang et al.
(2017)

14 Pathway engineering and mutagenesis Saccharomyces
cerevisiae

217.9 13.8 3–4 days,
bioreactors

Jin et al. (2018)

15 Protein engineering and dynamic metabolic
regulation

Saccharomyces
cerevisiae

235 6.25 3–4 days,
bioreactors

Zhou et al.
(2019)

16 Integration of β-carotene hydroxylase and ketolase Synechococcus sp.
PCC 7002

6.5 / 2 days, flasks Hasunuma et al.
(2019)

17 Random mutagenesis and gene
cloning/overexpression
of astaxanthin biosynthetic genes

Paracoccus sp. 480 4.8 6–7 days,
bioreactors

Ide et al. (2012)

18 Combining classical mutagenesis with
genetic engineering

Xanthophyllomyces
dendrorhous

/ 9 8 days, flasks Gassel et al.
(2014)

19 Fine tuning of the expression of crtS Xanthophyllomyces
dendrorhous

25.3 / 5 days, flasks Chi et al. (2015)

20 Deletion of double CYP61 genes which
decreased ergosterol biosynthesis and increased
astaxanthin production

Xanthophyllomyces
dendrorhous

1.6 0.29 3 days, flasks Yamamoto et al.
(2016)

21 Glutamate feeding which upregulated astaxanthin
biosynthetic genes

Xanthophyllomyces
dendrorhous

/ 1.14 6 days,
bioreactors

Wang et al.
(2019a)

22 Overproduction of beta-carotene and gene copy
number tuning

Yarrowia lipolytica 54.6 3.5 3–4 days,
plates

Kildegaard et al.
(2017)

23 Varying gene copy number Yarrowia lipolytica 285 6 7 days,
bioreactors

Tramontin et al.
(2019)
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biosynthetic genes, the best strain was able to produce up to
480 mg/L in fed-batch fermentation (Ide et al. 2012).

Often, it is challenging to obtain high purity of free
astaxanthin in native hosts as they are produced in esterified
or glycosylated forms (Ambati et al. 2014; Liu et al. 2019;
Yokoyama et al. 1998), along with many other structurally
similar carotenoids, such as adonixanthin, adonirubin, cantha-
xanthin, torulene, torularhodin, and 3,3′-dihydroxy-β, ψ-car-
otene-4,4′-dione (Barredo et al. 2017). In contrast, aided by
metabolic engineering and synthetic biology strategies, it is
relatively easy to obtain free astaxanthin with high purity in
non-native microorganisms as demonstrated previously (Jin
et al. 2018; Park et al. 2018; Zhang et al. 2018b) in Table 2.

Metabolic engineering of non-native hosts for
astaxanthin biosynthesis

In the past decade, metabolic engineering and synthetic biol-
ogy have contributed remarkably in the use of microbes as
biofactories by (1) broadening the use of raw materials which
include sugars, lignocellulose (Zhang and Too 2019), food
and industrial wastes (Mano et al. 2020), and natural gas and
CO2 (Clomburg et al. 2017); (2) expanding the product lines
from basic chemicals to specialty chemicals, consumer
chemicals (Zhang et al. 2018a), liquid fuels (Liao et al.
2016), and others (Denby et al. 2018); and (3) achieving high
TRYs (titres, rates, and yields) more rapidly and pushing the
boundary of theoretical yields (Meadows et al. 2016). With
these advancements, industrial microbial workhorses that are
not carotenoid-producing hosts have been engineered to pro-
duce astaxanthin. Particularly, remarkable progress has been
achieved recently in the use of three microbes: E. coli, the
budding yeast S. cerevisiae, and the oleaginous yeast Y.
lipolytica.

As a non-carotenogenic bacterium, E. coli has long been
engineered to produce astaxanthin. To our knowledge, the first
example was demonstrated as early as in the year 1998, where
astaxanthin and its glucosides were produced by overexpres-
sion of all the carotenogenesis genes (Yokoyama et al. 1998).
From 2000 to 2010, the main strategy for astaxanthin produc-
tion was to screen for more active β-carotene ketolases, β-
carotene hydroxylases, and their use in combinations. It was
found that crtW-type ketolase could accept 3-hydroxy-β-
ionone ring as the substrate but not for crtO-type ketolase
(Choi et al. 2007a). Later, 12 β-carotene ketolases and 4 β-
carotene hydroxylases from 5 cyanobacterial species were
screened for astaxanthin biosynthesis in E. coli. The best com-
bination enabled over 23.5-fold increase in the production of
carotenoids, of which > 90% is astaxanthin and its content
reached 1.99 mg/g DCW (Scaife et al. 2009) (Table 2).
From 2011 to the present, more strategies have emerged and
greater success in production was achieved. Chromosomal
integration of carotenoid pathway genes was pioneered by a

group in the University of Stuttgart, where the modified strain
produced about 1.41 mg/g DCWof astaxanthin (Lemuth et al.
2011). Another team screened for 12β-carotene hydroxylases
from archaea, bacteria, cyanobacteria, and plants and identi-
fied the use of hydroxylase from a thermoacidophilic archaeon
to be highly efficient and produced up to 0.31 mg/g DCW of
astaxanthin (Scaife et al. 2012). Another effective strategy is
the use of ribosome-binding sites (RBSs) to balance caroten-
oid pathway genes. With the RBSs to balance the 7 genes (idi,
crtE, crtB, crtI, crtY, crtZ, and crtW), the astaxanthin content
in E. coli reached a level of 2.64 mg/g DCW (Zelcbuch et al.
2013).

Recently, a robust and effective strategy to produce
astaxanthin in E. coli is the development of a multidimension-
al heuristic process (MHP). MHP strategy adopts the use of
modular metabolic engineering strategy where the 14 genes in
the mevalonate and carotenoid biosynthetic pathways were
segmented into four modules, each of which was individually
controlled by four different promoters. Furthermore, the bal-
ance of intramodular genes was further regulated by different
RBSs of varied translational initiation efficiencies. Hence, the
MHPmethod not only does transcriptionally balance the mod-
ules including all the pathway genes but also has the flexibility
to fine tune the expression of critical genes within a module
(e.g. crtZ and crtW). As a result, the best strain produced 15.1
mg/g DCW (> 5-fold higher than previous highest data) and in
fed-batch fermentation, it produced up to 320 mg/L of
astaxanthin in an unoptimized fermentation process (Zhang
et al. 2018b). In addition, astaxanthin was found to be prefer-
entially secreted into media during E. coli fermentation.
Therefore, medium absorbance correlating to extracellular
astaxanthin concentration was used as a simple means to
screen for high astaxanthin producers, which was more accu-
rate and less subjective than colony colour–dependent visual
inspection (Zhang et al. 2018b). Extending from this study,
efflux pumps for astaxanthin export can be explored which
should further improve astaxanthin production in E. coli
(Zhang et al. 2016). As a complementary approach, compara-
ble production of astaxanthin of up to 433 mg/L (7.12 mg/g
DCW) by in silico flux analysis–based gene overexpression
and process optimization has been reported after MHP publi-
cation (Park et al. 2018).

In S. cerevisiae, the pioneer work for astaxanthin biosyn-
thesis dates back to year 2009, when a Japanese group pro-
vided evidence that both X. dendrorhous astaxanthin pathway
genes crtS and crtR (Fig. 2) and bacterial pathways genes crtZ
and crtW were able to convert β-carotene to astaxanthin in S.
cerevisiae. Although the yield was rather low (detectable
level, Table 2), the yeast cells exhibited enhanced oxidative
stress tolerance than the β-carotene-accumulating strains, in-
dicative of an antioxidant activity of astaxanthin (Ukibe et al.
2009). Since then, astaxanthin has been produced at signifi-
cant amounts in S. cerevisiae (Zhou et al. 2019; Zhou et al.
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2017; Zhou et al. 2015). Initial studies showed promising
results by introducing H. pluvialis β-carotenoid hydroxylase
(CHYB) and ketolase (bkt or crtO) genes (Fig. 2) into β-
carotene-accumulating yeasts. By controlling gene copy num-
bers and supplementing iron to the growth media, the strain
produced up to 4.7 mg/g DCWof astaxanthin. Thereafter, by
protein and metabolic engineering strategies, the content and
titre of astaxanthin were further improved to 8.1 mg/g DCW
and 47.2 mg/L, respectively (Table 2) (Zhou et al. 2017).
Further studies demonstrated the use of a temperature-
controlled system which increased the titre to 235 mg/L, al-
though the astaxanthin content was not improved further
(Table 2) (Zhou et al. 2019). Similar to these studies, bacterial
astaxanthin biosynthetic genes crtZ and crtW have been used
in the same host (Fig. 2) (Wang et al. 2017). Through screen-
ing of the best combination of crtZ and crtW genes from
diverse species and tuning the relative expression ratio be-
tween crtZ and crtW, 81 mg/L of astaxanthin was produced
(Table 2). The productivity of the strain was further improved
by atmospheric and room temperature plasma (ARTP)–based
mutagenesis, and the best strain produced up to 217.9 mg/L
astaxanthin, with a content of 13.8 mg/g DCW (Table 2) (Jin
et al. 2018).

Besides E. coli and baker’s yeast, a few other microbes
have recently been engineered to produce astaxanthin. This
includes two yeasts Yarrowia lipolytica and Kluyveromyces
marxianus, a bacterium Corynebacterium glutamicum, and a
fast-growing cyanobacterium Synechococcus sp. In recent
years, Yarrowia lipolytica has become a popular microbial
host for the production of metabolites including lipids and
carotenoids due to its unique capabilities of using diverse sub-
strates, innate de novo lipogenesis, and tolerance to extreme
pH values (3–10) (Sekova et al. 2015). Y. lipolytica was ini-
tially engineered to produce lycopene and β-carotene by
Microbia, Inc. (Grenfell-Lee et al. 2014) and later by other
academic groups (Gao et al. 2017; Larroude et al. 2018;
Matthaus et al. 2014; Schwartz et al. 2017). As an oleaginous
yeast, Y. lipolytica has the advantage of producing hydropho-
bic compounds including carotenoids as intracellular lipid
bodies act as storage reservoirs. Hence, relatively high content
of carotenoids, including astaxanthin, has been produced in Y.
lipolytica. In the first report, astaxanthin was produced at a
content of 3.5 mg/g DCW (54.6 mg/L) by the heterologous
expression ofβ-carotene ketolase (crtW) from Paracoccus sp.
N81106 and hydroxylase (crtZ) from Pantoea ananatis
(Kildegaard et al. 2017). More recently, the same group re-
optimized the biosynthetic pathway to accumulate more β-
carotene by further modulating the copy numbers of β-
carotene ketolase and hydroxylase. The optimized strain pro-
duced 6 mg/g DCW (285 mg/L) of astaxanthin in bioreactors
(Table 2) (Tramontin et al. 2019). Repeated genome integra-
tion of the genes chyb and bkt fromH. pluvialis and engineer-
ing of CHYB enzyme enabled K. marxianus strain has

produced up to 9.97 mg/g DCW of astaxanthin in a 5-L bio-
reactor (Lin et al. 2017). Through balancing crtZ and crtW at
translational levels and screening for more catalytically effi-
cient crtZ and crtW from different marine bacteria, astaxanthin
content has been reported to be about 1.6 mg/g DCW in the
gram-positive bacterium C. glutamicum (Henke et al. 2016).
Recently, Synechococcus sp. PCC 7002 has been engineered
to produce astaxanthin at 3 mg/g DCW (Table 2) using the β-
carotene hydroxylase and ketolase from the marine bacterium
Brevundimonas sp. (Hasunuma et al. 2019).

From these studies, it is evident that improvement in
astaxanthin titre has been achieved by the use of enzymes with
high catalytic activities from various sources. Further im-
provements can be achieved by effectively channelling the
global carbon fluxes from central pathways to carotenoid bio-
synthesis and modulating the enzymatic activities of ketolase
and hydroxylase in these promising heterologous hosts
(Zhang et al. 2018b).

Extraction of astaxanthin from microbes

The downstream extraction and purification is a critical part
that greatly influences the successful commercialization of
astaxanthin. For fermentation products, the downstream cost
can take 20–90% of the total manufacturing costs (Stanbury
et al. 2017). As an intracellular product, astaxanthin is also
thermo- and light-sensitive. All these factors tend to increase
the difficulties and cost of product recovery. This is mainly
because fermentation products have relatively low concentra-
tions or titres with water as the major content (e.g. microbial-
derived astaxanthin, ~ 0.4 g/L; Table 2; in contrast, synthetic
astaxanthin can reach ~ 60 g/L (Krause et al. 1997)). Hence, to
develop a successful commercialization route of astaxanthin,
it is imperative to take a holistic view from strain engineering
to downstream recovery. The necessity contrasts with the fact
that many metabolic engineers and synthetic biologists over-
look the importance of recovery processes. To highlight the
importance of recovery step, here we briefly introduce the
commonly used extraction methods of microbial astaxanthin.

The extraction methods of astaxanthin from either native or
non-native microbes are similar, with the exception from
microalgae where astaxanthin is found mainly in esterified
forms. Hence, an additional saponification step is required to
obtain free astaxanthin. For the extraction of astaxanthin, a
common workflow is used, with the following sequential
steps: (1) cell harvest from bioreactors by centrifugation, sed-
imentation, or filtration; (2) mechanical cell disruption; (3)
drying of cells; (4) solvent extraction or supercritical CO2

extraction (Bauer and Minceva 2019; Choi et al. 2007b;
Molino et al. 2018) (Fig. 4). Depending on solvent types,
extraction temperature, and cell stages, mechanical cell dis-
ruption may not be necessary. For example, when germination
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of the red H. pluvialis is induced by fresh medium, the flag-
ellated zoospores containing astaxanthin is released and this
allows direct liquid-liquid solvent extraction from fermenta-
tion broth, negating the need of mechanical disruption which
markedly simplifies the extraction processes (Bauer and
Minceva 2019). However, to use liquid-liquid extraction
method, the solvent has to be carefully chosen; green solvent
such as ethanol is not economical due to its miscibility with
water and the high stability of ethanol/water system which
makes it a challenge to recycle ethanol and water. In addition,
the extraction timing has to be carefully determined so as to
obtain the highest yield. Furthermore, capital investment in
equipment increases greatly when there is a need to process
large volumes (fermentation broth volume versus cell pellet
volume). In general, microalgae and fungi have thick and rigid
cell walls and are more resistant to solvent disruption, and this
will require a mechanical cell disruption step. In contrast, bac-
teria such as E. coli have weak cell membrane and are less
resistant to solvent, making extraction from this host more
amenable. Hence, step 2 (mechanical cell disruption) is op-
tional for astaxanthin extracted from bacteria. More interest-
ingly, in the case where astaxanthin is secreted into the media,
a two-phase fermentation system is used to harvest extracel-
lular astaxanthin with a biocompatible organic solvent (Zhang
et al. 2018b). Thus, purifying astaxanthin from the organic
layer is as simple as separating solvent from fermentation
broth followed by evaporation of the solvent.

The key step in extracting astaxanthin is the choice
of solvent used. This can be based on the “Pfizer
Solvent Selection Guide”, where “preferred” solvents
are green and safe (e.g. ethanol, ethyl acetate), “usable”
ones are less green but have no better substitutions (e.g.
cyclohexane and n-heptane), and “undesirable” (e.g. n-
hexane and dichloromethane) ones are less safe but
green (Bauer and Minceva 2019). Alternatively, super-
critical CO2 is an attractive method for extraction due to
adjustable selectivity, zero solvent residues, ease to be
recycled, and greenness of CO2 (Sanzo et al. 2018).

However, co-solvents are often required in most cases
to improve the extraction efficiency of carotenoids
(Krichnavaruk et al. 2008; Nobre et al. 2006).
Furthermore, the capital investment in the use of super-
critical CO2 is noticeably higher as compared with con-
ventional solvent extraction method.

The operation cost of astaxanthin produced from
microalgae is relatively high. This is due to the cost
incurred for harvesting the low biomass of microalgae
from bioreactors, which accounts for as much as 20–
30% of the total production cost (Bauer and Minceva
2019; Panis and Carreon 2016). For production in bac-
teria and yeasts, such cost can be considerably reduced
because of high biomass attainable in fed-batch
fermentation.

Challenges and commercialization outlook

The breakthrough in methodologies and the objectives
of achieving high “TRY” (titre, rate, and yield) in mi-
crobial synthesis of astaxanthin, especially in non-native
hosts, together with maturity of extraction technology,
have greatly decreased the production cost which is
now comparable or even lower, in several cases, than
that of chemical synthesis.

Regardless of whether astaxanthin and other carotenoids
are produced naturally, synthetically, or otherwise, there are
regional legal and regulatory challenges associated with the
commercialization as food/feed, nutraceutical, and cosmetic
products (Novoveská et al. 2019). One advantage of using
native astaxanthin-producing microbes is the greater regulato-
ry acceptance and better consumer reception as products from
non-genetically modified organism (GMO) sources. In other
words, the main challenge to commercialize astaxanthin pro-
duced by non-native microbes is the regulatory hurdles and
associated consumers’ perception. However, these non-GMO
demands are applicable only for direct human consumption as

cell harvest 

centrifuge

mechanical 
cell disruption

solvent 
extraction 

fermentation filtration bead mill

cell 
cultivation drying

supercritical 
CO2 extraction

Solvent extraction

Astaxanthin 
concentrate

Solvent 
evaporation

Fig. 4 A common workflow for
astaxanthin extraction from
microbes. The extraction
processes include cell harvest,
mechanical cell disruption, drying
of cells, and solvent extraction (or
supercritical CO2 extraction)
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food additives and nutraceuticals, but not for other applica-
tions such as in medicine, animal feed, and cosmetics, where
quality and cost are critical factors. To date, only natural
astaxanthin has been approved for human consumption as a
nutraceutical (Capelli et al. 2013). Furthermore, the GMO
regulation rules vary in different countries and regions.
Some regulatory parties loosely define non-chemically syn-
thetic substances as natural products. If astaxanthin is purified
from biomass to be DNA-free and toxin-free, it is not labelled
as a GMOmaterial but a “natural” or “natural identical” prod-
uct. In these cases, the metabolically engineered microbes
hold good potential in terms of lower cost and higher purity.

All the aforementioned microbes in Table 2 have the po-
tential to be developed into biofactories for astaxanthin pro-
duction, and we have further summarized the unique advan-
tages of each microorganism in Table 1. Briefly, E. coli is the
fastest-growing species among all the astaxanthin-producing
microbes and is the most studied bacterium. As the first mi-
crobe engineered to produce astaxanthin, it has been opti-
mized to achieve the highest titre and production rate (Park
et al. 2018) and content (Zhang et al. 2018b). S. cerevisiae is
the second microbe engineered to synthesize astaxanthin with
high TRY (Jin et al. 2018; Zhou et al. 2019). As S. cerevisiae
has been used for over 10,000 years for brewing and baking, it
is one of the most recognizable strains and well-accepted in
food products. The oleaginous yeast Y. lipolytica naturally
accumulates lipid bodies which act as a “sink” for hydropho-
bic compounds such as astaxanthin. Hence, it has a higher
storage capacity of astaxanthin over E. coli and budding yeast.

Other microbes with promising characteristics may also
serve as biofactories for astaxanthin production. The gram-
positive bacterium C. glutamicum grows rapidly and has na-
tive carotenogenesis genes and produces C50 carotenoids
such as decaprenoxanthin. K. marxianus is an industrially
used ascomycetous yeast capable of co-utilizing lactose and
glucose and is thermos-tolerant up to 45 °C (Lane and
Morrissey 2010). In addition, this strain of yeast can use in-
dustrial whey waste to produce high-value compounds includ-
ing astaxanthin (Lane and Morrissey 2010). Synechococcus
sp. is a fast-growing cyanobacterium and is able to attain high
density of growth under stress-free phototrophic conditions.
Repurposing the metabolic pathways by modulating the ex-
pression of heterologous genes in these organisms may serve
as the next generation of useful host for the production of
astaxanthin.

Looking forward, biotechnology-inspired microbial syn-
thesis will be a significant competitor to the chemical synthet-
ic approach in production cost and purity. Althoughmicrobial-
produced astaxanthin has yet to be widely adopted, we envi-
sion that this product will become one of the main sources of
astaxanthin in the near future.

Conclusion

The health and nutritional benefits of astaxanthin contribute
significantly to the recent increase in the demand for
astaxanthin. In general, microbe-derived astaxanthin is con-
sidered natural and due to consumer preference, it has
commanded premium price over synthetic forms. The recent
promising results from metabolic engineering of biosynthetic
pathways in microbes are beginning to rival the conventional
methods to produce astaxanthin in high titre, rate, and yield.
This will result in the lowering of cost and the increase in the
availability of astaxanthin dramatically. Furthermore, these
biosynthetic approaches are green and sustainable and as such,
we envision that microbial-produced astaxanthin will gradu-
ally replace synthetic and naturally extracted astaxanthin in
the near future.
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