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Administration of Bifidobacterium bifidum CGMCC 15068
modulates gut microbiota and metabolome in azoxymethane
(AOM)/dextran sulphate sodium (DSS)-induced colitis-associated
colon cancer (CAC) in mice
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Abstract
The gut microbiota plays an important role in colorectal cancer (CRC), and the use of probiotics might be a promising interven-
tion method. The aim of our study was to investigate the beneficial effect of Bifidobacterium bifidum CGMCC 15068 on an
azoxymethane (AOM)/dextran sulphate sodium (DSS)-induced colitis-associated CRC (CAC) mouse model. CAC was induced
by an intra-peritoneal injection of AOM (10 mg/kg) and three 7-day cycles of 2% DSS in drinking water with a 14-day recovery
period between two consecutive DSS administrations. B. bifidum CGMCC 15068 (3 × 109 CFU/mL) was gavaged once daily
during the recovery period. Then, the faecal microbial composition and metabolome were profiled using the 16S rRNA sequenc-
ing technology and gas chromatography-mass spectrometry (GC-MS), respectively. The administration of B. bifidum CGMCC
15068 attenuated tumourigenesis in the CAC mouse model. In addition, B. bifidum CGMCC 15068 pre-treatment increased the
relative abundance of Akkermansia, Desulfovibrionaceae, Romboutsia, Turicibacter, Verrucomicrobiaceae,
Ruminococcaceae_UCG_013, Lachnospiraceae_UCG_004, and Lactobacillus. Meanwhile, B. bifidum CGMCC 15068 altered
metabolites involved in the citrate cycle (TCA cycle), glycolysis, butyrate metabolism, fatty acid biosynthesis, and galactose
metabolism. Several significant correlations were identified between the differentially abundant microbes and metabolites. These
findings supported the beneficial role of B. bifidum CGMCC 15068 in intestinal health by modulating dysbiosis and the gut
metabolic profile. The manipulation of the gut microbial composition using probiotics might be a promising prevention strategy
for CRC. Long-term and large-scale clinical trials are warranted for the potential clinical applications of this strategy in the future.
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Introduction

Colorectal cancer (CRC) is the third most commonly diag-
nosed cancer and the second leading cause of cancer mortality
worldwide (Bray et al. 2018). A majority of CRC incidences
are associated with diet and lifestyle, particularly with the
increased meat and decreased dietary fibre in the diet, which
also affect the gut microbiota (Tan and Chen 2016). As the
large intestine has the highest exposure tomicroorganisms, the
involvement of gut microbial dysbiosis in colon
tumourigenesis has been widely studied (Gao et al. 2015;
Zou et al. 2018).

The application of probiotics might be a promising treat-
ment and prevention strategy for CRC. Bifidobacterium
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bifidum CGMCC 15068 is a bacterial species belonging to the
genus Bifidobacterium, which is one of the most widely used
probiotic bacteria (O’Callaghan and van Sinderen 2016).
Several researchers have investigated the potential role of
bifidobacteria in the initiation and progression of CRC
(Hibberd et al. 2017; Song et al. 2018; Mendes et al. 2018).
However, the mechanism of its beneficial role in colon health
is still not fully understood.

The metabolic activity is a crucial feature of the gut micro-
biota and is one of the potential mechanisms of the host–
microbiota interaction (Louis et al. 2014; Zarrinpar et al.
2018). It also has been shown to have a strong influence on
the development of CRC. These microbes contain a wide
range of enzymes and thus can metabolise diverse substrates
(Arthur and Jobin 2011). The gut microbial-generated metab-
olites include beneficial substances (Canani et al. 2011; Louis
et al. 2014) as well as pro-inflammatory and pro-carcinogenic
substances (Russell et al. 2011; Louis et al. 2014).

CRC has been strongly linked with inflammation, and pre-
vious epidemiology research has indicated the increased risk
of developing CRC in patients with the inflammatory bowel
disease (IBD), which is also known as colitis-associated can-
cer (CAC) (Jess et al. 2005). The injection of the pro-
carcinogen azoxymethane (AOM) followed by the adminis-
tration of the inflammatory agent dextran sulphate sodium
(DSS) is a classic animal model for the study of
inflammation-associated CRC (De Robertis et al. 2011).
Thus, in the current study, we used the CAC mouse model
to assess the influence of B. bifidum CGMCC 15068 on colon
tumourigenesis, gut microbial composition, and gut metabolic
profile.

Materials and methods

Bacterial strains

B. bifidum CGMCC 15068 was deposited at the China
General Microbiological Culture Collection Center
(CGMCC) and was cultured in Man–Rogosa–Sharpe broth
(Thermo Fisher, Shanghai, China) anaerobically at 37 °C for
24 h. The cultures were centrifuged at 4 °C at 8000×g for
10 mins, washed twice with sterile phosphate buffer saline
(PBS), and re-suspended to the centration of 3 × 109 colony-
forming units (CFU)/mL for future use. The bacterial concen-
trations were determined by measuring the absorbance at
630 nm (O.D. range, 0.6–0.8). The experiments were conduct-
ed under strict anaerobic conditions.

Animals

Male C57BL/6 mice (aged 8 weeks) were purchased from
Shanghai Laboratory Animal, Co., Ltd. (SLAC). The mice

were acclimatised (1 week after their arrival) and raised in a
specific pathogen-free (SPF) environment (23 °C, 12/12-h
light/dark cycle, 50% humidity, and food and water available
ad libitum). The experiment protocol was approved by the
Animal Care Committee of Zhejiang University School of
Medicine.

Experimental design and colitis-associated colon
cancer mouse model

Azoxymethane (AOM) was purchased from Sigma-Aldrich
(St. Louis, MO, USA), and dextran sodium sodium (DSS)
was purchased from MP Biomedicals (molecular weight:
36–50 kDa; Santa Ana, CA, USA). The mice were randomly
divided into three groups: the control group (PBS group; n =
10), AOM/DSS model group (AOM group; n = 12), and
AOM/DSS model with B. bifidum CGMCC 15068 adminis-
tration (AOM.BF group; n = 9). One of the main interests of
the current study was to investigate the role of B. bifidum in
the development of colitis-associated colon cancer. PBS group
was set as the negative control group, and AOM/DSS model
group was set as the positive control group, while AOM/DSS
model with B. bifidum administration was set as the experi-
mental group. The reason why the PBS group with B. bifidum
administration was not added is based on previous research in
which B. bifidum strain administration caused neither death
nor colon-related illness (Grimm et al. 2015). Nevertheless,
B. bifidum is one of the most important commensal bacteria in
infant intestine and plays a role in maintaining host health
status (Turroni et al. 2012). It has been extensively used as
probiotics in both adult and paediatric populations (Gareau
et al. 2010). The safety of B. bifidum strains has also been
extensively assessed and confirmed in the previous studies
(Kim et al. 2018; Abdelhamid et al. 2019). Each cage housed
fewer than five mice. To induce colitis-associated colon can-
cer (Fig. 1a), 10 mg/kg of AOM was intra-peritoneally
injected into all the mice in both the AOM group and the
AOM.BF group. The mice in the PBS group were injected
the same volume of 0.9% physiological saline. Three 7-day
cycles of freshly prepared 2%DSS (wt/vol) were administered
to the mice in both groups 7 days after the AOM injection.
Between the DSS administrations, sterile drinking water was
given to the mice as the recovery period. Meanwhile, the mice
in the AOM.BF group were orally gavaged 0.2 mL of
B. bifidum CGMCC 15068 (3 × 109 CFU/mL) once daily in
the recovery period. In addition, the mice in the PBS group
and the AOM group were orally administered the same
amount of PBS.

Sample collection

The weights of the mice were recorded in the experiment
every 7 days. The mice were euthanised after the last cycle
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of DSS (Fig. 1a). The incidence of colon cancer was examined
in each mouse. In addition, the faecal contents were collected
at the time of sacrifice for the microbial composition and me-
tabolome assessment. The samples were first frozen in liquid
nitrogen and stored at − 80 °C until further processing.

DNA extraction and 16S rRNA sequencing

Total DNA was extracted using QIAamp Fast DNA
Stool Mini Kit (Qiagen, Hilden, Germany) according
to the manufacturer’s handbook. After verifying the
quality and the concentration of DNA with agarose gel
and NanoDrop, the extracted DNA was diluted to the
concentration of 1 ng/μL as the PCR template. The
PCR amplification of the V3–V4 variable regions of
the bacterial 16S rRNA genes was conducted using uni-
versal primers 343F and 798R and Takara Ex Taq
(Takara Biomedicals, Kusatsu, Japan).

The amplicon was purified with AMPure XP beads
(Agencourt, Beckman Coulter, Brea, CA, USA) and amplified
with another round of PCR, and its quality was visualised with
gel electrophoresis. The amplicon was then purified again
before final quantification by using the Qubit dsDNA assay
kit (Thermo Scientific, Waltham, Massachusetts, USA). The
subsequent paired-end sequencing was performed on pooled
purified amplicon at the Illumina MiSeq platform (Illumina,
San Diego, CA, USA) according to the manufacturer’s
instructions.

Microbial composition analysis

The paired-end raw sequencing reads were trimmed using the
Trimmomatic software (Bolger et al. 2014) with a quality
score cutoff of 20. The trimmed reads were subsequently as-
sembled by the FLASH software (version 1.2.8) (Magoč and
Salzberg 2011). Then, the QIIME software (version 1.8.0)
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(Caporaso et al. 2010) was used for the sequence denoising as
well as the chimaera detection and removal. After removing
the primer sequence, clean reads with 97% similarity were
clustered into the same operational taxonomic unit (OTU)
with the VSEARCH software (Rognes et al. 2016). The rep-
resentative read in each OTU was selected using the QIIME
software (version 1.8.0) (Caporaso et al. 2010). The annota-
tion of the representative reads in each OTU was based on the
SILVA database (version 123) (Quast et al. 2013) by using the
Ribosomal Database Project (RDP, database v.11.3) classifier
(Cole et al. 2014). A principal coordinate analysis (PCoA)
based on the Bray–Curtis distance was performed with the
QIIME software (version 1.8.0) (Caporaso et al. 2010). The
analysis of similarity (ANOSIM)was also conducted with 999
permutation tests to investigate the significance of the differ-
ence identified between groups. To further explore the micro-
biota diversity, a linear discriminant analysis effect size mea-
surement (LEfSe) analysis was conducted on the Galaxy web
platform (Segata et al. 2011). The effect size of the microbial
taxa was calculated by the linear discriminant analysis (LDA),
and the cutoff for the discriminative taxa was an LDA score of
more than 2.

Untargeted metabolome profiling using GC–MS

For each accurately weighted faecal sample (50 mg), 600 μL
of ice-cold methanol/water (4:1, v/v) (CNW Technologies
GmbH, Düsseldorf, Germany) and 20 μL of internal standard
(2-chloro-l-phenylalanine in methanol, 0.3 mg/mL) (Shanghai
Hengchuang Bio Technology, Shanghai, China) were added
and homogenised. After centrifugation (4 °C, 12000 rpm,
10 min), a quality control (QC) sample was prepared by
mixing aliquots of all 31 faecal samples. The supernatant
was vacuum-dr ied , and subsequent ly, 80 μL of
methoxylamine hydrochloride (15 mg/mL, in pyridine)
(CNW Technologies GmbH, Düsseldorf, Germany) was
added. Themixture was vortexed for 2 min and then incubated
a t 3 7 °C f o r 9 0 m i n . T h e n , 8 0 μL o f N ,O -
bistrifluoroacetamide (BSTFA) (with 1% trimethylsilyl chlo-
ride (TMCS)) (CNW Technologies GmbH, Düsseldorf,
Germany) and 20 μL of n-hexane (CNW Technologies
GmbH, Düsseldorf, Germany) were added into the mixture.
The sample was vortexed for 2 mins and derivatised at 70 °C
for 60 mins. The pre-processed samples, QC sample, and
blanks were analysed on an Agilent 7890B gas chromatogra-
phy system coupled to an Agilent 5977AMSD system
(Agilent Technologies Inc., Santa Clara, CA, USA).

The raw data were pre-processed in theMS-DIAL software
(Tsugawa et al. 2015). The metabolites were annotated by the
in-house database (LUG database and untarget database of
GC–MS from Lumingbio, Shanghai, China). Then, both prin-
cipal component analysis (PCA) and orthogonal partial least
squares-discriminant analysis (OPLS-DA) were performed to

compare the difference in the metabolome profiles between
the groups using SIMCA (version 14.1) (Sartorius Stedim
Biotech, Umeå, Sweden). For OPLS-DA, we also carried
out a sevenfold cross-validation and 200 response permutation
tests to measure the model reliability and avoid model over-
fitting. The variable importance in the projection (VIP) of each
metabolite was obtained from the OPLS-DA model. In addi-
tion, two-tailed Student’s t tests were performed to compare
the metabolite concentration between different groups using
the R software (version 3.6.0) (R Core Team 2013).
Metabolites with VIP > 1 and two-tailed Student’s t test p
value < 0.05 were identified as differentially abundant metab-
olites among the groups. The differential metabolites were
then uploaded to MetaboAnalyst 4.0 (www.metaboanalyst.
ca/) for the metabolomics pathway analysis.

Microbiota and metabolome integration analysis

Both untargeted and targeted integration analyses were per-
formed. First, the relationship between all the microbial taxa
and metabolites within the three groups was evaluated using
sparse partial least square-discriminant analysis (sPLS-DA).
The analysis was conducted using mixOmics R package
(Rohart et al. 2017). Subsequently, the Pearson correlations
between the differentially abundant microbial taxa and metab-
olites between AOM.BF and AOM group were analysed and
visualised using the R software (version 3.6.0) (R Core Team
2013).

Statistical analysis

The normality of the data was checked by the Kolmogorov–
Smirnov test. The body weight change difference and the
large tumour number difference were determined using one-
way ANOVA and Tukey’s multiple pairwise comparisons. p
value < 0.05 was considered significant. All of the data anal-
yses were conducted using R (version 3.6.0) (R Core Team
2013).

Nucleotide sequence accession number

The 16S rRNA sequencing data of the mice faecal microbiota
was deposited in the Sequence Read Archive (SRA) database
and can be accessed by the accession number PRJNA594160.

Results

B. bifidum CGMCC 15068 attenuated intestinal
tumourigenesis in mice

We replicated colitis-associated CRC using an intra-peritoneal
injection of AOM followed by three cycles of water-
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administered DSS (Fig. 1b). The body weight loss was report-
ed as an indicator of the tumourigenesis and was consistent
with the inflammatory markers. The percentages of the weight
change relative to the baseline weight were measured every
7 days during the experiment. As shown in Fig. 1c, there was a
consistent decline in the mouse body weight after each round
of DSS treatment. When the mice were sacrificed, the body
weight gain was the highest in the PBS group (22.0% ± 7.5%)
followed by that in the AOM.BF group and in the AOMgroup
(22.0% ± 6.2%; 16.2% ± 3.3%; p value < 0.05). The number
of macroscopic tumours (> 2 mm in diameter) was also com-
pared among the groups (Fig. 1d). The mice in the AOM
group developed almost twice more tumours per mouse than
the CACmouse model administered with B. bifidumCGMCC
15068 (1.6 ± 1.4 vs. 0.4 ± 0.7, p value < 0.05). The PBS group
showed no tumour incidence. Overall, these results showed
that B. bifidum CGMCC 15068 attenuated intestinal
tumourigenesis in mice.

B. bifidum CGMCC 15068 induced shift in gut
microbiota composition

In all, 874,912 reads (AOM, 357,204; AOM.BF, 274,967;
PBS, 242,741) from 31 samples were obtained for the down-
stream analysis, and 1983 OTUs were identified with a 97%
similarity cutoff. Chao1 and Shannon index (alpha diversity)
are the predictors of taxonomic richness and evenness, respec-
tively, and were not significantly different across the groups (p
value > 0.05).

The inter-sample differences (beta diversity) were
measured by the principal coordinate analysis (PCoA)
on the basis of the Bray–Curtis distance (Fig. 2a).
Together with the significance of the separation calcu-
lated by ANOSIM, the results revealed that the samples
in the AOM group were separated from the PBS sample
(p value = 0.001). In addition, the AOM.BF group was
separated from the AOM group (p value = 0.009), and
AOM.BF exhibited the tendency to cluster toward the
PBS group, which demonstrated that the administration
of B. bifidum CGMCC 15068 attenuated the AOM/DSS-
induced gut microbiota dysbiosis.

Next, the relative microbial taxa abundances were com-
pared between the three groups using ANOVA. The top 15
most abundant microbial taxa at the phylum, family, and ge-
nus levels are shown in Fig. 2b–d. At the phylum level, com-
pared with the AOM group, the B. bifidum CGMCC 15068
administration increased the abundance of Proteobacteria and
Verrucomicrobia and decreased the abundance of
Bacteroidetes, Firmicutes, and Actinobacteria. At the family
level, the abundance of Rikenellacea, Rhodospirillaceae, and
Lachnospiraceaewas more enriched in the PBS group than in
the AOM group and AOM.BF group , whe r ea s
Coriobacteriaceae and Peptococcaceae were more abundant

in the AOM group. At the genus level, the AOM group had
h i g h e r a b u n d a n c e o f L a c h n o c l o s t r i d i u m ,
Coriobacteriaceae_UCG_002, and Parasutterella.

To further investigate the significantly differentially abun-
dant taxa with biological consistency, we then performed the
LEfSe analysis. We found that the administration of
B. bifidum CGMCC 15068 increased the abundance of
Akkermansia , Desulfovibrionaceae , Romboutsia ,
T u r i c i b a c t e r , V e r r u c o m i c r o b i a c e a e ,
Ruminococcaceae_UCG_013, Lachnospiraceae_UCG_004,
and Lactobacillus (Fig. 3a–b, LDA score (−log10) > 2) and
the AOM group had increased the abundance of
Bacteroidetes , Parasutterella , Coriobacteriaceae ,
Actinobacteria , Peptococcaceae , Clostridiaceae ,
Ruminiclostridium_9, and Streptococcaceae (Fig. 3a–b,
LDA score (−log10) > 2). The PBS control group showed
higher abundance of Lachnospiraceae, Rikenellacea,
Rhodospirillaceae, Deferribacteres, Butyricimonas, and
Prevotellaceae (Fig. 3a–b, LDA score (−log10) > 2).

To predict the metabolic functions of the microbiota, the
Phylogene t i c Inves t iga t ion of Communi t i e s by
Reconstruction of Unobserved States (PICRUSt) analysis
was conducted based on the Kyoto Encyclopaedia of Genes
and Genomes (KEGG) metabolic pathways (Langille et al.
2013). Interestingly, in terms of the KEGG pathway analysis
between the AOM group and the AOM.BF group, the colo-
rectal cancer pathway and the p53 signalling pathway were
more enriched in the AOMgroup (Online Resource Table S1).

B. bifidum CGMCC 15068 altered faecal metabolic
composition

Overall, 342 metabolites were detected from all the faecal
samples across the groups. The results of the unsupervised
PCA analysis (Fig. 4a) indicated that the metabolome profile
of the three groups could be separated from one another
(R2X = 0.478). The score plot also showed that the AOM.BF
group clustered between the AOM group and the PBS group,
with a tendency toward the PBS group. The supervisedOPLS-
DA analysis was then performed between the groups (AOM
vs. PBS; AOM.BF vs. AOM). As is depicted in Fig. 4b and c,
there were significant separations in the metabolic profiles
between these groups. The cross-validation permutation tests
confirmed the validity of the supervised OPLS-DA models,
which illustrated that the original model predicted the class
label better than the other models with the permutated label
(Online Resource Fig. S1; AOM vs. PBS: Q2

inter = − 0.56;
AOM.BF vs. AOM: Q2

inter = − 0.569). Overall, the results
showed that the CAC model group had a distinct metabolic
composition from the PBS control group and the CAC model
pre-treated with B. bifidum CGMCC 15068.

One of the main interests of the current study was to
investigate the role of B. bifidum CGMCC 15068 in the
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development of CAC. Subsequently, we selected the
metabolites that contributed to the change in the meta-
bolic composition among the groups on the basis of the
threshold of VIP score > 1 and p value < 0.05. As
depicted in Fig. 4d–e, 109 differentially abundant me-
tabolites were identified from the comparison between
the AOM.BF group and the AOM group. The metabolic
pathways these metabolites were involved with included
citrate cycle (TCA cycle); galactose metabolism;
glyoxylate and dicarboxylate metabolism; ascorbate and
aldarate metabolism; glycolysis; alanine, aspartate, and
glutamate metabolism; butyrate metabolism; and fatty
acid biosynthesis. From the S-plot (Fig. 4d), the metab-
olites that were farthest from the origin were pointed
out, including N-methylglutamic acid, L-lactic acid,

cadaverine, and hexadecane. They might potentially
contribute more to the separation of the metabolome
profile between AOM.BF and AOM group.

Relationship between the microbiota
and metabolome

First, Sparse partial least square-discriminant analysis (sPLS-
DA) was performed to integrate the metabolome profile and
the microbial composition from all the faecal samples in all
the groups. The correlation circle plot (Fig. 5a) highlighted the
close relationship between the microbial composition and fae-
cal metabolite content. The pairwise correlations were further
illustrated on a circus plot shown in Fig. 5b.
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We then continued to assess the targeted correlation be-
tween differentially abundant microbes and metabolites from
the AOM.BF group and the AOM group. In particular, the
most discriminative metabolites were further selected by fold
change (FC) > 2. As shown in Fig. 6, several significant cor-
relations (p value < 0.05) were identified. The relative abun-
dance of Romboutsia was negatively correlated with the lactic
acid level and positively correlated with the citric acid level.
Furthermore, positive correlations with citric acid concentra-
tion were also found with the relative abundance of
Turicibacter and Lachnospiraceae_UCG_004. The relative
abundance of Ruminiclostridium_9 was, however, negatively
correlated with the citric acid level. Additionally,
Peptococcaceae and Ruminiclostridium_9 exhibited a nega-
tive relationship with cadaverine.

Discussion

In the present study, we investigated the microbial composi-
tion, metabolome profile, and the interaction between the mi-
crobiota and the metabolome to disentangle the complex role
of B. bifidum CGMCC 15068 in the tumourigenesis of colo-
rectal cancer. The significance of the current study was its
investigation of the microbial metabolic function rather than
merely focusing on the microbial taxonomy difference.

We first characterised the microbial composition differ-
ences across the three groups. On the one hand, we found
microbial taxa that were more enriched in the AOM.BF group.
In particular, Ruminococcaceae and Lachnospiraceae, which
are two major families from the phylum Firmicutes, were
enriched in the CAC mouse group administered with
B. bifidum CGMCC 15068. Both microbial families are
known as anti-inflammatory factors, and the microbes within
the Lachnospiraceae family have been shown to be protective
against CRC (Meehan and Beiko 2014). Additionally,
Romboutsia is commonly related to the healthy status of the
gut in the patients (Milani et al. 2016), and the increase in
Romboutsia with the supplement of B. bifidum CGMCC
15068 indicated that B. bifidum CGMCC 15068 may help
maintain the gut mucosa health and ameliorate tumourigenesis
under the AOM/DSS condition. The group administered with
B . b i f i dum CGMCC 15068 a l so i nc r e a s ed the
relative abundance of Lactobacillus, which is within the gen-
erally used probiotics and has been shown to prevent colon
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�Fig. 3 Identification of differentially abundant microbial taxa using
linear discriminant analysis effect size (LEfSe) analysis. a LEfSe clado-
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mouse group (red, AOM; green, AOM.BF; blue, PBS). b LEfSe score
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cancer in the mouse model (Foo et al. 2011; Zhu et al. 2014;
Jacouton et al. 2017). Another interesting finding was the
elevation of Akkermansia in the AOM.BF group.
Akkermansia is the representative genus from the family
Verrucomicrobiaceae and plays an important role in regulat-
ing the host metabolism (Derrien et al. 2004; Bian et al. 2019;
Macchione et al. 2019). It has been extensively studied in
metabolic diseases such as obesity (Everard et al. 2013) as
well as gastrointestinal diseases such as ulcerative colitis
(Bian et al. 2019). Additionally, the increase in Turicibacter
was observed in the AOM.BF group, which has been reported
in the previous studies as a possible marker for the gut health
status (Collins et al. 2014). On the other hand, there were
bacteria more enriched in the CAC mouse model. For in-
stance, the relative abundance of Parasutterella and
Coriobacteriaceae was increased. Previous research has sug-
gested that Parasutterella may play a role in the chronic in-
testinal inflammation and gut pathophysiological changes
(Chen e t a l . 2018) . The re la t ive abundance of
Coriobacteriaceae has been reported to increase in CRC pa-
tients (Chen et al. 2012).

Accumulating evidence has indicated that the microbiota
may influence the host’s health by its metabolites. As a func-
tional readout of the intestinal microbiota (Zierer et al. 2018),
the faecal metabolome was then profiled. We demonstrated
significant differences in the metabolic profile across the
AOM, AOM.BF, and PBS groups. Compared with the
AOM group, the pre-treatment of B. bifidum CGMCC
15068 in the AOM.BF group regulated the level of 109 me-
tabolites, including benzenoids, lipids, nucleotides, organic
acids, and organic nitrogen/oxygen compounds. These metab-
olites were involved in several important cancer-related met-
abolic pathways including the TCA cycle, glycolysis, butyrate
metabolism, fatty acid biosynthesis, and galactose metabo-
lism. The TCA cycle was the most important central pathway
for biosynthesis and energy metabolism. The role of the TCA
cycle in cancer metabolism was demonstrated in the previous
study (Anderson et al. 2018). Glycolysis is the feature of

cancer cells to generate most of their energy even under aer-
obic conditions, which is also called the Warburg metabolism
(Liberti and Locasale 2016). The regulation of the metabolites
involved in these pathways by B. bifidum CGMCC 15068
demonstrated the gut microbiota as an important modulator
of the host metabolism in health and disease (Kinross et al.
2011). In addition, the butyrate metabolism and fatty acid
metabolism pathways were also regulated by the administra-
tion of B. bifidum CGMCC 15068. Butyrate is a short fatty
chain acid and has been considered to mediate the repressive
effect of dietary fibre in cancer (Scharlau et al. 2009).
Furthermore, butyrate is an anti-cancer and anti-
inflammatory microbial metabolite and is important for gut
homeostasis (Rivière et al. 2016). Butyrate-generating bacte-
ria have been reported to co-exist with bifidobacteria (Rivière
et al. 2016). This is also shown in our finding that
Akkermansia, which is butyrate-generating bacteria, was more
abundant in the group that administered with B. bifidum
CGMCC 15068. The significance of the fatty acid synthesis
pathway in tumourigenesis has been linked to the excess need
for cellular proliferation (Currie et al. 2013). For the modula-
tion of the galactose level, bifidobacterial enzymes are in-
volved in the galactose metabolism (Kitaoka 2012).

A number of microbes might be involved in the alteration
of the faecal metabolome and thus affect colon health and
CAC progression. Note that in the CAC mice treated with
B. bifidum CGMCC 15068, the relative abundances of
Turicibacter, Romboutsia, and Lachnospiraceae_UCG_004
were positively correlated with the citric acid level, and the
abundance of Ruminiclostridium_9 was negatively correlated
with the citric acid level. Citric acid is a crucial intermediate in
the TCA cycle and has been shown to inhibit cancer growth in
a range of tumour types (Wang et al. 2016; Ren et al. 2017)
potentially by downregulating glycolysis (Lin et al. 2012).
Furthermore, the relative abundance of the microbial taxa
within Romboutsia family was negatively correlated with the
level of lactic acid. It is a characteristic of tumour metabolism
that excess lactic acid is generated because of the high con-
sumption of glucose in the glycolysis in cancer cells (Liberti
and Locasale 2016). The negative correlation between the
microbes and the lactic acid suggests that these bacteria may
play a role in lactic acid metabolism. There is a synergic me-
tabolism between the lactic acid-generating bacteria such as
B. bifidum and the lactic acid-utilising bacteria (Sato et al.
2008). The enrichment of B. bifidum CGMCC 15068 might
favour the metabolic function of the lactic acid-utilising bac-
teria so as to reduce the amount of lactic acid. Another inter-
esting finding was the negative correlation between
Peptococcaceae and Ruminiclostridium_9 and the concentra-
tion of cadaverine (CAD). CAD is a microbial metabolite
produced by the bacterial decarboxylation of lysine by the
lysine decarboxylase (LDC) enzyme (de las Rivas et al.
2006). The influence of CAD on carcinogenesis was

�Fig. 4 Bifidobacterium bifidum CGMCC 15068 altered faecal metabolic
composition. a Score plot of PCA analysis comparing the metabolome
profile among the groups (red, AOM; green, AOM.BF; blue, PBS). b
Score plot of OPLS-DA analysis comparing the metabolome profile
between AOM group (red) and the PBS group (blue). c Score plot of
OPLS-DA analysis comparing the metabolome profile between the
AOM.BF group (green) and the AOM group (red). d S-plot from
OPLS-DA model between AOM.BF and AOM group. The marked me-
tabolites located at the top-left and bottom-right side tend to play more
important roles in discriminating the metabolic profile between the
groups. e Heat map of the significantly differentially abundant metabo-
lites between the AOM.BF group (red) and the AOM group (blue) (VIP
> 1 and p value <0 .05). A row presents the data obtained from a metab-
olite, and a column represents a sample. The red and green colours cor-
respond to the increased and the decreased levels of the metabolites,
respectively
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characterised in a previous study that treated the breast cancer
cells with CAD (Kovács et al. 2019). The finding showed that
CAD inhibited the tumour cell movement and invasion
(Kovács et al. 2019). Furthermore, the abundance of DNA
coding for the lysine decarboxylase (LDC) enzyme that gen-
erated CAD was found to be lower in the cancer faecal sam-
ples (Kovács et al. 2019). This indicated that the microbial
taxa Peptococcaceae and Ruminiclostridium_9 might lack
LDC enzyme or lead to the decrease of bacteria that contain
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Fig. 6 Pearson correlation analysis of the differentially abundant
microbial taxa (LDA score > 2) and the differentially abundant
metabolites (VIP > 1, p value < 0.05, fold change (FC) > 2). The signif-
icant correlations (p value < 0.05) are shown in the plot. The colour and

the size of the circle represent the intensity level of the correlations, with
the positive correlations shown in blue and the negative correlations
shown in red

�Fig. 5 Sparse partial least square-discriminant analysis (sPLS-DA) of the
microbiota and metabolome profile from all samples. a Correlation circle
plot with the colours representing the nature of the data (red, microbiota;
green, metabolome). The close cluster of the points indicated strong cor-
relation between the microbial taxa and the metabolite level. bCircus plot
displaying the correlations between various microbial taxa (red) and the
metabolites (green) which are located at the side quadrants. Only corre-
lation larger than 0.7 is shown; the colour of the lines indicates the direc-
tion of the correlation (orange, positive correlation; black, negative cor-
relation). The abundance of the microbe and metabolites in all the groups
is shown outside the circus (blue, AOM; orange, AOM.BF; grey, PBS)
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such enzyme. Further functional studies are required to ex-
plore the relationships identified between the microbes and
metabolites in the current study.

In summary, the consumption of probiotic bacteria
B. bifidum CGMCC 15068 might modulate the intestinal mi-
crobial composition and the gut metabolic profile as part of the
microbial function. These findings might offer mechanistic
insights on the role of microbiota in colon tumourigenesis,
and the manipulation of the gut microbial composition using
probiotics might be a promising prevention strategy for CRC.
Future long-term and large-scaled clinical trials are warranted
for potential clinical applications.
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