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Abstract
Drug-resistant bacteria are becoming an increasingly widespread problem in the clinical setting. The current pipeline of antibiotics
cannot provide satisfactory options for clinicians, which brought increasing attention to the development and application of non-
traditional antimicrobial substances as alternatives.Metal ions, such as iron and zinc ions, have beenwidely applied to inhibit pathogens
through different mechanisms, including synergistic action with different metabolic enzymes, regulation of efflux pumps, and inhibi-
tion of biofilm formation. Compared with traditional metal oxide nanoparticles, iron oxide nanoparticles (IONPs) and zinc oxide
nanoparticles (ZnO-NPs) display stronger bactericidal effect because of their smaller ion particle sizes and higher surface energies. The
combined utilization of metal NPs (nanoparticles) and antibiotics paves a new way to enhance antimicrobial efficacy and reduce the
incidence of drug resistance. In this review, we summarize the physiological roles and bactericidal mechanisms of iron and zinc ions,
present the recent progress in the research on the joint use of metal NPswith different antibiotics, and highlight the promising prospects
of metal NPs as antimicrobial agents for tackling multidrug-resistant bacteria.
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Introduction

The large-scale misuse of antibiotics in agriculture, animal
husbandry, and medical practice causes a crisis of antimicro-
bial resistance worldwide (McEwen and Collignon 2018).

Antimicrobial resistance is an evolutionary phenomenon in
which microorganisms such as bacteria, certain parasites,
and viruses adapt to circumvent the action of antimicrobial
drugs (Pham et al. 2019). Over the past decades, in which
pathogenic bacteria, virus, and certain parasites, antimicrobial
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resistance has rapidly developed and disseminated, especially
along with emergence of the severely resistant “ESKAPE”
pathogens (Enterococcus faecium, Staphylococcus aureus,
Klebsiella pneumoniae , Acinetobacter baumannii ,
Pseudomonas aeruginosa, Escherichia coli), which makes com-
mon medical procedures such as surgery, organ transplants, and
chemotherapy increasingly risky, leading to severe hospital-
acquired infections. Recently, antimicrobial resistance has be-
come a major challenge in the global medical field, seriously
threatening human health and causing high significant mortality
(Post et al. 2019). How to meet this challenge is consequently of
great concern all over the world. The development of new anti-
biotics is a conventional way to solve this problem, which began
with the commercial production of penicillin in the late 1940s
and entered the golden age until the 1970s. However, in the
ongoing competition with microorganisms, antimicrobial agents
seem to always be the loser (Huh andKwon 2011; Taubes 2008).
The development of antibiotics is therefore having difficulty
keeping up with the speed of bacterial evolution, and the lack
of available drugs for certain strains is a pressing problem (Payne
et al. 2007; Tommasi et al. 2015).

Since the production pipeline of new antibiotics has almost
“dried up”, researchers are turning their sights to development
of new antimicrobial strategies, such as antibacterial peptides
(Lakshmaiah Narayana and Chen 2015), phage therapy
(Dedrick et al. 2019), metal ions (Zhang et al. 2019a), and
similar non-conventional active substances (Belbekhouche
et al. 2019). The antibacterial action of metal ions has been
known since antiquity and containers made of copper and
silver were used for water disinfection and food preservation
during the time of Persian kings (Alexander 2009). Silver has
been used as a topical preparation or as an additive to surgical
sutures and other materials to prevent infection (Medici et al.
2019). In fact, the use of metals as antibacterial materials was
widespread before the discovery of antibiotics by Alexander
Fleming in the 1920s (Lemire et al. 2013). Recently, with the
development of nanotechnology, metal NPs have become one
of the most sensible strategies to treat multidrug-resistant mi-
crobial infections, and the use of antimicrobial metals is being
revived (Pelgrift and Friedman 2013; Shnoudeh et al. 2019).
Compared with traditional metal-ion preparations, metal NPs
possess the characteristics of smaller size and larger surface
area, which makes them better adsorb on the bacterial cell
surface, allow more metal ions to penetrate the cell wall of
bacteria, and enhance the bactericidal effect (Hajipour et al.
2012; Pelgrift and Friedman 2013). NPs composed of metals
such as gold (Au), silver (Ag), copper (Cu), zinc (Zn), and iron
(Fe) show biocidal activity against a variety of microorgan-
isms (Pelgrift and Friedman 2013). Among them, iron and
zinc ions have been widely studied due to their widespread
presence in nature and their frequent use in daily life.

Like all other organisms, bacteria require certain essential
metal ions to perform their physiological functions, including

iron and zinc. However, excess iron, zinc, and other metal ions
also cause different forms of damage, such as oxidative stress,
protein dysfunction, and damage to membrane integrity (Saqib
et al. 2019;Wang et al. 2016; Xu et al. 2016). In this review, we
outline the principles of iron and zinc ions as antimicrobial
agents, update the application progress of metal NPs to treat
multidrug-resistant bacteria, and focus on the combined utili-
zation of metal ions, especially iron and zinc, with antibiotics.

Toxicity of iron and zinc ions to bacteria

Iron ions

Iron is an essential micronutrient for bacteria, involved in
many biological pathways, such as DNA synthesis and energy
metabolism (Dev and Babitt 2017). It is also the key factor
determining bacterial virulence (Eijkelkamp et al. 2011). In
the host, iron usually binds tightly with biomolecules like
heme, causing an iron-depleted environment in vivo, in which
bacteria have to adapt to by employing a series of iron acqui-
sition mechanisms (Eijkelkamp et al. 2011). One of the strat-
egies is siderophore, which has a high affinity for iron ions
that can capture iron from the host’s protein iron complexes
(Lamont et al. 2002). Another way for uptake of iron relies on
direct contact between the pathogen and the iron source
(Miethke and Marahiel 2007; Mosbahi et al. 2018).
However, excess ions can lead to catastrophic damage to bac-
terial cells. It was found that both Gram-negative (G−) and
Gram-positive (G+) bacteria can absorb Fe3+ and rapidly re-
duce it to Fe2+. The resulting Fe2+ is a catalyst for the forma-
tion of reactive oxygen species (ROS), generating large
amounts of hydroxyl radicals (·OH) through both the Fenton
reaction (Fe2+ + H2O2→ Fe3+ + OH− + ·OH) and the Haber-
Weiss reaction (O2

− + H2O2 + Fe3+→ Fe3+ + O2 + H2O + ·
OH) (Belenky et al. 2015; Rachmilewitz et al. 2005). These
hydroxyl radicals, which cannot be removed by the corre-
sponding enzyme system, will cause crippling damage to bac-
teria, such as lipid peroxidation in the cell membrane, protein
and DNA damage, and even cell death (Dharmaraja 2017;
Gambino and Cappitelli 2016) (Fig. 1).

Iron oxide nanoparticles (IONPs) are one of the few
nanomaterials that can penetrate small capillaries of the tissue
and blend into natural human metabolism (Iqbal et al. 2017).
Compared with ordinary iron ions, IONPs have a larger spe-
cific surface area, smaller volume, and higher activity. These
advantages make it easier to contact with bacterial cells and
complete the process of crossing the cell wall and cell mem-
brane (Wang et al. 2017). At first, the IONPs adhere to bacte-
rial cell closely and form a stable entity via electrostatic forces,
intermolecular forces, and cell adhesion. Then, they pass
through the cell wall, interact with lipids and proteins on the
cell membrane, and change the osmotic pressure, leading to
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membrane disruption. Once upon reaching the inside of the
cell, IONPs may also generate a large amount of ROS (Arakha
et al. 2015), disrupt DNA replication, and induce DNA
double-strand breaks (Dinali et al. 2017) (Fig. 2). The ability
of IONPs to kill bacteria via multiple described mechanisms
simultaneously increases its drug-resistance barrier, making it
harder for bacteria to adapt than conventional single-target
antimicrobials (Saqib et al. 2019; Wang et al. 2017). For ex-
ample, Fe3O4 NPs can inhibit the growth of E. coli, Bacillus
subtilis, Staphylococcus epidermidis, K. pneumoniae, and
P. aeruginosa (Rodrigues et al. 2019). Fe2O3 NPs have the
ability to kill bacteria and inhibit their biofilm formation
against Serratia marcescens, E. coli, P. aeruginosa, and
Listeria monocytogenes (Al-Shabib et al. 2018).

Recently, iron oxide-based magnetic NPs, composed of
maghemite ( -Fe2O3) and hematite (a-Fe2O3), have drawn great
attention and are listed for human biomedical applications by
the World Health Association owing to their magnetic property
(Dinali et al. 2017; Rodrigues et al. 2019). These iron oxide-
based magnetic NPs have been broadly used as drug delivery
and magnetic hyperthermia agents to treat bacterial infections
(Chaurasia et al. 2016; Laurent et al. 2011). Under the action of
a high-frequency amplitude alternating magnetic field, iron
oxide-based magnetic NPs convert magnetic energy into local

heat and inhibit the growth of bacteria, which aremore sensitive
to temperature than host cells (Hantke 2005; Jafarirad et al.
2016). For example, when exposed to Fe3O4@SiO2-NH2

(complex consisted of an Fe3O4 core and SiO2-NH2 shell),
the multidrug-resistant S. aureus and E. coli could be killed
completely within 30 min in the radio frequency electromag-
netic field owing to a disorder of membrane surface potential
and defects of protein function (Chaurasia et al. 2016). In addi-
tion, incubation of E. coli and P. aeruginosa bacteria with
100-μg/mL magnetite hybrid nanocomposites for 30 min also
caused death of all bacterial cells. In the case of magnetic field
treatment, the survival rate of E. coli and P. aeruginosa biofilms
decreased significantly compared with controls that were not
exposed to the magnetic field (Zhang et al. 2019a).

Zinc ions

Similar to iron ion, Zn2+ is also an important trace metal for
the metabolism of microorganisms, found in the active sites of
various enzymes. Zn2+ takes part inmany important metabolic
pathways, like synthesis and degradation of sugars, lipids, and
proteins (Hantke 2005). Additionally, the zinc ion is involved
in the regulation of cell proliferation, differentiation, and
maintenance of the membrane structure of cells (Jafarirad

Fig. 1 Schematic diagram of the bactericidal effects of iron by promoting
reactive oxygen species production. Fe3+ reaching the surface of the cell
membrane is rapidly converted to Fe2+, and then reaches the inside of the
cell through the iron transporter, where it catalyzes the conversion of
H2O2 and O2

− to ·OH, causing bacterial cell death. Excessive reactive

oxygen species produced by external stimulants (antibiotics, ionizing
radiation, ultraviolet light and heat stress) can also directly stimulate the
release of Fe2+ from iron-sulfur clusters and catalyze the formation of
(·OH)
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et al. 2016). The concentration of Zn2+ is a key factor influenc-
ing the growth of bacteria. At low concentrations, the promot-
ing effect is predominant, but when the concentration is too
high, excessive Zn2+ inhibits bacterial growth. At first, exces-
sive Zn2+ can compete with other metals and cause a metal
mismatch in non-target metal-binding proteins (McDevitt
et al. 2011; Nairn Brittany et al. 2016), leading to protein
denaturation, enzyme inactivation, and even cell death
(Blencowe and Morby 2003). Secondly, when too many Zn2+

reach the bacteria, they can be firmly adsorbed onto the cell
surface by Coulombic forces. Then, Zn2+ will penetrate the cell
membrane and cause it to rupture, followed by cytoplasmic out-
flow that eventually leads to cell death accompanied by produc-
tion of large amounts of ROS (Blecher et al. 2011). Moreover, at
sub-bactericidal concentrations, Zn2+ can prevent biofilm forma-
tion in many bacteria (Wu et al. 2013). Compared with the com-
mon Zn2+, zinc oxide nanoparticles (ZnO-NPs) possess some
special advantages that enable them to cross the cell membrane
smoothly. This is mainly related to their small particle size and
high surface energy. Like other NPs, ZnO-NPs kill bacteria by
destroying the cell membrane as well as inducing oxidative stress

and ROS generation (Taylor and Webster 2011) (Fig. 2). For
example, ZnO-NPs showed a significant inhibitory effect against
L. monocytogenes, E. coli, S. aureus, and K. pneumoniae
(Mirhosseini and Arjmand 2014; Reddy et al. 2014). It was
observed that 15 μg/mL of ZnO-NPs can inhibit the growth of
E. coli and S. aureus, and theMIC (minimum inhibitory concen-
tration) was as low as 5 μg/mL against K. pneumoniae (Siddiqi
et al. 2018).

Ci-ZnONPs (ZnO-NPswere synthesized using leaf extract of
Costus igneus) at concentrations of 25, 50, 75, and 100 μg/mL
produced inhibition zones against Vibrio parahaemolyticus of
4.2 ± 0.1, 5.13 ± 0.17, 6.56 ± 0.11, and 8.16 ± 0.15 mm, respec-
tively (Vinotha et al. 2019). Interestingly, ZnO-NP showed
higher activity against G+ bacteria than G−, whichmay be related
to differences of their cell wall composition (Premanathan et al.
2011; Sekar et al. 2016).

Furthermore, ZnO-NPs have photocatalytic bactericidal ac-
tivity. Under ultraviolet irradiation, electrons in the valence
band of ZnO-NPs are excited to the conduction band, forming
free-moving electrons and positively charged holes
(Mirhosseini and Arjmand 2014; Pimpliskar et al. 2019).

Fig. 2 The essential role and bactericidal effect of iron and zinc ion
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These holes can react with oxygen, hydroxyl groups, and wa-
ter adsorbed on the surface of the material to produce large
amounts of ROS, which react with biological macromole-
cules, damage cells, and inhibit growth or killing bacteria
(Lipovsky et al. 2009; Sharma et al. 2012; Siddiqi et al.
2018). Zn-phthalocyanines can inactivate about 70% of
E. coli within 30 min (Bertoloni et al. 1990).

Application of iron and zinc ions
in conjunction with antibiotics

Iron ion conjunction with antibiotics

Antibiotics can be combined with inhibitors of their degrada-
tion enzymes, such as cephalosporin and sulbactam, where the
former kills bacteria by inhibiting bacterial cell wall synthesis,
and the latter works as a competitive inhibitor of β-lactamase
to overcome bacterial resistance (Williams 1997). Similarly,
different metal ions and antibiotics can also be used together.
When antibiotics alone are used to treat bacterial infection,
only a small proportion of the active molecules reach the tar-
get because bacteria possess many mechanisms to exclude
antibiotics, such as membrane selectivity and efflux pumps
(Ahmad et al. 2020). However, studies have shown that
adsorbing antibiotics onto the surface of nano-carriers can
increase their local concentration and potentiate their antibac-
terial effects (Hassan et al. 2016; Hussain et al. 2018)
(Table 1). For example, IONPs have been used to help antibi-
otics penetrate these barriers. Notably, under the action of an
external magnetic field, IONPs facilitate the passage of anti-
bacterial agents through the cell membrane to the target posi-
tion, protect the drugs from degradation, and help them exert
the maximum bactericidal effect (Armenia et al. 2018).

In vitro studies of gentamicin-coated IONPs had significant
antibacterial effect against S. aureus, B. subtilis, and
P. aeruginosa, whereby 0.2 mg/mL of granules was able to
kill 98% of bacterial cells (Bhattacharya and Neogi 2017).
Vancomycin-loaded Fe3O4 (van-IONPs) not only successfully
inhibited 50% of vegetative cell growth after 48 h of treat-
ment, but also inhibited spore germination better than an equal
dose of free vancomycin. In the meanwhile, IONP-targeting
helps antibiotics reach the bacterial surface at higher concen-
tration. In a mouse model of Clostridium difficile infection,
van-IONPs significantly protected the mice, reducing intesti-
nal inflammation and adhesion of spores. Microscopy showed
that van-IONPs can completely cover the spore surface, sig-
nificantly blocking the interaction of the spores with mucosal
cells, reducing the number of residual spores in the intestines
(Chen et al. 2019). In another line of research, the Van-LaB6
@ SiO2/Fe3O4 (vancomycin and Fe3O4 NPs were successful-
ly bound onto the surface of LaB6 NPs with a silica coating)
complex, which displays super-paramagnetism, was

developed as a novel nanomaterial for the near-infrared
photothermal ablation of bacteria. The complex was shown
to be very effective for the magnetic separation and near-
infrared photothermal ablation of S. aureus and E. coli. The
complex can cover the bacterial cell surface, allowing the
targeted magnetic separation of the cells. Following near-
infrared light illumination for 5 min in the presence of Van-
LaB6@SiO2/Fe3O4, the survival of the two bacterial species
was reduced to 0.12 ± 0.03 and 0.4 ± 0.18%, respectively (Lai
and Chen 2013).

In addition to vancomycin, IONPs also showed synergistic
effects with teicoplanin and cephalexin. The nanomaterial
iron-coupled teicoplanin (tei-IONPs) showed antibacterial ac-
tivity against methicillin-resistant S. aureus and vancomycin-
resistant E. faecalis. Moreover, they also inhibited the biofilm
formation of S. aureus (Armenia et al. 2018). The
nanomaterial iron-conjugated cephalexin (cep-IONPs)
showed inhibitory activity against S. aureus, Bacillus sp.,
E. coli, and Salmonella sp., and its inhibition zone was greater
than that of cephalexin alone (Rayegan et al. 2018).
Additionally, IONPs also have the ability to destroy bacterial
biofilm structure and inhibit biofilm formation by generating
local heat when exposed to a pulsating magnetic field.
Combined with IONPs (gm-IONPs), gentamicin led to a
3.2- and 4.1-fold increase in the killing effect against plank-
tonic cells and biofilms, respectively, compared to it alone
(Nguyen et al. 2015). Furthermore, biocompatible multi-
compartment nanocarriers containing both 20 μg/mL hydro-
phobic super-paramagnetic IONPs and 40 μg/mL of methicil-
lin were able to kill methicillin-resistant S. epidermidis.
Importantly, the formulation is selectively toxic to
methicillin-resistant bacteria but not to mammalian cells
(Geilich et al. 2017).

Zinc ion conjunction with antibiotics

In addition to iron ions, many antibiotics can also be used in
combination with zinc ions. Typically, zinc ions are used to
promote action of antibiotics such as vancomycin (Zarkan
et al. 2016), quinolones (Uivarosi 2013), aminoglycosides
(Gokhale et al. 2007), tetracycline (Novák-Pékli et al. 1996),
and macrolides (Hamdan 2003).

Compared with vancomycin alone, co-administration of
vancomycin and zinc sulfate increased the size of inhibition
zone of vancomycin-resistant Streptomyces coelicolor M600
and E. faecalis JH2-2::I in the paper disk separation test. The
MIC tests showed that the sensitivity of both strains to the
combination sulfate increased 4 to 8 times than single antibi-
otics. Notably, Zn2+ has the ability to mediate the assembly of
vancomycin monomers (Zarkan et al. 2017). Similarly, the
norfloxacin-Zn2+ complex showed obviously higher antibac-
terial activity against E. faecalis and Shigella dysenteriae than
norfloxacin alone (Ahmadi et al. 2013).
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The combination of ZnO-NPs with ciprofloxacin can en-
hance its antibacterial effect against S. aureus and E. coli. The
presence of ZnO-NPs increased the inhibition zone of cipro-
floxacin against these two bacterial species by 27% and 22%,
respectively (Banoee et al. 2010). The increase of antibacterial
activity of small molecules against S. aureus by ZnO-NPs
may be due to interference with the pumping activity of the
NorA protein, which mediates the active efflux of hydrophilic
antibiotics, conferring resistance to fluoroquinolones
(Hassanzadeh et al. 2017; Yu et al. 2002). Another explanation
is that ZnO-NPs can enhance the absorption of antibiotics by
bacterial cells, for example by changing the permeability of
the OmpF protein, which is considered to be the main conduit
for the penetration of quinolones into the cell (Chevalier et al.
2000; Paulsen et al. 1997). In addition, Zn was found to in-
crease the effects of carbapenems and fluoroquinolones
against P. aeruginosa biofilms (Elkhatib and Noreddin 2014).

G− pathogens, who are resistant to amikacin and other clin-
ically significant aminoglycosides, usually carry 6′-N-acetyl-
transferase type Ib [AAC (6′)-Ib], which catalyzes the inacti-
vation of antibiotics by acetylation using acetyl-CoA as donor
substrate (Ramirez et al. 2013; Ramirez and Tolmasky 2017).
However, Zn2+ can effectively inhibit the normal progress of
the reaction as an inhibitor of the enzymatic acetylation of
aminoglycosides by AAC (6′)-Ib and sensitize the bacteria
(Lin et al. 2014).

Zinc ions can be used in combination with aminoglyco-
sides against multidrug-resistant E. coli and A. baumannii
(Li et al. 2015; Lin et al. 2014). It is confirmed that three
classes of ionophores pyrithione, clioquinol (5-chloro-7-
iodo-8-hydroxyquinoline) (CI8HQ), and pyrithione (N-

hydroxypyridine-2-thione) when complexed to Zn2+ or
Cu2+, can significantly reduce the levels of resistance to
amikacin in K. pneumoniae and A. baumannii isolates
(Magallon et al. 2019; Chiem et al. 2015).

Combination of iron and zinc ions with other
materials

Beside antibiotics, metal-based nanomaterials can also com-
bine with other materials to form hybrid nanomaterials. The
doping of these hybrid nanomaterials with other components
can improve the physical, optical, and electrical properties and
antibacterial activity of metal ions, often with synergistic ef-
fects (Guo et al. 2015; Khatami et al. 2018; Ma et al. 2014;
Mao et al. 2005; Rajiv et al. 2013) (Table 2).

Combination of iron and zinc with other metal ions

Multi-metal composite nanomaterials have the potential to
control a wider range of bacterial infection than single metals
(Alzahrani et al. 2017). In addition, there are synergistic ef-
fects between metal ions that can lead to greater bactericidal
effects in smaller amounts, thereby reducing cytotoxicity and
other undesired side effects. Meanwhile, multi-metallic NPs
generally have higher catalytic activity and selectivity than
single-metal NPs (Madhumitha et al. 2015; Roopan et al.
2014). For example, the AgI/CuFeO complex is capable of
killing E. coli and S. aureus under visible light, and its
photoactivity is much higher than that of a single metal
(Zhang et al. 2019b). An Au-Fe2O3 nanocomposite showed

Table 1 Examples of complexes of iron or zinc ions with antibiotics and their inhibitory effect on microorganisms

Composition Inhibitory effect Action bacteria References

Fe
Fe3O4/LaB6 @ SiO2
Vancomycin

Showed higher antibacterial activity than vancomycin only S. aureus and E. coli Lai and Chen (2013)

Fe3O4-Vancomycin Inhibited the growth of vegetative cell and spore C. difficile Chen et al. (2019)
IONPsGentamicin Inhibit bacterial growth S. aureus, B. subtilis and

P. aeruginosa
Bhattacharya and Neogi (2017)

IONPs-Gentamicin Revealed a 3.2- and 4.1-fold increase in killing planktonic
cells and biofilm

P. aeruginosa Nguyen et al. (2015)

IONPs-Teicoplanin Inhibit bacterial growth Methicillin-resistant S. aureus and
E. faecalis with
vancomycin-resistant

Armenia et al. (2018)

IONPs-Cephalexin Showed higher antibacterial activity than cephalexin only S. aureus, Bacillus, E. coli, and
Salmonella

Rayegan et al. (2018)

IONPs-Methicillin Showed selectively toxic to methicillin-resistant bacteria methicillin-resistant S. epidermidis Geilich et al. (2017)
Zn
Zn2+-Vancomycin The susceptibility towards vancomycin increased by 4 to 8

times
E. faecalis JH2-2::I and

S. coelicolor M600
Zarkan et al. (2017)

ZnO-NPs + Ciprofloxacin Bacteriostatic zone size increased 27% and 22%,
respectively

S. aureus and E. coli Banoee et al. (2010)

Zn2+ + Aminoglycosides Inhibit bacterial growth multidrug-resistant bacteria E. coli
and A. baumannii

Li et al. (2015); Lin et al. (2014)

Zn2+ + Norfloxacin Showed higher antibacterial activity than norfloxacin only E. faecalis and S. dysenteriae Ahmadi et al. (2013)
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excellent antibacterial activity against multidrug-resistant
E. coli and B. subtilis, because the gold coating prevented
oxidation of iron NPs and maintains their magnetic properties
(Shams et al. 2019). In addition, studies have shown that the
loading of precious metals onto the surface of zinc NPs can
significantly improve their photocatalytic activity (Chen et al.
2018). Ag/ZnO synthesized by Prashant et al. showed higher
photocatalytic activity than pure ZnO nanorods. Addition of
silver ions increased the photoconductivity and effectively
separated electron-hole pairs, which plays an important role
in improving the photocatalytic performance. The experimen-
tal results showed that the conductivity of 10mol%Ag-ZnO is
nearly 20 times higher than that of pure ZnO (Pimpliskar et al.
2019). More importantly, the incidence of bacterial resistance
is very low because few mutations lead to resistance against
multiple metal ions at the same time (Alzahrani et al. 2017).

Combination of metal ions with biocompatible
polymers

In addition to other metals, different types of biocompatible
polymers such as chitosan have also been conjugated to metal
NPs. On the one hand, the polymers protect the drug from
rapid degradation or release, thereby increasing its bioavail-
ability and reducing the dose required for successful treatment
(Khan et al. 2015; Vieira et al. 2018). On the other hand, the
encapsulation of metal NPs can improve their biocompatibil-
ity and stability, improving the functionalization of the
resulting nano-systems (Liakos et al. 2014).

Chitosan (CS-C6H11O4N)n is a deacetylated form of chitin
that is commonly found in the shells of marine animals and
fungal cell walls. It has excellent physical and chemical proper-
ties, including biocompatibility, bioactivity, biodegradability,
osteoconductivity, low toxicity, and cost effectiveness (Li et al.
2013; Lu et al. 2010). Chitosan has natural antimicrobial proper-
ties against bacteria, fungi, and yeasts due to inactivation of en-
zymes or blocking of enzyme activity by electrostatic interactions
of positively charged amino groups with the surface of the shell
membrane (Costa et al. 2014; Kurniasih et al. 2018). Recently,
chitosan has become one of the most important biomaterials in
pharmaceutical development, bone tissue engineering, cos-
metics, drug delivery, surgical sutures, biological dressings, and
wound-healing materials (Frohbergh et al. 2012; Hajji et al.
2019; Patel et al. 2014; Wang et al. 2012). It is often used in
combination with other polymers and metal oxides as antimicro-
bial agents (Anandhavelu et al. 2017; Romainor et al. 2014).

The application of chitosan can control the particle size and
crystal phase of ZnO-NPs and IONPs, prevent occurrence of
aggregation, and increase their antibacterial activity. The corre-
sponding complexes exhibited effective antibacterial activity
against S. aureus and E. coli (Kavitha et al. 2012; Nithya and
Jothivenkatachalam 2015). The antibacterial properties of five
compounds composed of ZnO and chitosan were studied using
E. coli, Salmonella typhi, andK. pneumoniae as indicator strains,
and two of the compounds produced inhibition zones for S. typhi
and E. coli larger than amikacin (Packirisamy et al. 2019). In
addition, the complex ZnO-chitosan is widely used in surgical
dressings because it can promote cell proliferation and effectively
accelerate wound healing.

Table 2 The combined application of metal ions (iron and zinc) with other antibacterial materials

Composition Shape, size Action bacteria References

Combination of iron and zinc with other metal ions
ZnO-V2O5 – S. aureus Sun et al. (2019a)
ZnO-Ag – C. difficile Zare et al. (2019)
Fe2O3/NiO Hexagonal shape, nanometer range S. aureus, B. subtilis and P. aeruginosa Bhushan et al. (2019)
AgO-Fe3O4-poly (with vinyl pyrrolidoneand
conjugated catechol)

–, 72 nm S. aureus, E. coli Mosaiab et al. (2013)

Ag-Au/ZnO Stick shape, 20–25 nm E. coli, S. aureus Nithya et al. (2019)
TiO2-ZnO-MgO Near-spherical shape, 17–23 nm E. coli, S. paratyphi, S. aureus and

L. monocytogenes
Luis Miguel et al. (2019)

Ag-ZnO Hexagonal rod, 30 nm – Pimpliskar et al. (2019)
Combined application of metal ions with other substances
Chitosan/a-Fe2O3 Spherical-shaped, 30 nm S. aureus, E. coli Kavitha et al. (2012)
Chitosan-Fe3O4-chlorhexidine Spherical shape, 40 nm C. albicans, S. mutans Vieira et al. (2018)
IONPs-glycol chitosan –, 8–9 nm E. coli ATCC 8739, S. enteritidis SE 01 Inbaraj et al. (2012)
Oxidized starch-ZnO –, 35–70 nm S. aureus, E. coli Namazi et al. (2018)
ZnO-alginate biopolymer
solutionamoxyclav/amikacin

Spherical shape, 120–236 nm E. coli DH5-α, P. aeruginosa Baek et al. (2019)

IONPs-polyvinyl alcohol Chain-like particles, 140 nm S. aureus Tran et al. (2010)
ZnO-collagen/chitosan Geometry structure, 20~50 nm E. coli, S. aureus Sun et al. (2019b)
Si2O-Fe2O3 Ellipsoidal morphology,

5.89~19.89 nm
C. parapsilosis, A. niger
B. subtilis and E. coli

Arshad et al. (2019)
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Moreover, a pyridone carrier can transfer more Zn2+ to the
cytoplasm, increase its intracellular concentration, and effec-
tively inhibit growth of A. baumannii. When 4 μM Zn pyri-
dine was added to the medium, the MIC of amikacin for
A. baumannii was reduced from 16 to 3 μg/mL (Lin et al.
2014). Another interesting example is the combination of
ZnO-NPs with graphene oxide, which helps Zn2+ enter the
bacterial cells rapidly and reduce its dissolution, allowing
more ZnO-NPs to reach their target and kill the bacteria
(Wang et al. 2014).

PBT2 (Prana Biotechnology) is a metal protein-attenuating
compound, which has progressed to phase 2 of clinical trials
for Alzheimer’s and Huntington’s disease treatment, and is a
safe-for-human-use zinc ionophore (Ayton et al. 2020; Xu
et al. 2019). When PBT2 combined with Zn2+, it showed
significant antibacterial activity and could disrupt the homeo-
stasis of erythromycin-resistant group A Streptococcus,
methicillin-resistant S. aureus, and vancomycin-resistant
Enterococcus (Bohlmann et al. 2018). In addition to this,
PBT2-zinc ions can synergistically with several clinically rel-
evant antibiotics to improve bactericidal rate. For example, it
can increase the sensitivity of Neisseria gonorrhoeae to
Polymyxin B and Colistin (Jen et al. 2020). In addition,
Arshad et al. synthesized a-Fe2O3@SiO2 NPs by co-
precipitation and demonstrated their good inhibitory effects
against Candida. parapsilosis, Aspergilus niger, E. coli, and
B. subtilis. The antibacterial effect of a-Fe2O3@SiO2 NPs was
comparable to that of rifampicin, and their antifungal activity
was slightly lower than that of nystatin. This finding sug-
gested that NPs synthesized on the basis of SiO2 and Fe2O3

are effective antibacterial agents (Arshad et al. 2019).

Synthesis of iron and zinc nanomaterials

In addition to doping and decorationwith different substances,
the antibacterial effect of nanomaterials is also significantly
affected by their own morphology and particle size (Bai et al.
2015; Itoh and Sugimoto 2003). The relative antibacterial ac-
tivity of ZnO-NPs is in the order of petals > fusiform > rod-
shaped flowers. This difference in antimicrobial ability is af-
fected by their physical parameters, such as specific surface
area, pore size, and surface energy (Cai et al. 2016). It is well
known that different synthesis methods can produce NPs with
different antibacterial effects. The synthesis of metal NPs by
traditional physical and chemical methods produces higher
yields and a more uniform size distribution. Nevertheless,
with development of technology, some drawbacks of tradi-
tional synthesis methods were revealed, including high capital
cost, high energy demand, and utilization of toxic or otherwise
hazardous chemicals (Haq et al. 2017). In addition, previous
studies have shown that the NPs synthesized by traditional
methods are less biocompatible (Raouf Hosseini and Nasiri

Sarvi 2015). These problems limit the clinical and biomedical
applications of metallic nanomaterials. Therefore, it is neces-
sary to explore and develop cleaner, environmentally safe, and
economical alternatives to synthesize biocompatible NPs.

In recent years, the biocatalytic green synthesis of NPs has
entered the stage and becomes a substitute for traditional purely
physicochemicalmethods. The biosynthesis of NPs composed of
metals and their oxides relies on biologically active products
from plants (Happy et al. 2018; Singh et al. 2016), bacteria
(Kundu et al. 2014), fungi (Shamsuzzaman et al. 2017), yeasts
(Moghaddam et al. 2017), viruses (Nam et al. 2006), and algae
(Azizi et al. 2014). Biocatalytic synthesis using plant extracts
makes use of complex chemical components, such as phenols,
alcohols, terpenes, saponins, proteins, etc., extracted from differ-
ent parts of plants, including leaves, roots, stems, fruits, and
flowers. These compounds act as reducing and capping agents
in the synthesis of nanomaterials (Basnet et al. 2018).
Furthermore, microbes can be used as whole-cell biocatalysts
to reduce metal ions to metal NPs, with the participation of
enzymes and other biomolecular compounds secreted or pro-
duced by the cells (Boroumandmoghaddam et al. 2015)
(Table 3).

In general, the IONPs and ZnO-NPs formed by bio-
catalytic methods are safer and more stable, displaying
more toxicity to bacteria with little side effect on animal
cells. Consequently, they are widely used in pharmaceu-
tical carriers, cosmetic ingredients, and medical filling
materials (Lee et al. 2008; Machado et al. 2015).

The environmental risks for nanoparticle
emissions

It should be noted that most studies on the toxicity of NPs
investigated their use on a small dose, where these materials
are considered to be non-toxic. However, with the increasing
use of NPs in industrial processes, these substances are being
inadvertently released and concentrated in the environment,
and the influence of these materials is becoming more and
more significant (Nel et al. 2006; Santos-Martinez et al.
2007; Zhu et al. 2012).

In fact, the leakage of NPs has become one of the most
serious threats to beneficial microorganisms, microbial com-
munities, and public health in ecosystems (Auffan et al. 2009;
Gajjar et al. 2009). For example, Ag-NPs (< 5 nm) can inhibit
plant growth by interacting with bacterial membranes, induc-
ing ammonia oxidase to produce reactive oxygen species,
which inhibit the growth of nitrifying bacteria and interfere
with conversion of ammonia nitrogen in the soil to nitrite
(Choi and Hu 2008). FeO-NPs at 3.2 mg/kg significantly re-
duced mycorrhizal clover biomass by 34% by significantly
reducing the glomalin content and root nutrient acquisition
of Arbuscular mycorrhizal fungi (Feng et al. 2013).
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Of course, nano-ions can also be directly absorbed by some
plants, affecting plant survival and development. For example,
Al2O3-NPs significantly inhibited root elongation in corn, cu-
cumber, soybean, cabbage, and carrot (Lin and Xing 2007;
Yang and Watts 2005). High concentrations of TiO2-NPs re-
duced the fresh weight of roots and shoots of wheat
(Mahmoodzadeh et al. 2013). Ag-NPs can hinder shoot and
root growth of common beans and corn (Salama 2012). In
addition, it also exerted several harmful effects on the water,
air, soil systems, and food web, which are intimately linked
with human health (Rizwan et al. 2017; Rai et al. 2018).
Therefore, dealing with the increasing pollution of the envi-
ronment with NPs, or improving the recovery of these NPs, is
a problem we have to face in the future.

Conclusions

Nowadays, multidrug resistance is widespread, and the devel-
opment of antibacterial drugs cannot keep pace with the evo-
lution of bacteria. Therefore, researchers are paying increasing
attention to novel antibacterial substances that differ from con-
ventional antibiotics. Metal ions can achieve bactericidal effect
by catalyzing production of ROS, destroying the structure of
cell membranes, and binding with intracellular DNA. In addi-
tion, they can also be applied in combination with other mate-
rials, like metal ions, antibiotics, and biocompatible polymers.
At present, by modulating the synthesis processes and combi-
nations, new antibacterial agents can be obtained, which may
have broader or specialized antibacterial effects (Bouazizi et al.

2018; Cai et al. 2016; García-Quintanilla et al. 2013). These
phenomena provide new ideas for the development of new
antibacterial drugs and antibacterial surgical materials, which
gives them significant practical significance for hospital man-
agement and the clinical treatment of multidrug-resistant
bacteria.
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