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Abstract
Sclerotia are dense, hard tissue structures formed by asexual reproduction of fungal hyphae in adverse environmental conditions.
Macrofungal sclerotia are used in medicinal materials, healthcare foods, and nutritional supplements because of their nutritional
value and biologically active ingredients, which are attracting increasing attention. Over the past few decades, the influence of
abiotic factors such as nutrition (e.g., carbon and nitrogen sources) and environmental conditions (e.g., temperature, pH), and of
the local biotic community (e.g., concomitants) on the formation of macrofungal sclerotia has been studied. The molecular
mechanisms controlling macrofungal sclerotia formation, including oxidative stress (reactive oxygen species), signal transduc-
tion (Ca2+ channels and mitogen-activated protein kinase pathways), and gene expression regulation (differential expression of
important enzyme or structural protein genes), have also been revealed. At the end of this review, future research prospects in the
field of biogenesis of macrofungal sclerotia are discussed.

Key points
• We describe factors that influence biogenesis of macrofungal sclerotia.
• We explain molecular mechanisms of sclerotial biogenesis.
• We discuss future directions of study of macrofungal sclerotia biogenesis.
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Introduction

Sclerotia are hard, resting structures formed by the aggrega-
tion of fungal hyphae (Willetts and Bullock 1992; Smith et al.
2015). A sclerotium commonly includes a pseudoparenchy-
matous and melanized rind that encases a broad medulla of
interwoven hyphae (Wong and Cheung 2008b). The sclerotia
are formed from mycelia that continue to differentiate and
tangle with each other to form a darker and harder mycelial
tissue in nutrient-depleted and/or adverse environments (Song
2018; Lau and Abdullah 2017). They are morphologically
variable, nutrient-rich structures with diameter ranging from

< 1 mm to > 40 cm, and can remain dormant or quiescent
when encountering adverse circumstances such as desicca-
tion, microbial attack, or the long-term absence of a host
(Smith et al. 2015; Lau and Abdullah 2017). It is generally
accepted that sclerotia are able to survive conditions that are
too severe for ordinary vegetative hyphae and spores (Willetts
1971). For example, harvested Pleurotus tuber-regium sclero-
tia have been demonstrated to remain viable or support suc-
cessive fruiting over consecutive seasons (Isikhuemhen et al.
2000a; Fasidi and Ekuere 1992). Once the environmental con-
ditions improve, sclerotia can germinate to form hyphae and/
or fruitbodies or new sclerotia (Okhuoya and Etugo 1993;
Song et al. 2014; Willetts and Bullock 1992; Wong and
Cheung 2008a). Sclerotium-forming fungi are phylogenetical-
ly distributed among 85 genera in 20 orders of Ascomycota
and Basidiomycota (Smith et al. 2015).

Macrofungi, also known as mushrooms, are defined to in-
clude ascomycetes and basidiomycetes with large, easily ob-
served spore-bearing structures that form above or below
ground (Mueller et al. 2007). Only a few macrofungi are
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known to form sclerotia, but these have a broad spectrum of
pharmacological activity, such as antitumor, anticancer, anti-
oxidant, immunoregulation, anti-inflammatory, and antimi-
crobial properties (Wong and Cheung 2008a, b; Yap et al.
2014a; Bandara et al. 2015; Sun et al. 2018; Tang et al.
2014; Kong et al. 2016; Wang et al. 2013; Nallathamby
et al. 2018). Natural products from fungi are expected to play
a key role in future discovery of effective, safer drugs (Silva
et al. 2013). However, wild resources of macrofungal sclerotia
are poor due to slow growth, insufficient protection, over-har-
vesting, and severe habitat loss (Wasser 2011). Moreover, ar-
tificial cultivation has suffered from low proliferation rate,
unstable yield, and the scarcity of natural sclerotia to serve
as seeds (Han et al. 2010). To meet the increasing demand
for macrofungal sclerotia, in recent decades, researchers have
studied the influence of some biotic and abiotic factors on the
formation of sclerotia, and investigated the molecular mecha-
nisms of their formation.

To help guide the efficient production and rational use of
macrofungal sclerotia, in this review, we describe progress in
research into the factors that influence biogenesis of
macrofungal sclerotia, and the molecular mechanisms of the
biogenesis. Future research areas are also discussed.

Factors affecting the biogenesis
of macrofungal sclerotia

Various endogenous and exogenous factors, such as nutrition,
environmental conditions, and the local biotic community, can
affect sclerotia differentiation individually or in combination.
The action of these factors can directly affect specific meta-
bolic pathways, or indirectly affect physiological processes in
the induction of sclerotia.

Nutrition and culture matrix affect biogenesis
of macrofungal sclerotia

There have been numerous studies directed at analyzing the
effect of nutrients and culture substrates on the initiation and
development of macrofungal sclerotia. Findings from artificial
cultivation studies have revealed that, in many cases, carbon
sources and nitrogen sources are related to sclerotial formation
(Kanwal and Reddy 2012; Liu and Guo 2009). In laboratory
cultivation of Polyporus umbellatus (synonym Grifola
umbellata), carbon sources, such as maltose, fructose, glu-
cose, and glycerol, could be determining factors affecting scle-
rotial formation (Cheng et al. 2006; Xing et al. 2011); nitrogen
sources could also influence this morphological transforma-
tion significantly; however, vitamins and mineral elements
were found to have nothing to do with sclerotial formation
(Liu and Guo 2009). In Morchella hybrida, D(+)xylose, L-

glutamic acid, and L-ornithine HCl have been found to be
the best carbon and nitrogen sources for sclerotia production
(Prasher et al. 2017). The formation of macrofungal sclerotia
using different nutrition sources may be related to the discrep-
ant genetic backgrounds and metabolic pathways in different
fungi (Liu and Guo 2009; Wong and Cheung 2008b).
Nutritional factors can both stimulate and inhibit the forma-
tion of macrofungal sclerotia. Macrofungi generally do not
form sclerotia in conditions suitable for mycelial growth. For
example, it has been reported that the biogenesis of P.
umbellatus and Morchella esculenta sclerotia can only occur
on the nutrient-limited side of a split plate on which the other
side contained noble nutrients (Yin et al. 2012; Amir et al.
1995). The effect of nutritional factors on the formation of
macrofungal sclerotia may be caused by the transportation of
critical nutrients in split culture. There is increasing evidence
that certain nutrients, such as CuSO4·5H2O, could affect the
formation of Boletus edulis sclerotia (Kaur and Prasher 2013).
Moreover, the culture matrix can also affect the formation of
macrofungal sclerotia. It has been demonstrated thatPleurotus
tuber-regium sclerotia can grow on a wide range of lignocel-
lulosic substrates such as ‘wawa’ (Triplochiton scleroxylon)
sawdust, plantain (Musa sapiens) leaf, cotton waste, rice
straw, corn cob, pumpkin, and banana leaves, but not water
hyacinth (Eichhornia crassipes) or millet (Eleusine coracana)
stalk (Apetorgbor et al. 2013; Fasidi and Ekuere 1992;
Nwachukwu and Adedokun 2014). Pilot cultivation of
Lignosus rhinocerotis was carried out with sawdust, paddy
straw, and spent yeast at a ratio of 7.9:1:1 to a height of
100 mm in polypropylene bags. Sclerotia weighing between
80 and 120 g on a fresh-weight basis were formed 3–4 weeks
after burying mature colonized substrate in the soil (Abdullah
et al. 2013). In Inonotus obliquus, a substrate consisting of
44% birch (Betula platyphylla) sawdust, 42% corncob, 10%
wheat bran, 2% soybean powder, 1% sucrose, 1% gypsum,
and a water content of 65% supported the highest average
yield of sclerotia (16.79 g/300 g dry substrate) (Han et al.
2010).

Environmental conditions affect biogenesis
of macrofungal sclerotia

Environmental factors affect the formation of macrofungal
sclerotia, including temperature, humidity, illumination, and
aeration. Findings from studies in the laboratory and the field
have revealed that low temperature contributes to the forma-
tion of Polyporus umbellatus sclerotia involving either the
oxidative stress or antioxidant defense system (Xing et al.
2013b). G. umbellate can produce sclerotia at 18–25 °C in
the laboratory, or in soil in the wild at 12.9–13.8 °C in
November and 22.0–23.9 °C in August (Cheng et al. 2006;
Choi et al. 2003). Morchella hybrida mycelia can grow and
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produce sclerotia best at 24 °C (Prasher et al. 2017). For
Morchella rufobrunnea, inoculated medium can produce scle-
rotia after 2–3 weeks at 18–25 °C, higher than the fruit body
formation temperature (Masaphy 2010).

It has been demonstrated that pH is important for sclerotial
formation by P. umbellatus; sclerotia could be found in soil
with pH from 3.98 to 5.75 (Kunca 2011; Choi et al. 2003),
which could be characterized as very acidic to mildly acidic,
but were not found in soils with limestone or dolomite mother
rock, signifying that this macrofungi probably cannot grow in
alkaline soils.Ophiocordyceps sinensis also preferred an acid-
ic soil environment, while M. hybrida preferred a neutral pH
environment.

Aeration is also an important environmental factor for scle-
rotial cultivation. For instance, Wolfiporia cocos sclerotia
reached maximal yields when an air filter was used in mush-
room culture bottles (Kubo et al. 2006). “Limited oxygen”
was essential for the formation and growth of I. obliquus scle-
rotia, but sufficient oxygen was not conducive to sclerotial
growth (Ji et al. 2016). Industrialization and automatic culti-
vation of O. sinensis was successfully realized by controlling
temperature, light, pH, and so on, and no difference was ob-
served from wild products, including in appearance, micro-
structure, and chemical components (Li et al. 2016a).

Concomitants affect biogenesis
of macrofungal sclerotia

Some macrofungi, such as W. cocos and O. sinensis, have
been reported to produce sclerotia only in the presence of
particular host. W. cocos sclerotial formation is dependent on
parasitism of the wood of Pinus species (Kubo et al. 2006). So
far, the commercial production ofW. cocos sclerotia relies on
the existence of pine in the main production areas, and is
limited by shortages in pine wood resources (Ma et al.
2018). Zhang et al. (2016) inferred that some special compo-
nent(s) from Pinus species plants could induce the formation
and development of the sclerotia, and that these unknown
components induce the differential expression of genes in-
volved in W. cocos sclerotial development. It has been pro-
posed that the formation of O. sinensis sclerotia needs the
presence of the host larvae whether in artificial or semi-
natural conditions (Zhou et al. 2014). Birch species (Betula
spp.) were selected as a model subject due to the clear prefer-
ence of I. obliquus for this host and the fact that all pharma-
cological studies of the fungus were based on birch-associated
material (Balandaykin and Zmitrovich 2015). Polyporus
umbellatus sclerotia can establish symbiosis with
Armillariella mellea in the wild. The rhizomorph of A. mellea
adheres to and invades sclerotia of P. umbellatus; meanwhile,
the sclerotia launch defense responses to fend off A. mellea
invasion (Guo and Xu 1993). Other than A. mellea, other

species of Armillaria fungi, such as A. sinapina, A.
calvescens, and A. gallica, may have similar effects on the
sclerotial development of P. umbellatus (Kikuchi and Yamaji
2010; Liu et al. 2015a).

Other factors

Interestingly, it was determined that macrofungal sclerotial
biogenesis induced by the vaccination of the sclerotia of a
revulsive strain is an effective method for the short-term for-
mation of high-quality sclerotia in field cultivation (Choi et al.
2002; Xu et al. 2014). This phenomenon revealed that old
sclerotia can stimulate the production of new sclerotia in ap-
propriate conditions. In addition, macrofungal strains with
different genetic backgrounds can yield sclerotia with differ-
ent sizes and characteristics (Kobira et al. 2012; Isikhuemhen
et al. 2000b). In I. obliquus, the sclerotium proliferation ability
of mycelial inoculum declined as the generation number in-
creased (Sun et al. 2011); this may have been caused by strain
degradation and freshly inoculated hyphae needing more time
to adapt to the medium.

Molecular mechanisms controlling biogenesis
of macrofungal sclerotia

Oxidative stress response

The biogenesis of macrofungal sclerotia is triggered by biotic
and/or abiotic stresses (Xing et al. 2011; Xing et al. 2013b; Ma
et al. 2018; Xu et al. 2014). Exogenous factors such as tem-
perature and infection and endogenous factors such as reactive
oxygen species (ROS) can increase the internal oxidative
stress and induce formation of macrofungal sclerotia (Liu
et al. 2015b; Xing et al. 2013b). A convincing number of
studies have established that sclerotial formation is associated
with oxidative stress (Song et al. 2018; Georgiou et al. 2006;
Patsoukis and Georgiou 2008; Xing et al. 2013b; Li et al.
2017). This theory was first proposed by Georgiou, who sug-
gested that oxidative stress induced sclerotial differentiation in
filamentous fungi (Georgiou 1997). The switch to a
hyperoxidant state occurs via a transient increase in ROS
levels beyond the cellular capability to neutralize them
(Aguirre et al. 2005). It has been reported that enhanced
ROS in the mycelial cell wall or around the organelle mem-
branes might be important in triggering the differentiation of
P. umbellatus sclerotia at low temperature (Xing et al. 2013b).
The proteomes were analyzed in P. umbellatus sclerotia and
hyphae in the initial, developmental, and mature phases,
which showed that oxidative stress played an essential role
in triggering sclerotial differentiation from hyphae (Li et al.
2017). Reactive oxygen radical scavengers could decrease
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intracellular oxidative stress and inhibit sclerotial formation in
Morchella crassipes and P. umbellatus (He et al. 2014; Xing
et al. 2013b). The Nox gene, a candidate for ROS generation,
was upregulated (> 10-fold) in P. umbellatus sclerotia com-
pared with mycelia (Xing et al. 2013a). Localized synthesis of
ROS is important in establishing and maintaining polarized
hyphal growth (Scott and Eaton 2008). The molecular mech-
anisms that control macrofungal metamorphosis might be ho-
mologous and analogous to the mechanisms, induced by ox-
idative stress, known in microsclerotium-forming plant path-
ogens such as Rhizoctonia solani (Patsoukis and Georgiou
2007, 2008), Metarhizium rileyi (Song et al. 2018),
Sclerotium rolfsii (Ellil 1999), and Sclerotinia sclerotiorum
(Patsoukis and Georgiou 2008; Osato et al. 2017). When a
cellular hyperoxidative state surpasses the antioxidant capac-
ity of the cell, there are three possible outcomes: (1) the cell
compensates with a source of reducing power (nutrients) and
returns to a stable state, thereby adapting to the more oxidizing
condition; (2) the cell differentiates, insulating itself from en-
vironmental oxygen; or (3) when adaptation or differentiation
cannot take place, the reduced internal medium equilibrates
with the oxidizing external medium and the cell dies, which
enables other cells to either adapt or differentiate (Fig. 1)
(Aguirre et al. 2005). For fungal cells, the two latter conditions
might induce sclerotial differentiation. Cell death or autolysis
in a part of a cellular system or cell aggregate constitutes part
of the cell differentiation process since it can provide sub-
strates for growth or differentiation of other cells or parts of
a cellular system (Georgiou and Petropoulou 2010). The exu-
dates of macrofungal sclerotia containing proteins, fatty acids,
ammonia, and various enzymes can usually be found during
sclerotial biogenesis. Evidences shows that sclerotia have
stronger antioxidant activity than mycelia in Morchella
importuna (Liu et al. 2018b).The thick cell and melanized
boundary observed in many sclerotia of macrofungi such as
Pleurotus tuber-regium, I. obliquus, Polyporus umbellatus,
and W. cocos can prevent oxygen and other substrates from
permeating into cells.

Signal transduction in response to oxidative stress

The molecular mechanisms by which excessive ROS trigger
the formation of new sclerotia have been elucidated. A critical
feature of the fungal response to oxidative stress is rapid sig-
naling of the new, stressful environment, which leads to a
reprogramming of gene expression and expression of gene
products required to buffer the otherwise lethal elevation in
ROS (Moye-Rowley 2003). ROS have the potential to act
directly on the fungal cell wall, plasma membrane receptors
or ion channels, or diffuse across the membrane to activate
internal signaling pathways (Scott and Eaton 2008). An im-
portant example is that of P. umbellatus Ca2+ channels, which
may play an essential role in sclerotial formation. Different
calcium channel blockers and calcium ionophores produced
a similar physiological inhibition of the formation of P.
umbellatus sclerotia (Liu and Guo 2010). Various signaling
pathways could be recruited by macrofungal cells to deliver
the oxidative stress signal to cell nuclei. Mitogen-activated
protein kinase (MAPK) pathways are important signal trans-
mitters from the cell surface to the inside of the nucleus.
Transcriptomic, proteomic, and gene expression mode analy-
sis of P. umbellatus sclerotia indicated that the oxidative stress
signals were transmitted downstream through the MAPK
pathways, regulating the glycosylation of cell wall proteins,
thereby promoting the polarity of mycelium growth and a
change in mycelial morphology to form sclerotia (Li et al.
2017; Liu et al. 2015b; Liu and Guo 2009; Song et al.
2014). By studying transcript profiles and assigning protein
kinases (PKs) to orthologous groups, several orthologous PKs
regulating MAPK signaling pathways were found to partici-
pate in the metamorphosis of W. cocos from mycelia to scle-
rotia (Wei et al. 2016). Another transcriptome analysis of scle-
rotial development in W. cocos revealed that MAPK-related
genes, such as the Ras-GTPase gene, were highly expressed
(Zhang et al. 2016). MAPK-related genes expression analysis
of sclerotial development in M. importuna revealed that
MAPK signaling pathways were activated and MAPK signal-
ing probably initiated sclerotial formation (Liu et al. 2018b).

Fig. 1 A model for regulation of
cell differentiation by ROS. A
hyperoxidant state, a transient and
unstable state in which generation
of ROS surpasses the antioxidant
capacity of the cell, regulates the
transition between
undifferentiated and differentiated
states (Aguirre et al. 2005) (per-
mitted by Elsevier)
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In addition, the regulation of protein phosphorylation, the re-
spiratory chain, the tricarboxylic acid cycle, glycolysis/gluco-
neogenesis, and secondary metabolite pathways in the forma-
tion of macrofungal sclerotia suggest the involvement of sig-
nal transduction and matter metabolism in sclerotial formation
(Li et al. 2017; Yap et al. 2015; Zhu et al. 2018).

Regulation of gene expression

Gene expression is regulated by signal transduction from in-
side or outside the cell to the nucleus. Differentially expressed
genes (DEGs) encoding enzymes or structural proteins have
been identified between the mycelia and sclerotia in several
sclerotium-forming macrofungi. Song et al. (2014) suggested
that the sclerotia adapt to oxidative stress by upregulating
oxidation-related and downregulating antioxidant-related
gene expression. It has been confirmed that oxidation–reduc-
tion-related genes, such as those encoding cytochrome P450
and choline oxidase, are differentially expressed during
macrofungal sclerotial differentiation from mycelia (Song
et al. 2014; Wu et al. 2016; Yap et al. 2015). Comparative
transcriptome analysis of Pleurotus tuber-regium sclerotia
and mycelia indicated that 155 oxidation–reduction-related
genes were significantly differentially expressed (our unpub-
lished data). In the sclerotia ofW. cocos, protein phosphatases
(Wolco1|101289 and Wolco1|77624) orthologous to the type
2B protein phosphatase, which is involved in sclerotial devel-
opment in S. sclerotiorum, were upregulated, indicating that
they may be involved in sclerotial development in W. cocos
(Harel et al. 2006; Zhu et al. 2018). It has been confirmed that
carbohydrate active enzyme (CAZyme)-related genes, espe-
cially glycosyl hydrolases, are significantly upregulated or
downregulated during the differentiation of Polyporus
umbellatus, W. cocos, and O. sinensis sclerotia (Li et al.
2017; Wu et al. 2016; Zhang et al. 2016; Zhong et al. 2016).
Additionally, some genes encoding desirable bioactive pro-
teins, such as hydrophobins and cerato-platanins, might have
roles in macrofungal sclerotial formation (Song et al. 2014;

Yap et al. 2015). In M. conica, 13 specific DEG fragments
were speculated to be functional genes associated with scle-
rotial formation (Chen et al. 2014). The result of gene expres-
sion regulation is, macroscopically, the formation of sclerotia,
and, microscopically, the change of mycelial cell structure.
For example, the cell wall of the macrofungal sclerotia is
thicker than that in mycelia, which could be observed in P.
umbellatus (Xing and Guo 2005), M. importuna (Liu et al.
2018b), and Pleurotus tuber-regium (Fig. 2).

Conclusions and future prospects

In recent years, macrofungal sclerotia have received increas-
ing interest and there has been great progress in research in
this field, embracing factors that influence sclerotial formation
as well as their artificial production. The formation of
macrofungal sclerotia is the product of internal genetic mech-
anisms and external factors. The sclerotium-forming
macrofungal responses to oxidative stress were speculated to
be regulated by nuclear localization control. Stress is transmit-
ted to the nucleus via signal transduction. The result of the cell
nucleus responding to stress is the differential expression of
genes, thereby promoting the polarity of mycelial growth and
mycelial morphological change to form sclerotia. It was re-
ported that activity regulation via protein phosphorylation is
one response to oxidative challenge (Moye-Rowley 2003).
Whether there are other similar response mechanisms in
macrofungi is worth exploring. At present, there are many
unresolved but significant problems in understanding the
complete molecular mechanisms participating in sclerotial
formation; these may influence the sustainable development
of macrofungal sclerotia. In addition, it was reported that dif-
ferential gene expression will become apparent only after ac-
tivating transcription factors are produced (Scott 2000). The
identification and determination of roles of key transcription
factors in macrofungal sclerotia biogenesis are worth
exploring.

Fig. 2 Transmission electron micrographs of the two different periods of mycelia in P. tuber-regium. a The mycelia grown on cellophane. b The
medullary hyphae of sclerotia. Bar = 2 μm
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So far, genomes of several sclerotium-producing
macrofungi, including L. rhinocerotis (Yap et al. 2014b), P.
tuber-regium (Lam et al. 2018), Grifola frondosa (Li et al.
2018), W. cocos (Floudas et al. 2012), O. sinensis (Li et al.
2016b), Cordyceps militaris (Kramer and Nodwell 2017), and
Cordyceps guangdongensis (Zhang et al. 2018) have been
determined. Genome and transcriptome data, as well as ad-
vanced molecular tools, are available for the genetic engineer-
ing of sclerotium-producing macrofungi. Molecular tools, in-
cluding classical genetic transformation and the clustered reg-
ularly interspaced short palindromic repeats (CRISPR) editing
system, can provide valuable information for elaborating the
process of macrofungal sclerotia formation (Chen et al. 2018;
Liu et al. 2018a; Sugano et al. 2017; Sun et al. 2015; Yap et al.
2017). Future studies might also focus on the identification
and functional characterization of DEGs during macrofungal
sclerotial formation.
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