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Abstract
The common steroid hormones are estrone (E1), 17β-estradiol (E2), estriol (E3), 17α-ethinylestradiol (EE2), and testosterone
(T). These steroids are reported to contaminate the environment through wastewater treatment plants. Steroid estrogens are
widespread in the aquatic environment and therefore pose a potential risk, as exposure to these compounds has adverse impacts
on vertebrates. Excessive exposure to steroid estrogens causes endocrine disruption in aquatic vertebrates, which affects the
normal sexual life of these animals. Steroid pollutants also cause several health problems in humans and other animals. Microbial
degradation is an efficient method for removing hormone pollutants from the environment by remediation. Over the last two
decades, microbial metabolism of steroids has gained considerable attention due to its higher efficiency to reduce pollutants from
the environment. The present review is focused on the major causes of steroid pollution, concentrations of these pollutants in
surface water, groundwater, drinking water, and wastewater, their effect on humans and aquatic animals, as well as recent efforts
by various research groups that seek better ways to degrade steroids by aerobic and anaerobic microbial systems. Detailed
overview of aerobic and anaerobic microbial biotransformation of steroid estrogens and testosterone present in the environment
along with the active enzyme systems involved in these biotransformation reactions is described in the review article, which helps
readers to understand the biotransformation mechanism of steroids in depth. Other measures such as co-metabolic degradation,
consortia degradation, algal, and fungal steroid biotransformation are also discussed in detail.
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Introduction

Steroid hormones directly interact with the normal functioning
of endocrine systems, thus affecting reproduction and devel-
opment in aquatic wildlife (Kumar et al. 2012). Some com-
mon steroid hormones (natural and synthetic) found in the
environment include (E1), 17β-estradiol (E2), estriol (E3),
17α-ethinylestradiol (EE2), mestranol (MeEE 2), and testos-
terone (T) (Table 1) (Ting and Praveena 2017). Both natural

and synthetic estrogens have a tetracyclic network consisting
of a phenolic, two cyclohexane, and one cyclopentane ring.
The difference in the configurations of the D ring at the C16
and 17 positions of estrogens, give rise to different com-
pounds (Hamid and Eskicioglu 2012). Testosterone also has
cyclopentanoperhydrophenanthrene nucleus as in estrogenic
substances. Steroid hormones enter the environment through
human and animal excretions (urine and feces) as well as from
waste generated by pharmaceutical industries (Zheng et al.
2008).Waste containing estrogens are carried with wastewater
into wastewater treatment plants (WWTPs) and then released
into the aquatic environment, including drinking water (Sang
et al. 2012), as WWTPs without biological treatment facilities
are unable to efficiently remove estrogens (Ting and Praveena
2017). Increasing industrialization and modernization means
that more estrogen would end up contaminating the aquatic
environments (Jiang et al. 2013), thereby interfering with sex-
ual development and reproduction in aquatic animals (Yu et al.
2013). Many studies have reported that the feminization of
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male fish is a result of estrogen contamination (Liu et al.
2016). Estrogen pollution affects intracellular estrogen recep-
tors (ERs), which regulate the transcription of responsive
genes, resulting in the initiation of rapid, non-genomic reac-
tions. Malfunctional ERs disrupt the normal functioning of the
estrogen system and causes defective homeostasis in fishes
(Pinto et al. 2014). In aquatic systems, estrogens also act as
endocrine-disrupting compounds (EDCs) because they inter-
fere with the normal functioning of the endocrine system of
aquatic animals by mimicking, and antagonizing the effect of
endogenous hormones as well as disrupting the anabolism and
catabolism of endogenous hormones (Silva et al. 2012; Liu
et al. 2016). Estrogen contaminants also affect the immune,
cardiovascular, and neurological systems in humans
(McKinlay et al. 2008; Chighizola and Meroni 2012;
Woclawek-Potocka et al. 2013). For instance, in humans,

exposure to endogenous or exogenous estrogenic compounds
leads to lower sperm count, declining male reproductive
health, and feminization of men (Sumpter and Jobling
2013). Excessive exposure to estrogen contamination also
leads to susceptibility to several types of cancer such as pros-
tate cancer in men and breast cancer in women (Trevino et al.
2015; Adeel et al. 2017). Some studies have also revealed that
intake of a single estrogen or multiple estrogens in combina-
tion with progesterone lowers the intraocular pressure (IOP)
inside the eye, which could damage the optical nerve and
therefore lead to glaucoma (Adeel et al. 2017). Apart from
estrogens, environmental androgen, i.e., testosterone, is a po-
tential micropollutant, which interferes with the endocrine
systems of organisms, even in trace amounts (Davis et al.
2000; Seki et al. 2004; Fu et al. 2019). Moreover, androgen
can interfere with the reproductive development of aquatic

Table 1 Description of major natural and synthetic hormone found in environment

Name of EDCs Molecular

Weight

Molecular

Formula

Molecular Structure

Estrone,

E1

270.4 C18H22O2

17β-Estradiol, 

E2

272.4 C18H24O2

Estriol, 

E3

288.4 C18H24O3

17α-

Ethinylestradiol, 

EE2

296.4 C20H24O2

Mestranol ,

MeEE 2

310.43 C21H26O2

Testosterone,

T

288.4 C19H28O2
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animals and adversely affect the structure and function of
microbial communities (Barbosa et al. 2008; Kang et al.
2008). The major source of environmental androgen contam-
ination comes from human and animal excreta, similar to es-
trogen contamination (Lange et al. 2002; Lorenzen et al. 2004;
Arnon et al. 2008). Increasing levels of androgen contamina-
tion in the aquatic environment have also been observed in
recent years (Zheng et al. 2008; Sang et al. 2012; Fu et al.
2019) and have been detected in surface water, groundwater,
rivers, and sediments (Zheng et al. 2008; Sang et al. 2012).
Androgens promote a high proportion of males in some aquat-
ic animals (Orn et al. 2006) and cause masculinization or
virilization in females and reduce their reproductive capabili-
ties (Orlando et al. 2004; Kang et al. 2008), which has conse-
quential effects on aquatic ecosystem.

Several physical, biological, and chemical methods can be
used to control estrogen and testosterone pollution. The most
common methods used include photocatalytic degradation,
advanced oxidation processes (AOPs), adsorption, and bio-
logical degradation or biotransformation (Zhang et al.
2015a). Among these methods, biological degradation is the
most common, successful, and economical method. Some
groups of bacteria and white-rot fungi can efficiently degrade
or transform these pollutants in contaminated environments.
These microbial systems use the estrogen and testosterone as
carbon and energy sources, thereby degrading or transforming
them into other less harmful or neutral compounds (Zhang
et al. 2015b; Li et al. 2017). Studies have shown that the use
of microbial consortium rather than a single pure culture is a
more effective way of estrogen biotransformation (Johnson
et al. 2014). Similarly, some microbial strains (bacterial and
algal) in the environment can biotransform testosterone into
other less-harmful by-products (Yang et al. 2010; Fu et al.
2019).

Presence of steroid hormones

Natural and synthetic estrogens are generated from human and
animal excretions, pharmaceutical, dairy, poultry, and meat
industries (Adeel et al. 2017). Since the rise in global indus-
trialization, the release of steroid estrogens in wastewater in-
creases tremendously, which further raises the steroid estrogen
level in various water bodies (Jiang et al. 2013). This en-
hanced steroid estrogen pollution became a major threat to
aquaculture along with humans too. These estrogens can be
detected in feces, liquid manure, solid waste collected from
cattle, lagoon effluent, and in manure applied directly to agri-
cultural land (Biswas et al. 2013). For these reasons, four of
the most commonly found natural and synthetic steroid estro-
gens distributed in various parts of the earth include E1, E2,
E3, and EE2. These estrogens are also referred to as
micropollutants as they are present in minute quantities but
can affect aquatic animals due to their continuous exposure

(Kim and Zoh 2016). The molar effective concentrations
(EC50) and relative potency factor (RPF) with reference com-
pound 17β-estradiol for E1, E2, E3, and EE2 are 1.2e−12,
1.8e−12, 7.3e−12, and 1.0e−12 and 1.4, 1.0, 0.23, and 1.7, re-
spectively (Bermudez et al. 2012; Conley et al. 2017). Various
studies have confirmed the presence of these steroid estrogens
globally in freshwater, groundwater, and wastewater. Conley
et al. (2017) reported the occurrence and in vitro bioactivity of
estrogen, androgen, and glucocorticoid compounds in stream
water in the USA. Estrogens are released into the environment
from animal excretions (Zheng et al. 2008), with pigs and
poultry industry waste releasing about 58% E2 in feces, while
96% EE2 and 69% E3 are excreted through urine (Adeel et al.
2017). The distribution of E1, E2, E3, and EE2 and testoster-
one in the surface water of 12 different countries found in four
subcontinents is shown in Table 2. Total estrogen concentra-
tion in surface water, suspended particulate matter, and sedi-
ments also vary with season. In the Yangtze estuary of China,
the total estrogen concentration varies throughout the year,
with the pattern of estrogen concentration in four successive
seasons of the year being 3.92 to 14.54 ng/L in July, 3.22 to
16.36 ng/L in October, 10.42 to 20.61 ng/L in January, and
5.03 to 10.77 ng/L in May. Moreover, levels of synthetic es-
trogens were higher than natural estrogens throughout the year
(Nie et al. 2015). The presence of steroid estrogens in ground-
water in various countries has also been analyzed, with the
results revealing that in China the concentrations of E3 and
EE2 in groundwater varies between 0.03 and 0.09 ng/L (Li
et al. 2013), whereas E1 and E2 were not detected (Chen et al.
2011). In European countries (France and Spain), the concen-
tration of E1, E2, and EE2 in groundwater varied between 1.3
and 3.5 ng/L in France (Vulliet et al. 2008), with no estrogens
detected in Spain’s groundwater (Vulliet et al. 2008). In North
America (USA and Mexico), no traces of estrogen were de-
tected in Mexico groundwater (Felix-Canedo et al. 2013), but
E1 (n.d.–79 ng/L), E2 (n.d.–147 ng/L), E3 (n.d.–1745 ng/L),
and EE2 (n.d.–230 ng/L) were detected in the groundwater of
USA (Karnjanapiboonwong et al. 2011). The presence of ste-
roid estrogens in drinking water has also been evaluated, with
the drinking water of mainland China reported to contain
traces of E1 (n.d.–9.9 ng/L), E2 (n.d.–0.1 ng/L), and EE2
(n.d.–0.3 ng/L) (Fan et al. 2013; Zhang et al. 2011; Zhang
et al. 2013). However, European (France, Italy, Spain) and
American countries (Brazil and the USA) had no traces of
estrogen in drinking water (Devier et al. 2013; Maggioni
et al. 2013; Esteban et al. 2014b; Wang et al. 2011; Jardim
et al. 2012; Falconer et al. 2006). In these studies, testosterone
was only detected in China’s (n.d.–480 ng/L) and Brazil’s
(n.d.–329 ng/L) groundwater and drinking water (Yang et al.
2014a; Montagner et al. 2019). Whereas in Japan, Malaysia,
and Australia’s groundwater and drinking water, its concen-
trations were below detection limits (Praveena et al. 2016). In
Europe (France, Italy, Netherlands, Spain) and America
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(Mexico, the USA, Argentina), no testosterone traces were
found in groundwater and drinking water (Table 2).

Fate of steroid hormones

Steroid estrogens E1, E2, E3, and EE2 pollutants in wastewa-
ter are usually treated (biological or chemical) before releasing
into the aquatic environment. Estrogens can be degraded by
microbial communities present in soil and water under aerobic
and anaerobic conditions. The half-life of estrogens varies
with environmental conditions and concentration in a particu-
lar environment. The half-life of estrogens also depends on
their degradation rate and oxygen availability (Adeel et al.
2017). Under aerobic conditions in soil, the half-lives of E1,
E2, and E3 were found to be 2.8–4.9, 0.8–0.11, and 0.7–
1.7 days, respectively (Biswas et al. 2013). Whereas in river
water under aerobic conditions, the half-life of E1 and E2
were found to be 2–3 and 2–4 days, respectively (Jurgens
et al. 2002; Ying et al. 2002; Adeel et al. 2017).

Liu et al. (2009b) determined the average concentration of
steroid estrogens and natural androgens in municipal sewage
wastewater treatment plants. The total excretion rate of estro-
gens E1, E2, and E3 was only 66–82% of total waste excre-
tion. The concentration of these estrogens and natural andro-
gen in urinary excretion varies with age and gender. For ex-
ample, the estrogen excretion rates are different in premeno-
pausal, pregnant, and postmenopausal women. The urinary
excretion rate of E1, E2, and E3 for premenopausal, pregnant,
and postmenopausal women were 10.73, 4.71, and 8.12,
1194, 347, and 24,078, and 5, 2.78, and 2.78 μg/day, respec-
tively, whereas for men it was 3.9, 1.5, and 1.5 μg/day, re-
spectively (Liu et al. 2009a). The urinary excretory rate of
natural androgen (i.e., testosterone) for a man was 56.65 and
6.78 μg/day for women (Liu et al. 2009a). Thus, the total
concentration of steroid estrogens in sewage wastewater also
depends on the gender ratio of that particular area. Estrogen
removal during wastewater treatment is a well-practiced pro-
cess and has been described by several research groups (Racz
and Goel 2010; Xu et al. 2012; Luo et al. 2014; Liu et al.
2015). The diagrammatic illustration of estrogen’s fate in a
wastewater treatment plant is shown in Fig. 1. After mixing
with activated sludge in the WWTPs, estrogens are either
adsorbed onto solids in the wastewater-activated sludge or
undergo biodegradation by various microbial systems (Racz
and Goel 2010). Biodegradation is the major method used in
estrogen removal from wastewater, which includes
deconjugation, use of estrogen as carbon source by heterotro-
phic microorganisms, co-metabolism with nitrifying biomass,
followed by another co-metabolism (Ke et al. 2007; Liu et al.
2016; Yu et al. 2016; Fernandez et al. 2017). There are varia-
tions in estrogen degradation or removal rate which mainly
depend on different factors including operating conditions,
geological location of the treatment plant, estrogen

concentration in effluent, and the type of biological system
used (Yu et al. 2013). It has been reported that WWTPs
equipped with biological treatment systems are much more
effective in estrogen degradation as compared with those
without biological treatments. More estrogen degradation
has been observed in treatment plants that have long solid
retention time (SRT) and long hydraulic retention time
(HRT). Long SRT and HRT provide sufficient time for the
growth of slow-growing estrogen degraders and longer con-
tact time for estrogen-adsorbent materials (Maeng et al. 2013).
Complete microbial degradation or biotransformation of ste-
roids (estrogens and androgens) is challenging because of
their complex chemical structure, low solubility in water,
low number of functional groups, and the presence of four
alicyclic rings, as well as two quaternary carbon atoms
(Olivera and Luengo 2019). It has been shown that estrogens
E1, E2, and EE2 removal ranges from 19 to 94, 76 to 92, and
83 to 87%, respectively in WWTPs (Baronti et al. 2000). The
descending order of biodegradation rate of steroid estrogens in
WTTPs are E3 > E2 > E1 > EE2 (Garcia et al. 2019). In
activated sludge, up to 98% E1 can be removed (Racz and
Goel 2010; Zhou et al. 2012; Garcia et al. 2019), 99.9% E2
capable of being removed (Racz and Goel 2010; Heffron et al.
2016; Garcia et al. 2019), almost 100% E3 can be removed
(Racz and Goel 2010; Garcia et al. 2019), while EE2 removal
varies between 34% and almost 100% (Muller et al. 2008;
Racz and Goel 2010; Garcia et al. 2019). Studies have also
shown that estrogens concentration in effluent fluctuates daily,
with no uniform or clear temporal trend despite consistency in
wastewater flow (Williams et al. 2003; Racz and Goel 2010;
Heffron et al. 2016). Even after activated sludge treatment,
there is still a certain environmentally significant concentra-
tion of estrogens in the wastewater. For example, the biotrans-
formation of E2 leads to the formation of E1. Generally, the
microorganisms that biotransform E2 are unable to
biotransform E1 further, which means that E1 removal from
polluted water is relatively poor compared with E2 (Samir
et al. 2006). It is partly, for this reason, that E1 starts to accu-
mulate in water bodies and its concentration increase in the
aquatic environment. Furthermore, it has been observed that
E1 concentration in the surface water is much higher than
other natural estrogens (Sami and Fatima 2019). In WWTPs,
the fate of androgen can be tracked by metabolite analysis
with isotope-labeled substrates. Under aerobic degradation
of testosterone, most of the bacteria adopt 9,10-seco pathway.
It has been shown that Comamonas spp. and Pseudomonas
spp. are dominant in sewage that has testosterone traces. The
meta-cleavage dioxygenase gene (tesB) of various
proteobacteria is used to track this essential catabolic gene in
sewage (Chen et al. 2016). In anaerobic degradation pathway,
bacteria degrade androgens through the 2,3-seco pathway by
the bifunctional 1-testosterone hydratase/dehydrogenase
(Yang et al. 2016). Furthermore, to ensure efficient estrogen

Appl Microbiol Biotechnol (2020) 104:2385–2409 2389



removal from wastewater, additional chemical treatment tech-
nologies such as activated carbon treatment, chlorination,
ozonation, and ultraviolet irradiation, etc. are also carried out
(Bila et al. 2007; Racz and Goel 2010; Hartmann et al. 2014;
Li et al. 2016).

Studies using LC-MS/MS and GC-MS have revealed the
presence of steroid estrogens E1, E2, and E3 and testosterone
in WWTP-activated sludge along with their concentrations
(ng/L) in influent, effluent as well as their removal percentage
in five different countries, i.e., Japan, Italy, Australia, the
USA, and Canada (see Table 3) (Liu et al. 2009b). Steroid
estrogens and natural androgens are released into the environ-
ment as urinary (90–95%) and fecal (5–10%) waste from
humans and animals. These estrogens are released into the
environment in either conjugated or unconjugated forms, with
most of the estrogen released with fecal matter being uncon-
jugated, whereas estrogens released with urinary waste are
mostly conjugated (Ternes et al. 1999; Ascenzo et al. 2003;
Liu et al. 2009a; Racz and Goel 2010). There are nine types of
estrogen conjugates found in WWTP environment (Liu et al.
2009b). Recently, Yu et al. (2019) published a review on es-
trogen conjugates concentration (ng/L) present in various
WWTP influents and effluents. The common estrogen conju-
gates along with their concentration (ng/L) in influent and
effluent and their removal percentage in WWTPs are shown
in Table 4. Data analysis showed that in WWTPs, the average
removal rate of estriol, estradiol, and estrone conjugates are

90, 66, and 46%, respectively. Furthermore, it has been shown
that the detection of any micropollutant in a medium depends
on the limit of detection (LOD) or limit of quantification
(LOQ) of that particular instrument. Thus, estrogen pollutants
might not be detected in effluents (due to the detection range
of the instrument), which does not mean that 100% of the
steroid pollutants have been removed from the effluent after
treatment (Naldi et al. 2016).

Mechanism of steroid hormone biotransformation

Microorganisms can degrade or biotransform steroid hormones
by three major mechanisms: (i) Growth linked (metabolic):
where estrogens are used as the sole carbon and energy source
by the microorganisms. (ii) Non-growth linked (co-metabolic):
where microorganisms grow by using other carbon and energy
sources found in the media and produce enzymes which cata-
lyze estrogen biotransformation to form various products (Yu
et al. 2013; Zhang et al. 2015b). Co-metabolism also refers to
the simultaneous degradation of non-growth substrates by mi-
croorganisms using a nutrient substrate (Fernandez-Fontaina
et al. 2014). Studies have shown that co-metabolism can initiate
reactions, convert persistent compounds into potentially more
biodegradable intermediates, and participate in central metabol-
ic pathways for further biotransformation (Groning et al. 2007;
Tran et al. 2013). Municipal wastewater contains numerous
micropollutants such as antibiotics and estrogens but due to

Fig. 1 Fate of steroid estrogens in
wastewater treatment plants
(modified from Racz and Goel
2010)
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their small quantity, they cannot support microbial growth but
can induce microbial genes related to enzymes and cofactors
which are involved in biodegradation (Fischer and Majewsky
2014). (iii) Convert steroid to metabolites but does not degrade
the metabolites. Dehydrogenation of steroids is considered as a
detoxication process (Hamid and Eskicioglu 2012). Most of the
estrogen degradation is growth linked, where microorganisms
use estrogen as a sole carbon source for their growth. Abiotic
nitration or oxidation is also observed in some microbial sys-
tems. This mechanism is adopted by microorganisms in the
presence of higher ammonia concentration (Yu et al. 2013).
The rate of microbial degradation of estrone changes under
the influence of background nitrogen and carbon. It has been
seen that the use of ammonia as a nitrogen source enhances the
estrone biotransformation rate significantly, probably because
the presence of ammonia promotes tyrosine synthesis by pro-
moting the GS-GOGAT pathway. The presence of acetic acid
(AA) and humic acid (HA) also boost estrone biotransforma-
tion because the presence of these acids (AA and HA) triggers
the up-regulation of tyrosine synthesis enzymes (Du et al.
2017). Besides, a higher concentration of ammonia also en-
hances EE2 biotransformation because ammonium oxidation
provides more reducing power. Enhanced EE2 biotransforma-
tion has been observed in ammonia enriched sludge
(Jantanaprasartporn et al. 2017).

Biotransformation of steroid estrogens

The complete degradation or transformation of steroids
has been studied extensively due to their potential ef-
fects on the aquatic environment. The metabolic degra-
dation of steroid estrogens is related to the degradation
mechanism adopted by microorganisms. In this process,
microorganisms use steroids as a sole carbon and energy
source. This degradation mechanism is adopted only
with the presence of high steroid concentration.
Estrogens found in the environment can be degraded
by both aerobic and anaerobic metabolic degradation
pathways. The details of these (aerobic and anaerobic)
microbial degradation pathways are given in subsequent
sections.

Aerobic microbial biotransformation

The aerobic microbial biotransformation of steroid estro-
gen is common in nature. It has been observed that
aerobic degradation is faster in summers than in winters
(Vieno et al. 2005). Aerobic biotransformation is carried
out by bacterial, fungal, and algal species.

Table 3 Steroid estrogen and testosterone concentration (ng/L) in Influent and Effluent of activated sludge of WWTPs and their removal percentage
(Liu et al. 2009a; b)

Name of compound Country Analysis
method

Influent concentration (ng/
L)

Effluent concentration (ng/
L)

Removal
(%)

Reference

Estrone Japan LC-MS/MS 259–326 n.d.–17 93–100 Kobayashi et al. (2006)

Italy LC-MS/MS 25–132 2.5–82 22–95 Baronti et al. (2000)

Australia LC-MS/MS 29–670 n.d.–72 111–100 Clara et al. (2005)

USA GC-MS 57.8–83.3 6.3–49.1 41–89 Robert et al. (2007)

Canada GC-MS n.d.–33 n.d.–147 –a Fernandez et al. (2007)

Estradiol Japan LC-MS/MS n.d.–57 4.6–14 b 100–92 Kobayashi et al. (2006)

Italy LC-MS/MS 4–25 0.35–3.5 59–98 Baronti et al. (2000)

Australia LC-MS/MS 35–125 n.d.–30 44–100 Clara et al. (2005)

USA GC-MS 11.2–161.6 1.5–5.4 52–99 Robert et al. (2007)

Canada GC-MS 2.4–26 0.2–14.7 18.5–98.8 Servos et al. (2005)

Estriol Japan LC-MS/MS n.d. n.d.–151 100–0 Kobayashi et al. (2006)

Italy LC-MS/MS 24–188 0.43–18 77–99 Baronti et al. (2000)

Australia LC-MS/MS 23–660 n.d.–275 18–100 Clara et al. (2005)

USA GC-MS 79.7–259.2 2.2–3.9 95–98 Robert et al. (2007)

Canada GC-MS n.d.–22 n.d.–29 –a Fernandez et al. (2007)

Testosterone Japan LC-MS/MS n.d.–11 n.d. 100 Liu et al. (2009b)

USA GC-MS/MS –a –a –a Kolodziej et al. (2009)

Canada GC-MS/MS n.d.–95 n.d.–21 –a Fernandez et al. (2007)

n.d., not detected
a Data not available
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Aerobic steroid biotransformation by bacteria

Steroid estrogen biotransformation by bacteria species is one
of the most common and prominent ways of microbial

degradation. Over the last decade, a large number of steroids
transforming bacteria species have been isolated from marine,
river, compost, sludge, sandy aquifer (Ke et al. 2007), and soil
samples. E2-biotransforming strains Rhodococcus sp. JX-2

Table 4 Estrogen conjugates of E1, E2, and E3 found in WWTPs (Yu et al. 2019)

Compound name Conjugate name Conc. in WWTPs
influent (ng/L)

Conc. in WWTPs
effluent (ng/L)

Removal percentage
(average)

Reference

Estrone Estrone-3-sulfate 25 9 54.48% Ascenzo et al. (2003)

42 13 Komori et al. (2004)

34.1 0.3 Reddy et al. (2005)

18 11.8 Kumar et al. (2009)

16.5 1.9 Zhu et al. (2015)

76 27 Naldi et al. (2016)

4.8 0.8 Ben et al. (2017)

4.4 0.7 Ben et al. (2018)

Estrone-3-glucuronide 4.3 0.7 35.7% Ascenzo et al. (2003)

11 7.4 Komori et al. (2004)

0.4 n.d.–0.05 Reddy et al. (2005)

0.6 n.d.–0.6 Kumar et al. (2009)

3.6 n.d. Zhu et al. (2015)

Estradiol Estradiol-3-glucuronide 5.2 n.d. 99.9% Ascenzo et al. (2003)

0.3 n.d.–0.07 Reddy et al. (2005)

13.3 0.5 Zhu et al. (2015)

2.0 0.4 Ben et al. (2017)

2.5 0.7 Ben et al. (2018)

Estradiol-17-glucuronide 18 91 40% Komori et al. (2004)

n.d.–0.25 n.d.–0.25 Reddy et al. (2005)

10.5 n.d.–1.4 Zhu et al. (2015)

51 21 Naldi et al. (2016)

3 0.7 Ben et al. (2017)

3.6 0.9 Ben et al. (2018)

Estradiol-3-sulfate 3.3 n.d. 48% Ascenzo et al. (2003)

110 52 Komori et al. (2004)

32 n.d.–0.07 Reddy et al. (2005)

3.6 0.4 Kumar et al. (2009)

2.7 1.8 Zhu et al. (2015)

13 5.3 Naldi et al. (2016)

5.5 0.7 Ben et al. (2017)

4.9 0.7 Ben et al. (2018)

Estradiol-3,17-disulfate n.d.–0.28 n.d.–0.28 78% Reddy et al. (2005)

28 3.3 Naldi et al. (2016)

Estriol Estriol-3-glucuronide 22 72 n.d. Komori et al. (2004)

n.d.–0.28 n.d.–0.8 Kumar et al. (2009)

Estriol-3-sulfate 14 2.2 84 Ascenzo et al. (2003)

Estriol-17-glucuronide 30 n.d. 100 Sueka et al. (2005)

n.d., not detected
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and Rhodococcus sp. DS201were mainly isolated from acti-
vated sludge samples (Liu et al. 2016; Yu et al. 2016). Both of
these bacterial species effectively degrade 17β-estradiol (E2)
f rom the env i ronment . Ano the r bac te r i a s t r a in
Novosphingobium sp. E2S with E2 transformation capability
was also isolated from activated sludge samples. This strain
transforms 66% of E2 after 7 days of incubation (Li et al.
2017). Due to the marine oligotrophic environment and high
levels of salinity, strains that transform estrogen are difficult to
isolate. So far, Buttiauxella sp. (Zhang et al. 2011), Vibrio sp.
(Sang et al. 2012), Rhodococcus (Ye et al. 2017),
Virgibacillus, and Bacillus (Fernandez et al. 2017) are the
main estrogen-transforming strains isolated from the marine
environment. Fernandez et al. (2017) isolated five 17β-
estradiol anaerobic transforming bacterial strains (F1–F5)
from deep-sea sediments.

Aerobic steroid biotransformation by fungi

The non-bacterial microorganisms that are capable of
transforming steroid estrogens are fungi. Several fungal spe-
cies are reported to transform steroids. Mascoti et al. (2016)
explored the biotransformation of dehydro-epi-androsterone
in Aspergillus parasiticus. This fungal strain was able to ef-
fectively biotransform bicycle [3.2.0] hept-2-en-6-one, the
standard Baeyer-Villiger monooxygenase (BVMO) substrate
to produce testololactone and the homo-lactone 3β-hydroxy-
17a-oxa-D-homoandrost-5-en-17-one. Hunter et al. (2006) re-
ported that Aspergillus tamari was a unique fungus that trans-
forms progesterone into testololactone in high yield (about
70%) through a four-step enzymatic pathway, which is flexi-
ble for a range of steroidal substrates. A mycelium named
Curvularia lunata, displayed a good capability of hydroxyl-
ation of steroids. This fungal strain transforms 16Δ5–
3βhydroxy- and Δ4-3-ketosteroids of androstane and
pregnane classes into 20 monohydroxy and dihydroxy-
metabolites (Andrushina et al. 2011). Also, this fungus can
dehydrogenate a wide range of different classes of steroids,
because 17β-hydroxysteroid dehydrogenase from this strain
(17β-HSDcl) could oxidize and reduce both estrogens and
androgens, including estrone, 4-estrene-3,17-dione, 4-
androstene-3,17-dione, and 5a-androstane-3,17-dione
(Lanisnik Rizner et al. 2001). The fungus Fusarium
moniliforme can be used for transforming 3-hydroxy-
steroids into their 7α-hydroxylated derivatives (Cotillon and
Morfin 1990). An inducible microsomal 7β-hydroxylase was
characterized by this strain and was shown to be able to hy-
droxylate dehydroepiandrosterone (DHEA), pregnenolone,
epiandrosterone, and estradiol at the 7α-position.
Furthermore, many other fungal strains that are capable of
transforming steroids including Fusavium oxysporum var.
cubense, which causes the Panama disease of bananas
(Musa sp.) and Exophiala jeanselmei var. lecanii-cod, a

contaminant of the ginger plant (Zingiber ofjcinale). These
fungal strains are responsible for 7α and 15α hydroxylation
of steroids and side-chain degradation as well as 1,2- and 1,4-
reduction of steroidal enones, respectively (Wilson et al. 1999;
Reese 2007).

Aerobic steroid biotransformation by algae

Apart from bacterial and fungal strains, some algae can also
efficiently transform steroid estrogens. The freshwater
bacteria-free microalgae Raphidocelis subcapitata exhibits a
strong ability to remove E2 and diethylstilbestrol (DES) by
biotransformation (Liu et al. 2018b). Furthermore, the pres-
ence of DES enhances the removal of E2, which might be that
DES stimulates enzymes such as glutathione S-transferase
(GST), cytochrome P450, and peroxidase, which actively par-
ticipate in E2 biotransformation (Shi et al. 2010; Peng et al.
2014; Gao and Chi 2015; Liu et al. 2018b). Wang et al. (2017)
also reported an enhanced removal of EE2 by green
microalgae in the presence of E2. Another freshwater alga,
Chlorella vulgaris, can transform steroid estrogens present
in sewage water. Steroid biotransformation rate depends on
the concentration of algal cells (C. vulgaris) as well as the
substrate concentration (Lai et al. 2002). Similarly, Shi et al.
(2010) achieved efficient steroid estrogen transformation from
pond water with the help of a complex inoculum of six differ-
ent algal species along with duckweed. The six algal species,
Anabaena cylindrica, Chlorococcus, Spirulina platensis,
Chlorella, Scenedesmus quadricauda, and Anaebena var.,
were surprisingly able to biotransform E1, E2, and EE2, when
present in nanogram concentrations (Shi et al. 2010). Besides,
another algal species, Scenedesmus dimorphus, was able to
efficiently biotransform steroid estrogens, with biotransforma-
tion efficiencies of about 85% for 17α-estradiol and estrone
and 95% for 17β-estradiol and estriol over 8 days (Zhang
et al. 2014). Thus, based on present findings, the most general
transformation processes of hazardous pollutants by
microalgae, including hydroxylation, glycosylation, and
methylation (Liu et al. 2018b). In general, the cytochrome
P450 monooxygenase (CYP450) was found to be involved
in the detoxification of steroid estrogens in microalgae
(Torres et al. 2008).

Anaerobic steroid microbial biotransformation

The biological transformation of steroids under anaerobic en-
vironment is considered recalcitrant (Czajka and Londry
2006). Since steroid biotransformation rate is much slower
in an anoxic environment, these steroids become recalcitrant
and start accumulating in sediments (Racz and Goel 2010).
Also, the absence of active substances such as dissolved or-
ganic matter and Fe(III) in the anaerobic environment adverse-
ly affect the biotransformation rate of steroids, for which
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reasons anaerobic microbial degradation of steroids is chal-
lenging (Gu et al. 2018). Very little is known about the anaer-
obic biotransformation mechanism of steroids. In the last two
decades, only a few anaerobic steroids transforming microbial
systems have been discovered (Dermer and Fuchs 2012).
Anaerobic catabolism of steroids involves oxygen-
independent steps that are well studied in the anaerobic break-
down of cholesterol. It has been discovered that anaerobic
steroid transformation is biphasic, i.e., rapid and slow trans-
formation phases, both of which can be described by first-
order degradation kinetics (Zhang et al. 2015b). During anaer-
obic transformation, E2 is degraded much faster than E1 and
EE2, while EE2 is almost non-biodegradable (Zhang et al.
2015a). Some research groups have successfully demonstrat-
ed the anaerobic transformation of testosterone (Chiang et al.
2010). It has been shown that anoxic transformation of ste-
roids takes place during enterohepatic circulation in various
mammals by intestinal bacteria. In this anoxic environment,
the cleavage of alkyl aryl ether linkages, dehydroxylation, and
oxidation or reduction at C-17 was found, but the breakdown
of the steroid nucleus by these bacteria to obtain energy was
not clearly described (Groh et al. 1993). In the denitrifying
steps of wastewater treatment and anoxic river sediments,
mineralization of estradiol has been observed but the exact
mechanism of mineralization used by bacteria is still unclear
(Fahrbach 2006). Unfortunately, there is currently not much
information on the mineralization of estrogens under anoxic
conditions. However, the anaerobic transformation of E2 into
E1 has been observed in acetone enriched activated sludge
samples (Lee and Liu 2002). Besides, facultative anaerobes
isolated from the deep sea (Fernandez et al. 2017) and sandy
aquifer (Ke et al. 2007) could also transform E2 into E1 in an
anaerobic medium. The list of some anaerobic microbial ste-
roid degraders is given in Table 5.

Anaerobic steroid transforming microbial consortia

Microbial consortia are a mixture of different microbial strains
which are capable to degrade or transform a particular sub-
strate present in the environment (Clark et al. 2009). In the
consortium, more than one microbial strains are growing sym-
biotically and simultaneously participates in the transforming
mechanism. The enrichment culture technique is considered
as a powerful tool to obtain microbial consortia with desired
degradation capabilities (Feng et al. 2011; Okeke and Lu
2011). Microbial consortia developed by this method are
much closer to the consortia that are functioning in nature
(Feng et al. 2011). In steroid-degrading consortia experiment,
microbial consortia took from activated sludge. The microbial
consortium were firstly enriched in mineral salt media spiked
with steroids. After successful enrichment of these strains,
species present in consortia were identified and characterized
by using different molecular biology tools (Agarwal et al.

2015; Edet et al. 2017). Yu et al. (2005) first time used the
quantitative fingerprinting method and the real-time-RFLP to
determine three different microbial systems present in activat-
ed sludge samples which were responsible for the transforma-
tion of 17α-estradiol, 17β-estradiol, and estrone. Secondly,
Zanga et al. (2008) determined various phylogenic groups
present in activated sludge samples by using micro
autoradiography-fluorescence in situ hybridization (MR-
FISH) technique. After that Real-time PCR assays were de-
veloped to determine estrogen degrading bacteria from con-
sortia, this RT-PCR assay technique was further used to deter-
mine the average cell number of strain JEM-1 present in acti-
vated sludge (Hashimoto et al. 2010).

Co-metabolic steroid transformation by nitrifying
microorganisms

Most microbial systems use metabolic degradation pathways
to degrade a particular substrate when its concentration is high
in the environment. At lower substrate concentrations, the co-
metabolic pathway is used by microorganisms to degrade/
transform steroids. In co-metabolic pathways, steroids are
transformed with the help of some enzymes released by the
microbial system. In these cases, they are not used as a sole
carbon and energy source. Thus, a primary growth substrate is
required for sustainable microbial growth. Nitrifying bacteria
can efficiently metabolize steroids by this pathway. The trans-
formation of EE2 in nitrification tanks using ammonium
monooxygenase (AMO) enzyme is an example of a co-
metabolic transformation of steroids (Andersen et al. 2003).
It has been proposed that the AMO gene product is responsi-
ble for steroid transformation under anoxic conditions, but it is
still not clear that whether nitrifying bacteria or heterotrophic
bacteria is responsible for steroid transformation (Kayee
2014). Various molecular biology techniques have been used
to identify and isolate the genes involved in co-metabolic ste-
roid transformation. Through this, several research groups
have been able to successfully isolate, clone and express ste-
roid transforming genes in suitable hosts to enhance the co-
metabolic steroid transformation (Shao et al. 2016;Wang et al.
2017).

Enzyme systems involved in estrogen
and testosterone transformation

Microbial transformation of estrogen and testosterone is a
complex physiological process that requires a series of cata-
lytic reactions (Knol et al. 2008; Ye et al. 2017). The major
enzymatic reactions involved in steroid transformation are hy-
droxylation (Van der Geize et al. 2008), isomerization (Talalay
and Wang 1955), oxylation (Samavat and Kurzer 2015), acyl-
ation and hydrolysis. Major enzymes which catalyze these
reactions are dehydrogenase (Genti-Raimondi et al. 1991; Ye
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et al. 2017), cytochrome P450 (Venkataraman et al. 2015), ring-
cleavage dioxygenase, hydroxylase, monooxygenase, isomerase,
hydratase, and demethylase (Kristan and Rizner 2012), etc. Also,
it has been observed that various proteins such as electron trans-
fer proteins, receptor proteins, signaling proteins as well as reg-
ulatory proteins are involved in the active transformation of ste-
roid hormones (Penning 2003;Miller andAuchus 2011; Xu et al.
2017; Acconcia andMarino 2018). Themost important enzymes
that regulate steroid hormone biotransformation are hydroxylase
and dioxygenase.

Short-chain dehydrogenase

The short-chain dehydrogenase/reductase (SDR) is a large
enzyme family that is primarily involved in the metabolism
of various hormones such as steroids, retinoids, etc. Some
essential enzymes found in human beings of this family are
epimerase, hydratase and NAD (P)H-dependent oxidoreduc-
tase (Simard et al. 1995). Most of the proteins of this family
are made up of 250–300 amino acid residues and mostly con-
sist of at least 2 domains, which first binds to coenzyme and
the second binds to the substrate. The common microbial en-
zymes involved in steroid degradation from this family are
HSD i.e., 17β-hydroxysteroid dehydrogenase and 3α-
hydroxysteroid dehydrogenase. HSD has been characterized
as the main or the sole enzyme that initiates the catabolism of
cholesterol or other sterols such as estradiol inMycobacteria,
Nocardia, and Rhodococcus sp. (Wipperman et al. 2014; Kreit
2017; Ye et al. 2017).

17β-Hydroxysteroid dehydrogenase

3β, 17β-hydroxysteroid dehydrogenase (3β, 17β-HSD, EC
1.1.1.51) is directly related to steroid metabolism. The first

step in steroid transformation, i.e., conversion of estradiol to
estrone (Fernand et al. 1997) was catalyzed by this enzyme
(Fig. 2). Studies have revealed that 17β-HSD plays a major
role in the conversion of the active form of steroid hormones
into non-active forms. In filamentous fungus, 17β-HSDcl
from Cochliobolus lunatus can catalyze the same reactions
similar to some human enzymes (Rizner et al. 1996).

Cassetta et al. (2005) demonstrated that the Tyr167 amino
acid residue was an active center of fungal 17β-HSDcl.
Besides, 17β-HSD plays an active role in Comamonas
testosterone and causes the complete oxidative degradation of
steroid skeleton (Yu et al. 2015). Furthermore, Ye et al. (2017)
also described the presence of 17β-HSD homologs in
Rhodococcus sp. P14, which effectively converted toxic estradiol
into less toxic estrone. In Pseudomonas putida SJTE-1, two
genes (crgA and oxyR) adjacent to 17β-HSD encoded the po-
tential CrgA andOxyR regulators, which are under the regulation
of the 17β-HSD gene. CrgA could enhance the transcription of
17β-HSD, while oxyR represses 17β-HSD expression (Fernand
et al. 1997).

3α-Hydroxysteroid dehydrogenase

3α-hydroxysteroid dehydrogenase (3α-HSD, E.C. 1.1.1.50)
acts on various steroid hormones by catalyzing the redox re-
action of the hydroxylatone group at position 3 of C19–27 on
steroids. The strain C. testosteroni (Pseudomonas testis) ex-
presses this dehydrogenase (Oppermann et al. 1993; Abalain
et al. 1995), which can reduce the ketone group present at
position 3 of testosterone. Also, this strain expresses the iso-
enzyme 3α-hydroxysteroid dehydrogenase/carbonyl reduc-
tase (3α-HSD/CR) (M.W. 49.4 kDa), which further reduces
the toxicity of testosterone (Maser et al. 2000). X-ray

Table 5 Some anaerobic steroid degraders isolated from various sources along with their degradation potential

Name of organism Isolated from Degradation potential Reference

16S rRNA gene 95% similar to Sphingomonas Sandy aquifer Estrogen Yu et al. (2016)

16S rRNA gene 99% similar to Virgibacillus halotolerans Deep sea 17β-Estradiol Fernandez et al. (2017)

16S rRNA gene 99% similar to Bacillus flexus Deep sea 17β-Estradiol Fernandez et al. (2017)

16S rRNA gene 99% similar to Bacillus licheniformis Deep sea 17β-Estradiol Fernandez et al. (2017)

Denitratisoma oestradiolicum AcBE2–1 Activated sludge 17β-Estradiol Fahrbach (2006)

Thauera spp. Anaerobic sewage Androgen Fujii et al. (2003)

Alcaligenes spp. Deep soil sediment Cholesterol Ismail and Chiang (2011)

72Chol DSMZ 12783 Forest ditch mud Cholesterol Ismail and Chiang (2011)

Sterolibacterium (Sli.) denitrificans Chol-1ST DSMZ 13999 Forest ditch mud Cholesterol Ismail and Chiang (2011)

Denitratisoma oestradiolicum DSMZ 16959 Activated sludge 17β-Estradiol Ismail and Chiang (2011)

Steroidobacter denitrificans Anoxic digested sludge 17β-Estradiol, testosterone Ismail and Chiang (2011)

Iron-reducing bacteria with 16S rRNA gene 84%
similar to Shewanella baltica

Anaerobic digester 17β-Estradiol Volodymr et al. (2010)
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crystallographic studies revealed that each asymmetric unit of
the enzyme is a homodimer in nature.

Hydroxylase

Bacterial hydroxylase is one of the important components of
the steroid catabolic pathway and plays an important role in
steroid transformation. These enzymes help in steroid break-
down by opening the B-r ing . Hydroxyla t ion of
ethinylestradiol by strain Selenastrum capricornutum,
Scenedesmus quadricauda, and Ankistrodesmus braunii is
shown in Fig. 3 (Greca et al. 2008). The most common hy-
droxylases involved in steroid transformation are Rieske-type
non-heme iron oxygenase and Cytochrome P450.

Rieske-type non-heme iron oxygenase

These types of enzymes (3-ketosteroid 9α-hydroxylase
(KSH)) are involved in the 9,10-seco pathway of testosterone
biotransformation. This is the only known core aerobic path-
way of steroid transformation by bacteria (Horinouchi et al.
2012). The opening of the steroid structure is initiated by the
alpha-hydroxylation of C9 position. Microbial species such as
Nocardia (Strijewskim 1982), Rhodococcus sp. (Knol et al.
2008), and Mycobacterium neoauram (Yao et al. 2014) ex-
press KSH enzymes. These KSH enzymes are mainly of two
types, i.e., oxygenase (KshA) and flavin-dependent ferredoxin
reductase (KshB), both of which are required for the KSH
activity (Van der Geize et al. 2008; Petrusma et al. 2009).
Studies have revealed that KSH works along-side 3-
anthrone-Δ1-dehydrogenase (KstD) to form 9α-
hydroxyandrost-1,4-diene-3,17-dione (9α-OH-ADD), where
KSH is responsible for cleaving the CC bond at positions 9
and 10 or AD alone which produces 9α-hydroxyandrost-4-
ene-3,17-dione (9α-OH-AD) (Yao et al. 2014).

Cytochrome P450

Cytochrome P450 (CYP) is a class of heme and thiol-rich
proteins which is widely distributed among living organisms.
On the bases of their involvement in electron transport during
a catalytic reaction, cytochrome P450 can be categorized into
four different categories: the first type is a FAD-containing
reductase and iron-sulfur protein. This is the most abundant
type of CYP and so far most of the bacterial enzymes found to
belong to this class. The second type of enzymes requires
P450 reductase containing FAD and FMN, which are electron
transport systems found in microsomes. The third type of en-
zyme does not require any electron donor, whereas, in the

Fig. 2 Dehydrogenation of
common estrogen with 17β-HSD
enzyme (modified from Ye et al.
2019)

Fig. 3 Hydroxylation of Ethinylestradiol by strain Selenastrum
capricornutum, Scenedesmus quadricauda and Ankistrodesmus braunii
(modified from Greca et al. 2008)

Appl Microbiol Biotechnol (2020) 104:2385–24092396



fourth type of enzyme, electrons are acquired directly from
NAD(P)H (Urlacher and Girhard 2012).

In prokaryotic organisms, cytochrome P450 is a soluble
protein found in the cytosol whereas in eukaryotic organisms
it is membrane-bound. Cytochrome P450 is a typical heme
protein that catalyzes the hydroxylation of aromatic and ali-
phatic substrates (Bernhardt and Urlacher 2014).
Monooxygenase cytochrome P450 was discovered for the
first time to be involved in aerobic hydroxylation of steroid
hormones in 1963 (Cooper et al. 1963), while the first bacte-
rial cytochrome P450 was discovered in Bacillus megaterium
in the mid-1970s (Berg et al. 1975). A limited number of
bacteria cytochrome P450 involved in estrogen conversion
have been discovered. The commonly found CYP450 are
Bacillus megaterium (Berg et al. 1975; Kille et al. 2011;
Schmitz et al. 2014; Jozwik et al. 2016), Nocardia farcinica
IFM 10152 (Bracco et al. 2013), and Streptomyces griseus
(Makino et al. 2014).

Structural studies of the cytochrome P450 families revealed
that the primary structure has fewer similarities but the spatial
structure of all P450 enzymes belonging to various families
are highly conserved and have higher similarities with each
other (Tsuchiya et al. 2005; Nelson 2005). Usually, a typical
cytochrome P450 structure contains 13 different α-helices
(A–L) and four β-sheet domains from the N-terminus to the
C-terminus, which form an inverted triangle structure.
Detailed studies of cytochrome P450 showed that its complex
protease system requires electron transport chains in addition
to the terminal oxygenases. The conserved three-dimensional
structure of cytochrome P450 seems to have some connection
with its catalytic activity for various organic pollutants
(Szaleniec et al. 2018).

Ring cleavage dioxygenase

Biological transformation of aromatic compounds such as ste-
roids is mostly initiated by the enzyme ring-hydroxylating
dioxygenase, which converts them into diol intermediates
compounds (Martin and Mohn 1999; Shindo et al. 2007).
Further, ring cleavage dioxygenase enzyme could cleave the
A ring/B ring of these diol intermediate compounds
(Horinouchi et al. 2012; Chen et al. 2018). Various studies
concluded that different microbial species followed different
steroid metabolizing pathways, but these all metabolizing
pathways produce some common intermediates such as
protocatechuic acid, catechol (Guevara et al. 2019), gentisic
acid, hydroquinone, propionyl-CoA (Liu et al. 2018a), acetyl-
CoA (Xu et al. 2017), tyrosine (Li et al. 2012a; b), etc. The
cyclic cleavage dioxygenase acts on these common interme-
diate metabolites and opens their benzene rings. Chen et al.
(2017) described for the first time, the role of enzymes which
actively participated in the ring cleavage of estrogens. The
initial reaction of the estrogen catabolic pathway by strain

KC8 was demonstrated. It was demonstrated that E1 transfor-
mation is initiated with the oxygenolytic degradation of the
aromatic A ring through the 4-hydroxylation and the subse-
quent meta-cleavage reactions. It is well known that E2 is
being transformed into E1 with the help of 17β-estradiol de-
hydrogenase enzyme, which is the product of OecA.
Furthermore, this E1 was transformed into 4-hydroxyestrone
in the presence of estrone 4-hydroxylase enzyme which is the
product of OceB (Gene cluster I). In strain KC8, OecC was
found up-regulated which indicates thatOecC plays an impor-
tant role in estrogen catabolism. ThisOecC belongs to the type
I extradiol dioxygenase family, which uses ferrous ion to cat-
alyze meta-cleavage of catechols and their analogs, while un-
der abiotic conditions it leads to the production of
pyridinestrone acid. The details of the enzymatic estrogen ring
cleavage are shown in Fig. 4 (Chen et al. 2017). Also, aroma-
tization of A-ring of testosterone can be carried out by a meta-
cleavage enzyme (Horinouchi et al. 2012). Especially, tesB
from Comamonas testosteroni TA441 is necessary for testos-
terone degradation (Horinouchi et al. 2001).

Summary of microbial enzymes involved in estrogen
biotransformation

Estrogen biotransformation is a broad topic, with studies on
estrogen-metabolizing enzymes mainly carried out in humans.
Studies on bacterial estrogen-transforming enzymes were ini-
tially focused on dehydrogenation reactions (Ye et al. 2017;
Ye et al. 2019). Chen et al. (2017) proposed a complete mi-
crobial degradation metabolic pathway of estradiol in
Sphingomonas sp. strain KC8, by detecting intermediate com-
ponents, genomic analysis, transcriptome analysis and other
techniques to study the enzyme involved in various reactions.
In strain KC8, 4,5-seco pathway, an aerobic estrogen catabolic
pathway having three estrogen catabolic gene clusters, i.e.,
oecA ; KC8_09390, oecB ; KC8_16650, and oecC ;
KC8_05325 was described. These three gene clusters were
responsible for the expression of enzymes 3β, 17β-
hydroxysteroid dehydrogenase, estrone 4-hydroxylase,
and 4-hydroxyestrone 4, 5-dioxygenase, respectively,
which were directly involved in the meta-cleavage of es-
trogen A ring (Chen et al. 2017). Besides, Lee et al. (2007)
also tried to detect the metabolic pathway of estradiol deg-
radation in Stenotrophomonas maltophilia ZL1 by using
genomic and proteomic analysis techniques and revealed
the up-regulation of aromatic-amino-acid transaminase.
Extensive studies on 17β-estradiol transforming enzymes
(both microbial and human) has been carried out in previ-
ous couple of years which resulted the characterization or
identification of several new intermediate compounds dur-
ing these biotransformation reactions (Greca et al. 2008;
Urlacher and Girhard 2012; Bracco et al. 2013; Bernhardt
and Urlacher 2014; Ye et al. 2017; Ye et al. 2019). A
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combined diagrammatic representation of all intermediates
formed during 17β-estradiol transformation by both hu-
man and microbial enzymes is compiled in Fig. 4.

Summary of microbial enzymes involved
in testosterone biotransformation

Microbial biotransformation of testosterone has been one of
the hot research topics for the last two decades, and a large
number of research articles have been published on this topic.
The most common microbial species that are capable of
transforming testosterone are Steroidobacter denitrificans
DSMZ18526 (Fahrbach et al. 2008; Chiang et al. 2010;
Wang et al. 2014), Rhodococcus erythropolis SQ1 (Knol
et al. 2008; Van der Geize et al. 2008), Nocardia farcinica
IFM 10152 (Ishikawa et al. 2004; Bracco et al. 2013), and
Comamonas testosteroni TA441 (Horinouchi et al. 2003;
Horinouchi et al. 2012). The Comamonas testosteroni
TA441 is a classical organism that has several enzymes that

aerobically transform testosterone (Fig. 5). The production of
androstenedione (AD) by 17β-hydroxysteroid dehydroge-
nase, followed by Δ1-dehydrogenase (Δ1-dehydrogenase,
TesH), which is further converted to androst-1,4-diene-3,17-
dione (ADD). The ADD is responsible for the introduction of
hydroxyl group at C-9 through ORF17, which causes 9α-
hydroxylation (the process causes the generation of a very
unstable intermediate), at the same time the B-ring cleavages
take place accompanied by aromatization of the A-ring. This
process generates 3-hydroxy-9,10-diol-1,3,5(10)-triene-9,17-
dione (3-hydroxy-9,10-seco-androsta-1,3,5(10)-triene-9,17-
dione (3-HSA)) as a product. Furthermore, TesA1A2 enzyme
complex hydroxylate C-4 cleaves the core ring and produces
4-dihydroxy-9,10-nonanediol-1,3,5(10)-triene-9,17-dione
(3,4-dihydroxy-9,10-seco-androst-1,3,5(10)-triene-9,17-
dione (3,4-DHSA)). Next, TesB Bio-oxygenase splits the A
ring to 4,5-9,10-diseco-3-hydroxy-5,9,17-trioxoandorosta-
1(10),2-dien-4-oic acid (4,9-DSHA). Finally, after multiple
steps, the testosterone is mineralized into carbon dioxide and

Fig. 4 Over all compilation of estrogen degradation by various microbial
enzymes. (References:①, Badawi et al. (2001);②, Kurisu et al. (2010);
③, Tsuchiya et al. (2005); ④, Ye et al. (2017); ⑤, Ye et al. (2019); ⑥,
Chen et al. (2017);⑦, Kisselev et al. (2005); ⑧, Chen et al. (2018); ⑨,

Lee et al. (2003); ⑩, Li et al. (2012a), b); ⑪, Breton et al. 1996; ⑫,
Moeller and Adamski (2006); ⑬, Lee and Liu (2002); ⑭, Ye et al. (un-
published work))
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water. It shows that the TesB gene cluster includes 18 different
types of androgen transforming genes (Horinouchi et al. 2003).
This cluster is widely found in androgen transforming bacterial
species such as Burkholderia, Comamonas, Cupriavidus,
Glaciecol , Hydrocarboniphaga , Marinobacterium ,
Novosphingobium, Pseudoalteromonas, Pseudomonas,
Shewanella, and Sphingomonas (Chen et al. 2016; Olivera
et al. 2018). This method of testosterone metabolism by the
aerobic bacterial system is known as the 9-10-seco pathway.

In addition to the aerobic 9-10-seco pathway, an anaerobic
catabolic pathway was also observed in Steroidobacter
denitrificans DSMZ18526. This pathway is different from the
aerobic pathway. In this transformation route, under controlled
conditions, testosterone was first converted into 1-
dehydrotestosterone by the action of 3-ketosteroidΔ1-dehydro-
genase. This first step is the divergent step between the aerobic
and anaerobic pathways of testosterone transformation. Under
anoxic conditions, the catabolic process starts from ring A.
This bacterial species encodes the gene of the molybdenum pro-
tein of the xanthine oxidase family, AtacABC (anaerobic testos-
terone catabolism), which introduces a hydroxyl group at C-1
and oxidizes the C-1 hydroxyl group to form 17-hydroxy-
androstane-1,3-dione. Phylogenetic analysis of this gene

indicates that the enzyme belongs to the family of xanthine ox-
idases containing molybdenum, FAD, and iron clusters (Yang
et al. 2016). Besides, studies revealed that anaerobic biotransfor-
mation of testosterone was also carried out by 2,3-seco pathway
(Yang et al. 2016). For instance, CYP154C5 from N. farcinica
could catalyze T into 16α-OH-T (Bracco et al. 2013) and DHEA
could be catalyzed by CYP106A2 to form 7β-OH-DHEA
(Schmitz et al. 2014). Interestingly, androgens could be convert-
ed to estrogens by the steroid aromatase, CYP19A1 (Yoshimoto
and Guengerich 2014). Androgen metabolism by various micro-
bial enzymes and their intermediate compounds (identified and
unidentified) are shown in Fig. 5 (Talalay andWang 1955; Nobel
et al. 2001; Morris et al. 2003; Penning 2003; Horinouchi et al.
2003; Ishikawa et al. 2004; Fahrbach et al. 2008; Van der Geize
et al. 2008; Chiang et al. 2010; Horinouchi et al. 2012; Bracco
et al. 2013; Wang et al. 2014; Chen et al. 2016; Yang et al. 2016;
Ye et al. 2017; Ye et al. 2019).

Genetic adaptation mediated steroid
biotransformation

Microbial systems are designed by nature to be adaptable, as
bacterial cells can adapt to different habitats, including

Fig. 5 Over all degradation of androgen along with their intermediates by
various microbial enzymes. (References: ①, Mindnich et al. (2004); ②,
Ye et al. (2019); ③, Horinouchi et al. (2012); ④, Yoshimoto and
Guengerich (2014); ⑤, Chen et al. (2012); ⑥, Yang et al. (2016); ⑦,

Vanden et al. 1993); ⑧, Badawi et al. (2001); ⑨, Schmitz et al. (2014);
⑩, Van der Geize et al. (2008); ⑪, Venkataraman et al. (2015); ⑫,
Bracco et al. (2013); ⑬, Wang et al. (2013); ⑭, Ye et al. (Unpublished
work))
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contaminated and extreme environments and still be capable
of performing various physiological activities (Dash et al.
2013). It has been observed that when some microbial strains
are subjected to the high-stress environments (PAH and ste-
roid pollution), they adapt to that environment and start grow-
ing by using the stress elements as energy and carbon source
(Haritash and Kaushik 2009;Wang et al. 2018). This is termed
adaptation, as pre-exposure to a high dose of contaminants
increases the potential of the microbial community to metab-
olize or oxidize pollutants (Wang et al. 2018). Several studies
have reported that adaptation increases the rate of organic
pollutant transformation (Bergstrand et al. 2016). The genetic
adaptation process that might lead to the induction and repres-
sion of enzymes, genetic changes, and selective enrichment
has been defined as three mechanisms for adaptation of mi-
crobial communities to chemical contaminants (Leahy and
Colwell 1990). The primary mechanism for detecting genetic
adaptation capability of the microbial community is the iden-
tification and amplification of genes that are directly or indi-
rectly involved in the metabolism of the organic contaminant
by selective enrichment and gene transfer. The monitoring and
identification of adaptation to steroid contamination are made
possible by the generation of DNA probes specific for the
genes encoding steroid catabolic pathways. Furthermore, the
identification of genetic adaptation can be carried out by com-
parative genomic analysis (Bergstrand et al. 2016).

Current state of steroid biotransformation

The above discussion shows that steroid pollution is harmful
to aquatic animals and aquatic ecosystem as these pollutants
have potential effects on sexual development and, the repro-
duction process in these animals. As society develops, there is
a corresponding increase in steroid pollution. Presently, sev-
eral microbiological research groups all over the world are
working on the mechanisms of steroid biotransformation.

In the last couple of years, a significant number of research
papers describing the microbial transformation of estradiol,
estriol, and 17α-ethinylestradiol have been published. Li
et al. (2012a), b) reported the transformation of E2 into E1
by strain Stenotrophomonas maltophilia ZL1; proteomic data
analysis revealed that strain S. maltophilia ZL1 can convert
E1 to amino acid tyrosine through ring cleavage on a saturated
ring of the E1 molecule and further use this tyrosine in protein
biosynthesis. They also observed that the presence of the
environmental tyrosine could affect the biotransformation
pathway of E2/E1 by causing the feedback inhibition process.
Besides, Yoneda et al. (2016) compared the 33rd and 40th
passage generations of Rhodococcus opacus PD630 by using
comparative genomics and transcriptomics methods and then
identified an up-regulation in the expression of degradation
genes, which helped to clarify the action of phenol transporter
genes. The evolutionary relationship between these two

strains was analyzed, with the comparative genomics data
revealing that the use of toxic compounds as sole carbon
source accelerated the accumulation of single nucleotide poly-
morphisms (SNPs), which further caused targeted mutations.
Using various techniques to decipher information on estrogen-
degrading genes and degradation products helps to understand
the biodegradation of organic pollutants. Further, the strain
Pseudomonas putida Pf5 was used for estradiol degradation
and the expression of functional proteins was analyzed using
iTRAQ (Du et al. 2017). The results revealed that various
factors such as stress responses, energy metabolism, transport,
chemotaxis, cell motility and changes in protein production by
carbon metabolism, especially over-expression of carbon-
metabolizing proteins lead to the activation of nucleotide met-
abolic pathways along with carbohydrate pathways, which are
mainly associated with energy metabolism (Du et al. 2017).
For further investigation, environmental estrogen biotransfor-
mation kinetics was analyzed by quantitative proteomics anal-
ysis of Hydrogenophaga atypica ZD1 under various nitrogen
and carbon backgrounds. It was observed that branched-chain
amino acid aminotransferase (IlvE) might play an important
role in E1 biodegradation (Xu et al. 2017). Similarly, tran-
scriptomics and lipidomics analysis of R. rubber strain, an
efficient polyethylene degrader, showed that this strain can
change its membrane composition to control the rate of poly-
ethylene transformation (Gravouil et al. 2017). Chen et al.
(2017) identified and validated three estrogen catabolic gene
clusters in Sphingomonas sp. KC8 strain and also successfully
demonstrated its natural estrogen-transforming activity by ste-
roid 4,5-seco pathway. To investigate sterol biotransformation
in wild-type Mycobacterium neoaurum ATCC 25795, Liu
et al. (2018a) used integrated transcriptomics and proteomics
to identify the key genes and key metabolic activities of mu-
tant strains producing steroid intermediates. Our group also
reported a novel 17β-hydroxysteroid dehydrogenase (17β-
HSD) enzyme from Rhodococcus sp. P14, which is capable
of transforming E2 into E1. This enzyme (17β-HSD) is for the
first time, reported in bacterial species which can oxidize E2
into E1 (Ye et al. 2017). As revealed in most of the reports,
microbial systems can transform estradiol, estriol, and 17α-
ethinylestradiol into estrone. Estrone is less harmful than other
steroids, due to its low concentration in nature. Most of the
steroids are being transformed into E1, which ultimately raises
E1 concentration in the environment. The higher concentra-
tion of E1 also has endocrine-disrupting effects on aquatic
animals. Unfortunately, very few studies have reported on or
explained E1 biodegradation. Most of the E1 degradation re-
ports are associated with some physical degradation tech-
niques. Recently, our group reported a new microbial strain
that is capable of biotransforming E1, along with this trans-
formation process, two new non-accumulating intermediate
metabolites, i.e., 3-hydroxyandrosta-5,7,9(11)-trien-17-one
and androsta-1,4,6-triene-3,17-dione (ATD) were also
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characterized (Pratush et al. 2019). We hope to intensify our
research to identify and characterize more E1-transforming
microbial systems that could be used to remediate E1 concen-
tration in aquatic systems.

Conclusion and future perspective

In this review, we collected various information on the
generation of steroids, their entry into the environment,
and their effects on aquatic animals as well as on
humans. In recent years, the scientific community is
very much aware of steroid pollution. This review high-
lights the widespread contamination of the aquatic envi-
ronment by different types of steroid estrogens. In the
past few years, several steroid-transforming microorgan-
isms have been isolated from soil, water, sediments, and
marine water. These microorganisms are believed to
transform steroids by metabolic and co-metabolic path-
ways, while the mechanisms involved are not clear,
hence there is a need for further research on this. It
has been also observed that the WWTPs are unable to
degrade estrogens without biological treatment systems,
for which reason these steroids find their way into water
bodies. On the other hand, the WWTPs equipped with a
biological treatment system also has some limitations, as
the microbial systems have very low transforming capa-
bility; therefore, these systems need long SRT and HRT,
which increase the load on these treatment setups. To
overcome these problems, microbial systems with high
and fast degrading/transforming capabilities, which are
also environmentally friendly, would have to be
engineered or generated. Research should also be fo-
cused on degradation/ transformation kinetics to im-
prove overall steroid metabolism. Also, modern tech-
niques such as multi-omics analysis, isotope labeling
would have to be used to detect new products.
Presently, a large number of oxic (aerobic) microbial
steroid transforming systems have been isolated from
different sources. The oxic steroid transformation found
to be much more efficient than anoxic transformation.
However, only very few anoxic microbial species are
identified that could effectively transform steroid estro-
gens. Thus, for effective estrogen transformation in an-
oxic environments, new anoxic microbial species must
be isolated. Furthermore, studies on anoxic metabolism
of steroids by bacteria should address the following is-
sues: (i) whether the cleavage of the core ring system of
steroid compounds begins from the A-ring, (ii) whether
the elimination of C17-alkyl side chain precedes cleav-
age of the core ring system in the anoxic cholesterol
catabolic pathway, (iii) if a common pathway for steroid
metabolism by denitrifying bacteria is potentially

involved in both oxic and anoxic conditions, and (iv)
the purification and characterization of novel steroid-
transforming enzymes (Ismail and Chiang 2011). The
researcher would also have to focus their work on find-
ing facultative anaerobic microbial strains, which can
transform steroids in both the presence and absence of
oxygen. For both microbial transformations (aerobic and
anaerobic), many challenges still exist in steroid bio-
transformation. The major challenge is the low biotrans-
formation productivity of microbial strains, which is not
economically viable to use for industrial applications.
The other problems that need to be solved include low
steroid solubility, insufficient substrate availability, and
in some cases, the toxicity of the substrate/product to
microbial cells. Apart from scientific efforts, strict reg-
ulations must be put in place to check steroid pollution.
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