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Abstract
Aminoglycosides are one of the common classes of antibiotics that have been widely used for treating infections caused by
pathogenic bacteria. The mechanism of bactericidal action by aminoglycosides is well-known, by which it terminates the
cytoplasmic protein synthesis. However, the potentials of aminoglycosides become hindered when facing the evolution of
bacterial resistance mechanisms. Among multiple resistance mechanisms displayed by bacteria against antibiotics, the formation
of biofilm is themechanism that provides a barrier for antibiotics to reach the cellular level. Bacteria present in the biofilm also get
protection against the impact of host immune responses, harsh environmental conditions, and other antimicrobial treatments.
Hence, with the multifaceted resistance developed by biofilm-forming pathogenic bacteria, antibiotics are therefore discontinued
for further applications. However, the recent research developed several alternative strategies such as optimization of the active
concentration, modification of the environmental conditions, modification of the chemical structure, combinatorial application
with other active agents, and formulation with biocompatible carrier materials to revitalize and exploit the new potential of
aminoglycosides. The present review article describes the above mentioned multiple approaches and possible mechanisms for the
application of aminoglycosides to treat biofilm-associated infections.

Keywords Aminoglycosides . Antibiotics . Bacteria . Biofilm . Immobilization . Pathogens

Introduction

Since its introduction in 1944, aminoglycoside such as strep-
tomycin, neomycin, gentamicin, and tobramycin has been a
crucial class of antibiotics for treating a wide spectrum of
human pathogenic Gram-positive and Gram-negative bacteria
(e.g., Pseudomonas aeruginosa, Staphylococcus aureus,
Escherichia coli, etc.) (Henry-Stanley et al. 2014; Krause
et al. 2016; Labby and Garneau-Tsodikova 2013). The struc-
ture of aminoglycosides is composed of a 2-deoxystreptamine
(2-DOS) ring linked to several amino-modified sugars, giving
rise to their polycationic nature (Mingeot-Leclercq et al.
1999). The chemical structures of different types of aminogly-
cosides are given in Fig. 1. The polycationic nature causes

aminoglycosides to target the negatively charged nucleic acid
of bacterial cells as the major site of bactericidal action
(Chittapragada et al. 2009). By interacting with the outer
membrane and utilizing the energy-dependent phase I, amino-
glycosides arrive at the protein synthesis system in the bacte-
rial cellular cytosol (Taber et al. 1987). There, the antibiotic
utilizes the energy-dependent phase II to irreversibly bind to
the 16S ribosomal RNA (rRNA) at its A site of 30S subunit of
bacterial ribosome, resulting in (1) misreading of codon, (2)
terminating the peptide elongation by inhibiting tRNA trans-
location from the A to the P site, and (3) interfering the mo-
bility of the ribosomal subunit and thus producing
malfunctioning or nonfunctioning (immature) protein (Kotra
et al. 2000;Walter et al. 1999). These proteins upon binding to
the cell wall and membrane would disrupt the structure, thus
allowing the rapid entry of more antibiotics into bacterial cells
(Davis 1987).

Unfortunately, similar to several other antibiotics, the mis-
use and overuse of aminoglycosides over a long time have
caused numerous bacteria to emerge resistant strains against
the antibiotics (Li and Webster 2018; Mulani et al. 2019;
Perez-Rodriguez and Mercanoglu Taban 2019). Up to the
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present, these traits are known to be genuinely similar across
antibiotic classes, which include modifying enzymes, ribo-
somal mutation, cell wall permeability, and biofilm formation
(Pang et al. 2019; Peterson and Kaur 2018) (Fig. 2). The
production of enzymes that modify the antibiotics chemistry
has been the most extensively studied mechanism of bacterial
resistance to aminoglycosides (Ramirez and Tolmasky 2010;
Zarate et al. 2018). These enzymes which are N-

acetyltransferases, O-nucleotidyltransferases, and O-
phosphotransferases target specific –NH2 and –OH groups
of the aminoglycosides, causing the antibiotics to poorly bind
to the ribosomes and thus reducing the antibacterial efficacy
(Garneau-Tsodikova and Labby 2016; Shakil et al. 2008). In
addition to aminoglycosides being modified themselves, their
binding site which is the 16S rRNA of the 30S ribosomal
subunit can be mutated or methylated for deactivation

Fig. 1 Chemical structure of different aminoglycoside antibiotics
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(Krause et al. 2016). Resistance can also be derived from
modifications in the bacterial membrane to reduce the amino-
glycosides’ permeability. Previous studies have shown that
mutations of genes encoding for the components of the cell
wall or cellular membranes such as lipopolysaccharides,
porins, and efflux pumps disrupt the electrostatic interaction
with aminoglycosides, thereby limiting their entry into bacte-
rial cells (Garneau-Tsodikova and Labby 2016; Morita et al.
2012a, b). Similarly, the drug’s permeability across the bacte-
rial membrane is also reduced by the formation of biofilm.
Biofilm is defined as a mucoid matrix made of polysaccha-
rides, proteins, and nucleic acid which is produced by a bac-
terial community adhering onto biotic (e.g., host organs, dam-
aged tissues) or abiotic (e.g., medical devices) surfaces and
displaying resistance to the extreme of the surrounding envi-
ronment (e.g., host immune response, adverse conditions, and
antimicrobial therapies). Such extreme capability of resistance
is known to be attributed to (1) the increasing frequency of
mutation and (2) horizontal transfer of resistant gene(s) among
the bacterial population and between different species (i.e.
intra- and interspecies biofilm) (Giaouris et al. 2015; Hoiby
et al. 2010). Currently, most pathogenic bacteria in humans
have employed biofilm formation as one of the resistance
mechanisms against several antibiotics, causing numerous
chronic infections (e.g., chronic wounds, urinary tract infec-
tions, tuberculosis, and dental caries) and hospital-acquired
infections (e.g., catheter- and ventilator-associated infections)
which could last up to a lifetime (Chen and Wen 2011; Cole
et al. 2014; Di Domenico et al. 2017; Esteban and Garcia-
Coca 2017; Hoiby et al. 2010). Furthermore, biofilm forma-
tion also causes a tremendous burden in the food industry

through food spoilage and foodborne diseases, as the
biofilm-forming pathogenic bacteria can also colonize on the
surface of food processing and preservation facilities (Bai and
Rai 2011; Bridier et al. 2015; Chmielewski and Frank 2003;
Gopu et al. 2015). Resistance against aminoglycosides in
biofilm-forming bacteria is majorly regulated by the nucleic
acid (extracellular DNA, e-DNA) (Chiang et al. 2013). The e-
DNA component of the biofilmmatrix was proposed to hinder
the penetration of aminoglycosides by (1) acidifying the bio-
film environment, (2) chelating with positively charged drugs
through electrostatic interaction, (3) modifying the outer
membrane permeability, and (4) initiating surface protection
(Das et al. 2010; Mulcahy et al. 2008; Wilton et al. 2016).
Other barriers against aminoglycoside access include (1) the
multicellular organization within the biofilm which mediates
the metabolism rate and nutrient availability across the cell
layers, (2) persister subpopulation which remains dormant
throughout the antimicrobial treatment, (3) horizontal transfer
of resistance gene(s), and (4) environmental stresses (Fraud
and Poole 2011; Sato et al. 2018; Yu et al. 2018). Furthermore,
the use of certain aminoglycosides at low concentrations (sub-
inhibitory concentration) also contributed to bacterial resis-
tance through diverse mechanisms (Aka and Haji 2015;
Ranieri et al. 2018). Combining with other cellular-level re-
sistance mechanisms mentioned earlier, biofilm formation
poses a tremendous challenge for the use of aminoglycosides
in current antimicrobial therapies. The present review paper
firstly explains how biofilm formation and other mechanisms
are involved in aminoglycoside resistance, and summarizes
several alternative approaches that are currently conducted to
improve the use of aminoglycosides in treating biofilm-

Fig. 2 Different resistance mechanisms in bacteria against aminoglycosides [information obtained from the literature (Garneau-Tsodikova and Labby
2016; Lin et al. 2015; Olivares et al. 2013)]
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forming pathogenic bacteria. Furthermore, some future per-
spectives are also proposed for extending the applications of
aminoglycosides in the long term.

Emergence of the aminoglycoside
antibiotic-resistant bacterial strain
and possible mechanism of resistance

For biofilm-forming pathogenic bacteria, biofilm formation
adds to their diverse mechanisms to resist aminoglycoside
activity. Besides the efflux pumps, degrading enzymes, and
membrane impermeability which are common resistance
mechanisms against other antibiotics, the bacteria develop
several mechanisms to specifically resist against aminoglyco-
side activities (Vestergaard et al. 2018; Westbrock-Wadman
et al. 1999). Three major types of resistance mechanisms such
as intrinsic, adaptive, and acquired have been explained in
Fig. 2. Thesemechanismswhich have been developed by both
Gram-negative and Gram-positive (Garneau-Tsodikova and
Labby 2016; Lin et al. 2015) are summarized as follows:

1. Presence of aminoglycoside-modifying enzymes causing
O-adenylylation, O-phosphorylation, or N-acetylation of
amine or hydroxyl groups by specific enzymes of amino-
glycoside molecule at different locations (Ramirez et al.
2013).

2. Mutation of 16S rRNA-encoded gene or ribosomal pro-
teins (Hobbie et al. 2006; Springer et al. 2001).

3. Methylation of 16S rRNA (Galimand et al. 2005).
4. Riboswitch, which is present on the leader DNAs encoded

by acetyltransferase- and adenyltransferase-encoding
genes, senses the binding of aminoglycoside and activates
aminoglycoside resistance (Jia et al. 2013).

5. Reduction in aminoglycoside permeability through the
outer membrane or their transport through the inner mem-
brane (Vestergaard et al. 2018).

6. Export by efflux pumps (Westbrock-Wadman et al. 1999).
7. Magnet et al. (2003) showed that the aminoglycoside re-

sistance also occurs as a result of tight binding with the
altered aminoglycoside acetyltransferase.

8. Shielding of extracellular DNA present in the biofilms
(Chiang et al. 2013; Wilton et al. 2016).

Biofilm-forming and virulence factors
producing properties of aminoglycosides:
contribution of aminoglycosides
toward pathogenesis

The attempts to reduce the concentrations of antibiotics to
below their minimum inhibitory concentrations (sub-MIC)

as a solution for lowering selective pressure that resulted from
overuse and misuse of these drugs have so far fallen behind
(Wistrand-Yuen et al. 2018). Recent studies have reported
multiple adverse effects of using aminoglycosides at sub-
MIC in antimicrobial therapies. Firstly, the low concentration
of drugs may face several difficulties upon penetration
through the bacterial cell membrane and biofilm matrix such
as (1) unexpected and uncontrollable loss of drug concentra-
tion which leads to low accumulation and limited drug activity
and (2) instability against environmental changes and resistant
responses during circulation in the bacterial system or biofilm
matrix (Tseng et al. 1972). For instance, a study conducted by
Bhattacharya et al. (2017) found that exposure to gentamicin
at the sub-MIC level has triggered S. aureus to generate reac-
tive oxygen species (ROS), thus becoming more resistant to
antibiotics treatment. Secondly, the low dose of aminoglyco-
sides is often associated with frequent administration route,
which would trigger the bacteria to develop resistance over a
long period. Finally, due to the complex organization of bac-
teria, it is exceedingly challenging for a small amount of con-
ventional aminoglycosides to encounter multiple resistance
mechanisms all at once. Taking the bacterial biofilm formation
as an example, this multidrug resistance mechanism is the
result of complicated signal sensing and regulatory networks
and is essentially processed along with the production of nu-
merous virulence factors. Thus, biofilm responds to aminogly-
coside activity at sub-MIC through extremely various means
(Kaplan 2011). For example, as it is widely known that eleva-
t ion of the bis-(3 ′ -5 ′ ) -cycl ic dimer ic guanosine
monophosphate (c-di-GMP) second messenger level plays a
determining role throughout the establishment and dispersal
of biofilm, sub-MIC of aminoglycosides which elevates the c-
di-GMP level would trigger biofilm formation. Tobramycin at
sub-MIC has promoted the dense biofilm formation in
P. aeruginosa by suppressing the expression of aminoglyco-
side response regulator gene (arr) that regulates the c-di-GMP
production while elevating the expression of a multitude of
biofilm-associated genes (Hoffman et al. 2005; Linares et al.
2006). Tobramycin at this level also upregulated the expres-
sion of other essential factors of biofilm formation such as e-
DNA, quorum sensing, and iron uptake (Tahrioui et al. 2019).
In contrast, biofilm establishment in Escherichia coli was re-
sulted from sub-MIC of fluoroquinolone enhancing the c-di-
GMP level and stresses (Boehm et al. 2009). In addition to c-
di-GMP, bacterial biofilm formation is also linked with type
VI and type III protein secretion systems as they are all under
the regulation of Gac/Rsm regulatory pathway. Thus, by gen-
uinely triggering the type VI protein secretion systems, the
presence of kanamycin at the sub-MIC level has promoted
P. aeruginosa biofilm formation (Jones et al. 2013).

Another target of sub-MIC aminoglycoside triggering bac-
terial biofilm formation is toward the components of extracel-
l u l a r po ly saccha r ide subs t r a t e s (EPS) such as
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exopolysaccharides (alginate and teichoic acids), extracellular
proteins (protease, adhesins, lectins, and surface appendages),
lipids (lipopolysaccharides and biosurfactants), and e-DNA.
The important role of EPS in hindering the penetration of
antimicrobial drugs which has been described in the previous
section is also targeted by sub-MIC aminoglycosides. A pre-
vious study conducted by Szczuka et al. (2017) has shown that
erythromycin, fluoroquinolone, and tigecycline upregulated
seve ra l b io f i lm- re l a t ed genes such as po ly -N -
acetylglucosamine gene (ica) and sigma factor (sigB) in
Staphylococcus epidermidis, thereby promoting the attach-
ment of biofilm-forming cells and production of teichoic
acids, adhesins, and e-DNA. Expression of the Wyz mem-
brane transporter system in E. coli was upregulated propor-
tionally with colonic acid polysaccharide by the presence of
sub-MIC of streptomycin, thereby enhancing biofilm forma-
tion (Kumar and Ting 2016). Although the curli fimbriae pro-
duction and biofilm formation by E. coli were reduced by
amikacin, this reduction appeared insignificant and highly de-
pendent on the bacterial lifestyle (Wojnicz and Tichaczek-
Goska 2013).

It is well-known that virulence properties play an equally
important role as biofilm formation itself in biofilm-associated
infections significantly contributes to bacterial pathogenesis
and is closely linked to antibiotic resistance (Schroeder et al.
2017). In the establishment stage of biofilm, virulence prop-
erties function in sensing, translocating, and properly
attaching to desirable surfaces to allow the switch from plank-
tonic (free-floating) to sessile states (flagellar-mediated swim-
ming and swarming, pili-mediated twitching motilities, and
surface adhesins). During the development and maturation
of biofilm, virulence properties are performed through initiat-
ing reactive oxygen damage, disrupting erythrocytes, seques-
tering the iron, releasing toxins, and damaging the host pro-
teins (Schroeder et al. 2017). In general, virulence properties
are regulated by “quorum sensing” (QS), which is a cell-to-
cell communication network (Khan et al. 2019a). Recently,
several reports have shown that by triggering either the bacte-
rial virulence properties directly or indirectly through their QS
regulation system, sub-MICs of aminoglycosides can also
promote biofilm formation. For example, in the presence of
kanamycin at the sub-MIC level, N-acyl-L-homoserine lac-
tones signaling molecules of the QS system were upregulated,
leading to the increasing level of biofilm formation, chitinase
production, and flagellar activity (Liu et al. 2013). Previously,
sub-MIC of tobramycin increased QS activity, e-DNA pro-
duction, and iron acquisition, causing dense biofilm formation
(Tahrioui et al. 2019). P. aeruginosa virulence factors, along
with the surface charge, hydrophobicity, and adhesins, were
also significantly affected by streptomycin activity, thus
forming high biofilm biomass (Kumar and Ting 2016).
Overall, the sub-MIC of several conventional aminoglyco-
sides have been incapable of inhibiting the growth and biofilm

formation of a wide range of Gram-negative and Gram-
positive bacteria. In the attempts to reintroduce these treat-
ments, several alternative strategies by combining multiple
drugs (i.e., combination strategy) or using nonantibiotic po-
tentiator/adjuvants/materials appear to be highly favorable at
the present.

Alternative strategies for the application
of aminoglycosides

Due to the downfalls in preventing the human pathogenic
bacteria from forming biofilm and causing biofilm-
associated infections, the application of conventional amino-
glycoside monotherapy has been discontinued. To revitalize
the aminoglycoside efficacy to catch upwith such rapid rate of
emerging resistance, several directions have been proposed:
(1) widening the spectrum of aminoglycoside activities to-
ward multiple targets, (2) shifting the aminoglycoside target
from “killing” to “weakening,” and (3) potentiating the ami-
noglycoside activity by using additional materials (e.g., non-
antibiotic compounds and nanocarriers) or by exploiting the
active concentrations (e.g., sub-MIC) and modifying chemical
structure. Up to the present, each direction has brought about
promising results in biofilm inhibition by targeting various
aspects of biofilm formation from development stages, signal-
ing and regulation systems, biofilm architecture to the along-
side virulence properties of a wide range of human pathogenic
bacteria. Although the pharmacokinetics and interactions be-
tween combined drugs or compounds highly require further
studies and discovery for new alternative strategies should
remain ongoing, the significant achievements from modern
alternative strategies toward biofilm formation of human path-
ogenic bacteria give rise to the future possibility of combating
biofilm-associated infections. Table 1 presents a list of amino-
glycoside antibiotics which showed antimicrobial activity at
their active concentration.

Optimization of subinhibitory concentration
and environmental factors of aminoglycosides

Although conventional aminoglycoside drugs have been re-
ported to induce resistance in various bacteria, several im-
provement approaches such as (1) combining the sub-MIC
ofmultiple drugs, (2) shifting their application to antivirulence
or anti-QS (quorum quenching) strategies, and (3) optimizing
the bacterial culture environment in terms of temperature, pH,
and media types have recently been introduced and set a
promising future for aminoglycosides.

In the first approach, combination strategies between dif-
ferent aminoglycosides and between aminoglycoside and oth-
er antibiotics have shown effectiveness in maintaining the
antimicrobial effect at a lower dose of individual drugs. For
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Table 1 Aminoglycosides either alone or in combination with other antibiotic or antimicrobial agents used for treating the biofilm-forming pathogenic
bacteria

Aminoglycosides Pathogenic bacteria Active concentration Mechanism of inhibition References

Amikacin and fosfomycin Pseudomonas
aeruginosa

NA Fosfomycin upon the combination with amikacin has
supported the aminoglycoside to suppress the growth
and biofilm formation ofP. aeruginosa in a rat model
by performing cell wall-degrading function, thereby
improving the drug penetration through the bacterial
cell wall and biofilm matrix

Cai et al.
(2009)

Arbekacin Methicillin-resistant
Staphylococcus
aureus (MRSA)

0.3–10 mg/kg It showed effective eradication of biofilm of MRSA as
studied in the rat

Yoshikawa
et al. (2004)

Arbekacin and fosfomycin MRSA Arbekacin (0.1 mg/kg) and
fosfomycin (100 mg/kg)

The combination showed a synergistic effect on the
eradication of biofilm formed by the MRSA in rat

Morikawa
et al. (2005)

Gentamicin S. aureus,
Escherichia coli,
and
P. aeruginosa

5 mg/mL The alkaline condition and basic amino acid L-arginine
potentiated the efficacy of gentamicin against
Gram-positive and Gram-negative bacteria both
in vitro and in vivo

Lebeaux et al.
(2014)

Gentamicin P. aeruginosa ½-MIC The sub-MIC of gentamicin significantly inhibited the
formation of biofilm of P. aeruginosa on
immobilized fibronectin

Gagniere and
Di Martino
(2004)

Gentamicin and streptomycin S. aureus Gentamicin (5 μg/mL) and
streptomycin
(32 μg/mL)

These antibiotics inhibited the formation of biofilm
when incubated in 1/3 or 1× diluted tryptic soy broth

Henry-Stanley
et al. (2014)

Kanamycin with ceftiofur,
amoxicillin, colistin sulfate,
lincomycin, clarithromycin,
and berberine

S. aureus Berberine and lincomycin
(1/16–1/2 MIC)

The combination of an aminoglycoside with other
antibiotics or other antimicrobial agents inhibited
bacterial biofilm formation. This combination also
effectively inhibited several biofilm-related gene ex-
pressions

Yang et al.
(2017)

Netilmicin P. aeruginosa 32 mg/L Biofilm-forming cell became susceptible against
netilmicin

Cernohorska
and Votava
(2008)

Spectinomycin E. coli ATCC 33456
pEGFP†

40 ppm The biofilm inhibition occurred at the minimum biofilm
preventive concentration

O’Connell
et al. (2006)

Streptomycin Acinetobacter
baumannii

Sub-MIC The sub-MIC of streptomycin inhibited the
QS-regulated genes. Apart from inhibition of QS
signaling molecule production, the sub-MIC of
streptomycin also antagonized these molecules and
attenuated the motility property of A. baumannii

Saroj and
Rather
(2013)

Streptomycin P. aeruginosa Sub-MIC The sub-MIC of streptomycin in alkaline TSB media
inhibited the formation of biofilm. The eradication of
mature biofilm was also found by streptomycin at
different concentrations. Sub-MIC of streptomycin
attenuated virulence properties such as virulence
factor production and motility properties. The inhi-
bition of these phenotypic properties by sub-MIC of
streptomycin was also confirmed at the gene ex-
pression level

Khan et al.
(2019b)

Tobramycin P. aeruginosa PAO1 Varied concentrations (from
1.9 to 6.3 μg/mL) with
respect to time of
incubation

Exhibited killing effect to bacterial cells during agar
diffusion antimicrobial susceptibility testing as a
result of switching the cell lifestyle from planktonic
to sessile forms. The bacterial cells that aggregated in
the sessile lifestyle (young biofilm) were rapidly
killed by tobramycin inside the inhibition zone

Hoiby et al.
(2019)

Tobramycin P. aeruginosa PAO1 [1× MIC, 1/10× MIC, and
1/100× MIC] and
160–2560 mg/mL

A significant biofilm inhibition by tobramycin at a
tested concentration (1× MIC, 1/10× MIC, and
1/100× MIC). Its higher concentration
(160–2560 mg/mL), also eradicated the matured
biofilm

Dosler and
Karaaslan
(2014)

Tobramycin E. coli 2 μg/mL Effective in eliminating the biofilms Ceri et al.
(1999)

Tobramycin P. aeruginosa 16 and 256 mg/L It inhibited the formation of biofilm at 16 mg/L and
eradicated of preformed mature biofilm at 256 mg/L
on cultured human cystic fibrosis (CF) airway cells

Anderson et al.
(2013)
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example, the combinations of kanamycin with ceftiofur,
amoxicillin, colistin sulfate, lincomycin, clarithromycin, and
berberine at their sub-MICs have effectively inhibited biofilm
formation in S. aureus by suppressing several biofilm-related
genes (Yang et al. 2017). The synergistic effects between
tobramycin and clarithromycin or ceftazidime have exhibited
high antibacterial and antibiofilm activities on P. aeruginosa
and also eradicated the pre-existing mature biofilm (Ghorbani
et al. 2017; Kapoor and Murphy 2018).

In the second approach, sub-MIC of aminoglycosides are
used to target the virulence properties and QS of the biofilm-
forming bacteria to disarm their biofilm formation as well as
their pathogenesis (Fleitas Martinez et al. 2018; Fong et al.
2018). As the virulence properties and QS are nonessential to
bacterial survival, their attenuation would reduce selection
pressure for resistant strains as compared to conventional an-
timicrobial drugs, thus reducing the potential of resistance
evolution (Dickey et al. 2017; Rasko and Sperandio 2010).
The combination of curcumin and sub-MIC of gentamicin has
synergistically downregulated the expression of QS-related
genes, biofilm formation, and motility of P. aeruginosa
(Bahari et al. 2017). Similarly, expression of the genes
encoding for QS signaling molecules of Acinetobacter
baumannii was also reduced by the presence of streptomycin
at sub-MIC (Saroj and Rather 2013). Furthermore, the
antivirulence activity of sub-MIC aminoglycosides can be fur-
ther improved when they are incorporated with nonantibiotic
compounds (e.g., bioactive compounds, small molecules, an-
timicrobial peptides) or delivered by nanocarriers, of which a
detailed discussion shall be present in the following section of
this review paper. Despite being highly potential to combat
bacterial biofilm formation, antivirulence strategy yet requires
further optimization work due to three main reasons (Fleitas
Martinez et al. 2019). Firstly, the dynamics of their
production/regulation are extremely varied throughout differ-
ent stages of biofilm formation and different bacterial species
(Dickey et al. 2017). Secondly, besides phenotypic tests and
gene expression, the effective screening and diagnosis tech-
niques that give out fast and precise results about virulence
properties of various biofilm-forming bacteria remain under
research (Ashrafudoulla et al. 2019; Tukenmez et al. 2019).
Finally, the clinical application of sub-MICs of aminoglyco-
side as antivirulence agents onto animal models or infectious

human patients requires long-term and complicated research
and development and social approval (Fleitas Martinez et al.
2019; Maura et al. 2017).

In the third approach, the antibacterial and antibiofilm ac-
tivities of aminoglycosides at sub-MIC are improved by opti-
mizing the culture environment, including temperature, pH,
and culture types. Due to its polycationic nature, the amino-
glycoside activity was reported to be highly influenced by
these environmental factors. For instance, changes in pH and
the concentration of the nutrients of the culture media have
affected the permeability of gentamicin through S. aureus bio-
film as these conditions supported the electrostatic interaction
between the positively charged aminoglycoside drug and the
negatively charged bacterial biofilm components such as
exopolysaccharides and e-DNA (Henry-Stanley et al. 2014).
A similar observation was obtained when streptomycin at sub-
MIC was applied to the biofilm of P. aeruginosa (Khan et al.
2019b). The drug performed optimal inhibitory activity to the
bacterial biofilm formation and virulence factor production
under the culture conditions of alkaline pH, 35 °C, and TSB/
LB media (Khan et al. 2019b). In the current situation where
in-depth studies about the underlying mechanisms of these
effects remain lacking, the reported results provide insights
for the future development of a new antibiofilm strategy.

Immobilization and combinatorial application
of aminoglycosides

During the past few decades, frequent administration of a single
antibiotic at high doses and frequency termed as monotherapy
has resulted in resistance emergence in bacteria (Gonzalez 3rd
and Spencer 1998; Traugott et al. 2011). Particularly, several
human pathogenic bacteria have developedmultiplemechanisms
to resist a majority of commonly used antibiotics (multidrug
resistance); thus, alternative therapeutic approaches are in urgent
need. Under such circumstances, combinatory approaches which
involve combining (1) two or more antibiotics and (2) conven-
tional antibiotics with one or more nonantibiotic compounds
have been used to improve the antimicrobial efficacy of mono-
therapies (Eom et al. 2016; Kim et al. 2017; Tyers and Wright
2019). Several combinations used in this approach are summa-
rized in Table 2.

Table 1 (continued)

Aminoglycosides Pathogenic bacteria Active concentration Mechanism of inhibition References

Tobramycin and clarithromycin P. aeruginosa Tobramycin (0.5–1 μg/mL)
and clarithromycin
(256–512 μg/mL)

The combination has synergistically inhibited bacterial
growth and biofilm formation and also eradicated the
pre-existing mature biofilm of P. aeruginosa

Ghorbani et al.
(2017)

NA not available
†Nonpathogenic bacteria
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Depending on the specific nature and function of individ-
uals, combinations of antibiotics help to broaden the spectrum
of antibiotic activity while lowering their doses and toxicity.
For example, amikacin and isepamicin have been combined
with fosfomycin to synergistically suppress the growth and
biofilm formation of P. aeruginosa in the rat model (Cai
et al. 2009). The mechanism was proposed that fosfomycin
has performed the cell wall-degrading function, which im-
proved the limited penetration of aminoglycosides through
the bacterial cell wall and biofilm matrix (Cai et al. 2009).
The combination of tobramycin and clarithromycin applied
to biofilm-forming isolates of P. aeruginosa has exhibited
antibiofilm effectiveness against a significant number of tested
isolates (Ghorbani et al. 2017).

Recently, the combinations of antibiotics with the nonanti-
biotic compounds that are often referred to as “antibiotic ad-
juvants” have been extensively exploited (Douafer et al.
2019). These compounds are varied in sources (e.g., natural
compounds, chemical compounds, plant phytochemicals,
small molecules, and antimicrobial peptides) and functions
(e.g., QS inhibitor, efflux pump inhibitor, drug uptake promot-
er, and antivirulent agent) (Wright 2016). Gentamicin upon
mixing with chitosan polysaccharide has been improved in
permeabil i ty through the biofi lm architecture of
L. monocytogenes, Listeria welshimeri, and Listeria innocua,
thereby exhibiting inhibition and eradication activities toward
the biofilm of the three Listeria bacteria (Mu et al. 2014).
Combinations of a QS inhibitor called quercetin with
tobramycin, levofloxacin, and amikacin exerted significant
killing effects on P. aeruginosa biofilm cells, as the combina-
tion was added with anti-quorum-sensing activity of quercetin
(Vipin et al. 2019). By combining with chitosan-A
polycationic biopolymer, the antibiofilm activity of strepto-
mycin toward Gram-positive bacteria has been significantly
enhanced due to higher drug permeability and stronger ionic
interaction with negatively charged biofilm constituents
(Zhang et al. 2013). Similarly, conjugation with chitosan-oli-
gosaccharide, which is low molecular weight chitosan and
also well-known for its antimicrobial and antibiofilm activi-
ties, has supported the streptomycin efficacy in biofilm dis-
persal and inactivation of efflux pump and exopolysaccharide
production (Li et al. 2019). On the other hand, the antimicro-
bial peptides (AMPs) such as G10KHc and GL13K targeted
the P. aeruginosa cell membrane structure to synergistically
elevate the penetration of tobramycin; thus, the drug activity
against the bacterial biofilm was significantly improved
(Dosler and Karaaslan 2014; Eckert et al. 2006; Hirt and
Gorr 2013). Colistin is another AMP that has been combined
with a wide range of antibiotics to treat biofilm-forming bac-
teria. The combinatory therapy using colistin combined with
tobramycin has effectively killed the P. aeruginosa biofilm
cells without causing adverse reactions when applied for mice
models and cystic fibrosis patients (Herrmann et al. 2010).

Besides, combinations of aminoglycosides (gentamicin,
tobramycin, and streptomycin) with chemical compounds
such as triclosan and nitric oxide have effectively eradicated
the established P. aeruginosa biofilm and eliminated the per-
sistent cells living within (Barraud et al. 2006; Maiden et al.
2018). Rhamnolipid as a membrane-acting agent induces the
uptake of aminoglycosides inside the bacterial without the
involvement of proton motive force, thereby it potentiates
the bactericidal properties of aminoglycosides (Radlinski
et al. 2019; Yarlagadda and Wright 2019). A similar eradicat-
ing effect was achieved when the combinations of aminogly-
cosides with plant phytochemicals such as (1) gentamicin with
oleanolic acid or (2) tobramycin with tannic acid and gallic
acid were applied to A. baumannii and S. aureus biofilms,
respectively (Dong et al. 2018; Shin and Park 2015).
Overall, with numerous significances in improving and poten-
tiating the antibiofilm activity of aminoglycosides mentioned
above, the combinatory strategies can be considered as highly
helpful for drug use in the long run.

Nanoformulation of aminoglycosides

One of the major challenges of conventional antibiotic ap-
proaches is the undesirable loss of antibiotic concentration
upon penetration through the bacterial cell membrane/cell
wall/biofilm matrix. The insufficient amount of antimicrobial
drugs, therefore, requires administering at a high frequency
and high dose, which is most likely to result in in vivo toxicity,
bacterial resistance, and tremendous economic burden
(Allahverdiyev et al. 2011; Van Giau et al. 2019). The ad-
vanced development of nanotechnology during the past few
years has revitalized this limitation of conventional antibiotic
therapies. Numerous studies have recognized the tremendous
benefits of encapsulating and grafting of antibiotics into
nanomaterials, including (1) controlled release with mini-
mized concentration leakage and (2) stability against the bac-
terial clearance responses (Baptista et al . 2018).
Nanomaterials are extremely diverse in terms of source, pro-
duction methods, compatibility, and functions, allowing them
to carry different classes of antibiotics. Several types of
nanomaterials such as liposomes, hydrogel, film, smart sur-
face, and nanoparticles have been used for aminoglycoside
encapsulation/immobilization and showed significant im-
provement in the drug’s activity (Jijie et al. 2017). Such diver-
sity in nanocarrier types and antibacterial/antibiofilm actions
is highly promising for the control of biofilm formation and
the emergence of multidrug resistance in the future (Abed and
Couvreur 2014).

A liposome is a universal lipid-based colloidal vesicle
which has been used to deliver both hydrophilic and hydro-
phobic antibiotics for a long time (Langner and Kral 1999).
Having similar physiochemical properties as a bacterial cell
membrane, liposome nanoformulation easily fuses through
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Table 2 Combinatorial application, immobilization, and nanoformulation of aminoglycosides

Antibiotics Carrier molecules or
active agents

Pathogenic bacteria Mode of actions References

Amikacin Ethylenediaminetetraacetic
acid (EDTA)

Pseudomonas aeruginosa,
Escherichia coli,
Klebsiella pneumonia,
and Enterobacter
cloacae

Combination of amikacin and EDTA
results in the synergistic eradication
of biofilm formed by
Gram-negative bacteria

Lebeaux et al.
(2015)

Amikacin Hyaluronan P. aeruginosa, Listeria
monocytogenes, and
Staphylococcus aureus

The conjugate showed effective
eradication of intracellular
bacteria with reduced dose
requirements. The conjugates
effectively allow the entry of
amikacin inside the cell as a
result of binding with CD44 r
eceptor present on the
macrophage

Wang et al. (2018b)

Gentamicin EDTA S. aureus, S. epidermidis,
E. coli, or P. aeruginosa

This combination has broad-spectrum
biofilm-eradicating properties
against pathogenic bacteria as
evidenced by in vivo study in
the rat model. EDTA acts as
an adjuvant to potentiate the
biofilm eradication property
of gentamicin

Chauhan et al.
(2012)

Gentamicin Plumbagin P. aeruginosa The sub-MIC of gentamicin and
plumbagin combination
showed effective synergistic
biofilm inhibition and the
eradication of mature biofilm.
This combination also
attenuates several virulence
properties such as protease
activity, production of
virulence factors, and
motilities. Such attenuation
of virulence properties was also
confirmed by the inhibition of
virulent gene expression

Gupta et al. (2017)

Gentamicin Protein P128 S. aureus The combination of gentamicin
with a peptidoglycan-degrading
protein P128 results in a
synergistic way of biofilm
inhibition

Nair et al. (2016)

Gentamicin Alginate P. aeruginosa, E. coli, and
S. aureus

The covalently joined gentamicin and
alginate showed effective antimicrobial
activity. The mechanism of antimicrobial
might be due to the electrostatic
interaction between positively charged
ions of the conjugate and negatively
charged cell membrane

Kondaveeti et al.
(2018)

Gentamicin Chitosan P. aeruginosa, S. aureus,
and E. coli

The electrostatic interaction
and hydrogen bonding between
the conjugate and membrane protein
resulted in cell death

Liu et al. (2017),
Yan et al. (2019)

Gentamicin Gold nanoparticles S. epidermidis and
Staphylococcus
haemolyticus

The efficacy of gentamicin
against these bacteria
increased as a result of conjugation
with gold nanoparticle

Roshmi et al. (2015)

Gentamicin Curcumin P. aeruginosa The sub-MIC of gentamicin in
combination with curcumin
showed synergistic
antimicrobial activity. This combination
also inhibits motility
properties such as twitching and
swarming. Furthermore, this
combination inhibits the formation
of biofilm. The expression of
QS regulatory rhlI/rhlR and
lasI/lasR genes were also inhibited
by this combination

Bahari et al. (2017)
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Table 2 (continued)

Antibiotics Carrier molecules or
active agents

Pathogenic bacteria Mode of actions References

Gentamicin, neomycin,
and
kanamycin

Silica nanoparticles B. cereus, S. aureus,
E. coli, S. enterica
Typhimurium, and
kanamycin-resistant
E. coli

The conjugation of antibiotic with
silica nanoparticle results in the
effective antimicrobial activity
without causing cytotoxic
effect

Agnihotri et al.
(2015)

Kanamycin Gold nanoparticle Gram-negative and
Gram-positive bacteria

The bacterial cell death occurred as a result
of rupturing the membrane followed by
the leakage of cytoplasmic content

Payne et al. (2016)

Kanamycin and
amikacin

Bile acid such as
deoxycholic acid and
ursodeoxycholic acid

S. aureus These complexes showed bactericidal and
concentration-dependent inhibition of
biofilm formation and dispersion of ma-
ture biofilm. Both bile acid and the
deoxycholic acid act as a carrier for the
transport of kanamycin and amikacin

Giovagnoli et al.
(2017)

Netilmicin/tobramycin/
gentamicin/amikacin

Hordenine P. aeruginosa Combination of hordenine with
aminoglycosides showed an effective
biofilm inhibition as well as eradication
of preformed mature biofilm

Zhou et al. (2018a,
b)

Streptomycin Chitosan-magnetic
nanoparticle

Gram-positive,
Gram-negative bacteria,
and Mycobacterium
tuberculosis

The loaded streptomycin to the magnetic
nanoparticle acted as an antimicrobial
agent. Due to the magnetic nature of the
nanocomposites, it can be also used for
the diagnosis of microorganism using the
imaging techniques

El Zowalaty et al.
(2015)

Streptomycin Streptomycin-loaded starch
nanoparticle
incorporated to chitosan

E. coli and Bacillus subtilis Streptomycin-loaded starch nanoparticles
acted as a potent antimicrobial agent with
sustained release of the streptomycin

Hari and Nair (2016)

Streptomycin Chitosan L. monocytogenes,
S. aureus, and
Salmonella
Typhimurium

The covalently coupled chitosan and
streptomycin showed bactericidal activity
toward intracellular bacteria. It was
capable of eliminating endocytic or
endosomal escaped bacteria as a result of
direct contact between the bacterial cell
and streptomycin antibiotic

Mu et al. (2016b)

Streptomycin Chitosan-oligosaccharide P. aeruginosa Eradicates the mature biofilm of
P. aeruginosa. The possible mechanism
for the susceptibility of the cells against
the conjugates might be due to the
suppression of MexX–MexY drug efflux
pump and downregulation of biofilm
exopolysaccharide synthesis

Li et al. (2019)

Streptomycin Thymol and
cinnamaldehyde

L. monocytogenes and
S. Typhimurium

The combination of streptomycin with
thymol and cinnamaldehyde showed a
synergistic effect against
L. monocytogenes, whereas the
combination of streptomycin with
cinnamaldehyde and eugenol showed
synergy against S. Typhimurium. These
combinations were also effective in the
eradication of mature biofilm of both
bacteria

Liu et al. (2015)

Streptomycin Chitosan S. aureus,
L. monocytogenes, and
Enterococcus faecalis

Exhibited antibiofilm as well as bactericidal
effects toward the Gram-positive patho-
genic bacteria. The polycationic nature of
the chitosan resulted in the interaction
with the component of the biofilm matrix
that efficiently delivered streptomycin
antibiotic

Zhang et al. (2013)

Streptomycin Chitosan and gold
nanoparticle

P. aeruginosa,
S. Typhimurium,
L. monocytogenes, and
S. aureus

Chitosan–streptomycin gold nanoparticles
(CA NPs) showed antibiofilm activity
and damaged the established mature
biofilm of Gram-negative bacteria.
Furthermore, CA NPs also showed the
killing of dispersed biofilm cell as well as
growth inhibition of Gram-positive bac-
teria

Mu et al. (2016a)
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this barrier to successfully deliver their containing drugs, pro-
viding beneficial pharmacokinetics, selectivity, and
biodistribution which were expected to overcome drug resis-
tance in bacteria, especially the human pathogenic ones
(Alipour and Suntres 2014; Drulis-Kawa and Dorotkiewicz-
Jach 2010). For example, tobramycin (Tob) to which
P. aeruginosa has developed resistance was chemically encap-
sulated in polyethylene glycol (PEG)ylated-liposome to form
Tob–PEG conjugated structure. The conjugate has shown an
increase in stability and antibacterial and antibiofilm efficacy
as compared to individual Tob (Du et al. 2015). Similarly, by
encapsulating aminoglycosides (amikacin, gentamicin, and
tobramycin) into a liposome, the permeability of the drug

through the bacterial cell membrane was significantly in-
creased, thereby performing more active inhibitory effect to
P. aeruginosa growth (Alipour and Suntres 2014). On the
other hand, gentamicin encapsulated in liposome was further
stabilizedwith positively charged lysozyme enzyme to elevate
the drug delivery and interaction with negatively charged bio-
film constituents of Gram-positive (S. aureus) and Gram-
negative (P. aeruginosa), thus significantly increasing the in-
hibition and disruption efficacy toward the biofilm formed by
both bacteria (Hou et al. 2017). Despite these achievements,
the use of liposome has currently become less favorable due to
their instability against physical conditions (e.g., heat, storage
temperature, and oxidation) and high-cost production. Further

Table 2 (continued)

Antibiotics Carrier molecules or
active agents

Pathogenic bacteria Mode of actions References

Streptomycin Chitosan-magnetic
nanoparticle

Methicillin-resistant
S. aureus

Nanoformulation of streptomycin resulted
in controlled release at the site of action
with effective antibacterial activity

Hussein-Al-Ali et al.
(2014)

Tobramycin Liposome S. epidermidis Immobilization of tobramycin to liposomes
which effectively inhibited the bacterial
growth. The loaded tobramycin was
released as a result of bacterial membrane
interaction with liposome membrane

Mourtas et al.
(2015)

Tobramycin Low-intensity and
low-frequency ultra-
sound

E. coli Showed synergistic bactericidal activity to
the multidrug-resistant E. coli biofilm
cells. The combination of ultrasound and
tobramycin also altered the morphologi-
cal structure (reduced thickness and
loosened structure) of biofilms

Hou et al. (2019)

Tobramycin Low-frequency vibration P. aeruginosa The low frequency of vibration promotes
the efficacy of sub-MIC tobramycin
against the biofilm cells

Bandara et al.
(2014)

Tobramycin Azteronam P. aeruginosa Sequential treatment of tobramycin and
aztreonam combination resulted in the
effective reduction of viable cells and
biofilm biomass

Rojo-Molinero et al.
(2016)

Tobramycin PEGylation P. aeruginosa The PEGylation of tobramycin increased the
penetration across the mucus as studied
using the mucus barrier biofilm model.
The PEGylated tobramycin showed
effective antimicrobial activity against
biofilm cells

Bahamondez-Canas
et al. (2018)

Tobramycin DJK-5 (chemically
synthesized peptide)

P. aeruginosa This combination showed effective in the
biofilm inhibition on the plastic surface as
well as 3-dimensional lung epithelial cells

Crabbe et al. (2017)

Tobramycin N-(2-pyrimidyl)
butanamide

P. aeruginosa The QS inhibitor, i.e., N-(2-pyrimidyl)
butanamide showed synergistic biofilm
inhibition in combination with
tobramycin

Furiga et al. (2015)

Tobramycin Linolenic acid P. aeruginosa The combination inhibits the formation of
biofilm in a synergistic way via the
quorum sensing system. This
combination also inhibits several
virulence properties such as motility
property, protease activity, and
production of virulence factors.

Chanda et al. (2017)

Tobramycin ALX-109 (lactoferrin and
hypothiocyanite)

P. aeruginosa ALX-109 in combination results in the
effective biofilm inhibition as well as
disruption of established mature biofilm
of P. aeruginosa, which was grown on
cystic fibrosis airway epithelial cells

Moreau-Marquis
et al. (2015)
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optimization work is demanded to improve and extend the
liposome activities for future clinical applications (Drulis-
Kawa and Dorotkiewicz-Jach 2010).

“Smart” surfaces that have been adopted in combating
biofilm formation recently are varied in design and
antibiofilm functions (Li et al. 2018). Although the
antibiofilm activity of “smart” aminoglycoside surfaces
has remained unexploited, their significances in physio-
chemical properties and antibacterial activity against
S. epidermidis, E. coli, P. aeruginosa, and S. aureus record-
ed in vitro and in vivo has provided an insight to the poten-
tial applications of these surfaces (Hu et al. 2017).

Nanoparticles (NPs) which are defined as having at least
one dimension less than 100 nm and synthesized from metal
(i.e., metal-based/metallic/inorganic NPs) or polysaccharides
(i.e., polysaccharide-based/polymeric/organic NPs) are exten-
sively applied in drug delivery systems (Jeevanandam et al.
2018; Khan et al. 2017, 2018). Due to their large surface-area-
to-volume ratio, small size, controlled release, diverse biolog-
ical activities, stability, and minimized toxicity, NPs easily
pass through the cell membrane and the biofilm matrix to
effectively deliver their carry-on drug to the targeted infec-
tious site with minimal concentration loss (Aderibigbe 2017;
Andonova 2017; Javaid et al. 2018; Liu et al. 2008; Salouti
and Ahangari 2014). Up to the present, aminoglycosides have
been loaded onto these delivery systems either externally (as a
coating or a stabilizing/capping/reducing agent) or internally
(encapsulation). In the former case, it was proposed that the
capping and reducing properties of the drugs allowed the drug
adsorption onto the NPs’ surface (Shah et al. 2014). In return,
the NPs which are capped/reduced by antibiotics are less like-
ly to form aggregates and had increasing antibacterial activity
(Gad El-Rab et al. 2018; Shedbalkar et al. 2014). For instance,
by conjugation to gold NPs in the form of reducing/capping
agents, kanamycin was rapidly delivered into the cytosol and
effectively exerted a bactericidal effect on S. epidermidis and
E. aerogenes (Payne et al. 2016). Streptomycin and kanamy-
cin were employed as reducing agents along with sodium
borohydride to synthesize antibiotic-conjugated gold NPs,
which exhibited antibacterial activity against S. aureus,
Micrococcus luteus, and E. coli and had high stability against
heat, UV light, and long-term storage at room temperature
(Bhattacharya et al. 2012). Hybrid nanoformulation of silica
oxide (SiO2) and gentamicin exhibited (1) antibacterial and
antibiofilm activities to methicillin-resistant S. aureus
(MRSA) and (2) eradication and destructive activities to
E. coli established biofilm structure (Mosselhy et al. 2018).
Silica NPs which were synthesized using aminoglycosides
(gentamicin, kanamycin, and neomycin) actively inhibited
the growth of resistant bacterial strains without causing cyto-
toxicity (Agnihotri et al. 2015). Due to the synergism with
aminoglycoside capping agent, the synthesized silver NPs ex-
hibited higher antibacterial activity against E. coli and

S. aureus than those which were capped with citrate or SDS
(Kora and Rastogi 2013). In the latter case where aminogly-
cosides are encapsulated into the NPs, the permeability of the
drug through the bacterial cell membrane or biofilm matrix,
their control release, and their stability are improved, thus
remaining active inside the living systems for a longer period
(Deacon et al. 2015). Gentamicin loaded to gold NPs was able
to inhibit the growth and biofilm formation as well as eradi-
cated the preformed mature biofilm of P. aeruginosa,
L. monocytogenes, and E. coli without causing cytotoxicity
to macrophages (Mu et al. 2016c). By loading tobramycin
onto small-sized citrate-capped silver NPs to treat
P. aeruginosa biofilm formation, the NPs further potentiated
the disruption effect of tobramycin toward the bacterial bio-
film matrix and cell membrane (Habash et al. 2017).
Likewise, the S. aureus cell membrane and biofilm were also
targeted by the chitosan/Fe3O4@poly (ethylene glycol)
(PEG)-gentamicin NPs, where the electrostatic interaction be-
tween gentamicin, protonated chitosan, and PEG aided the
drug entry through the bacterial membrane, while the magnet-
ic force of Fe3O4 NPs allowed the drug penetration through
the bacterial preformed biofilm (Wang et al. 2018a). Besides,
loading into nanocarriers was also found to affect the rate of
drug release, as, in the case of gentamicin being loaded onto
cysteine and glutathione-capped gold NPs, the addition of
gentamicin enhanced the antibacterial efficacy of the synthe-
sized NPs against S. aureus. Furthermore, the drug remained
actively releasing for two more days, which was attributed to
the neutral environmental pH supporting the binding of
nanocarrier and biofilm polysaccharides (Perni and
Prokopovich 2014). As the combination strategies of amino-
glycosides are becoming highly favorable, the combinations
were proposed to enhance their “killing” and biofilm inhibi-
tory effectiveness upon co-delivery by NPs, as the drug con-
jugates can penetrate more rapidly through the cell membrane
and biofilm matrix. For instance, the chitosan–streptomycin
conjugates which had previously shown improved antibacte-
rial and antibiofilm activities were used to synthesize gold
NPs (Mu et al. 2016c). With the aid of gold NPs, the conju-
gates readily crossed the biofilm and cell membrane barriers,
thus (1) actively inhibiting biofilm formation and eradicating
preformed biofilm of P. aeruginosa and (2) exerting a bacte-
ricidal effect to both Gram-positive and Gram-negative bacte-
ria (L. monocytogenes, S. aureus, S. Typhimurium, and E. coli)
(Mu et al. 2016a).

In addition to metal-based NPs, polymeric NPs have also
been used as a nanocarrier for aminoglycosides. In compari-
son to metal-based NPs, the polymeric NPs provide several
different advantages in terms of minimal toxicity, biocompat-
ibility, biodegradability, and environmental friendliness (El-
Say and El-Sawy 2017). Tobramycin binding to alginate,
which has been functionalized with DNase I and then encap-
sulated into chitosan NPs, was stably and effectively delivered
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and exhibited antibacterial activity against P. aeruginosa in
the lungs of cystic fibrosis-infected patients (Deacon et al.
2015). Amikacin was loaded into poly-D,L-lactide-co-
glycolide (PLGA)-based NPs and was readily delivered
through a biofilm matrix to perform both antibiofilm and an-
tibacterial activities to P. aeruginosa planktonic and biofilm
cells without causing cytotoxicity (Sabaeifard et al. 2017). As
tobramycin was reported as forming a weak bonding with the
PLGA NPs, the aminoglycoside was firstly combined with
dioctyl sulfosuccinate and then loaded onto PLGA NPs,
which resulted in the sustainable antibacterial activity against
P. aeruginosa (Hill et al. 2019). Polymeric NPs were also
capable of co-delivering the combination of nitric oxide
(NO) and gentamicin across the biofilm matrix of
P. aeruginosa (Nguyen et al. 2016). The release of NO and
gentamicin has effectively eradicated the bacterial mature bio-
film and killed the dispersed biofilm cells (Nguyen et al.
2016). The chemistry used for the conjugation or nanoformu-
lation of aminoglycosides has been explained in several liter-
ature (Agnihotri et al. 2015; Kondaveeti et al. 2018; Liu et al.
2017; Mugabe et al. 2006b; Rukholm et al. 2006; Yan et al.
2019). In most of the cases, the conjugation of aminoglyco-
side with other molecules/agents involved carbodiimide
chemistry (Kondaveeti et al. 2018; Liu et al. 2017; Perni and
Prokopovich 2014). For example, the synthesis of
aminoglycoside–metal NPs comprises two steps: the first step
involves the synthesis of metal NPs by using a reducing agent
and the second step involves the conjugation of aminoglyco-
side via condensation reaction in the presence of 1-ethyl-3-(3-
dimethyl aminopropyl) carbodiimide (EDC) and N-
hydroxysuccinimide (NHS) (Perni and Prokopovich 2014).
Another example for conjugation of aminoglycoside with chi-
tosan involved the following step reactions: in the first step,
chitosan gets oxidized by periodate which results in the C2–C3

bond cleavage and formation of the aldehyde group. In the
second step, aminoglycoside conjugates with the aldehyde
group of oxide chitosan via the Schiff base reaction (Yan
et al. 2019). Similarly, for the encapsulation of aminoglyco-
side into liposome, the methodology included the
dehydration–rehydration vesicle method (Alhariri et al.
2017; Kirby and Gregoriadis 1984; Mugabe et al. 2006a),
where liposome was prepared by mixing 1,2-dipalmitoylsn-
glycero-3-phosphocholine (DPPC) and cholesterol in the mo-
lar ratio of 2:1. The prepared vesicles were mixed with ami-
noglycosides and freeze dried followed by the rehydration of
the mixture. The rehydrated mixture was ready to use after
washing with phosphate buffer. A representative example of
the chemical reaction (chemistry of conjugation) used for the
covalent conjugation of gentamicin with different materials
such as chitosan/alginate or nanoformulation with metallic
or polymeric nanoparticles is explained in Fig. 3.

Application of chemically modified form
of the aminoglycosides

Although their activity toward the bacterial biofilm structure
has remained limitedly reported, the large diversity of forms
and synthesis methods of chemically modified aminoglyco-
sides has been extremely significant (Thamban Chandrika and
Garneau-Tsodikova 2018). Modifying the currently available
aminoglycosides provides the advantage of improving certain
characteristics of the drugs within a shorter time period as
compared to searching and developing a new drug (Bera
et al. 2016). A few typical examples could be aminoglycoside
derivatives, antibacterial amphiphilic aminoglycoside (AAG),
and aminoglycoside-derived cationic amphiphilic drug.
Firstly, synthetic derivatives of aminoglycosides such as
plazomicin and netilmicin are some new generation of amino-
glycosides that have been discovered in recent years. Since the
–NH2 group majorly determines the aminoglycoside activity,
modifications in their position and number which have given
rise to plazomicin, netilmicin, and numerous modified amino-
glycosides have been performed (Zarate et al. 2018). In most
cases, they exhibited antibacterial activity to various human
pathogens, including those which are referred to as “multidrug
resistant” and have biofilm-forming ability (Cox et al. 2018;
Landman et al. 2011; Noone 1984; Reyes et al. 2011).
Secondly, AAG such as naphthylalkyl amine is a structurally
modified form of neamine that has shifted to a new target
site—the bacterial outer membrane and/or lipopolysaccharide
and exhibited electrostatic interaction to destabilize the bacte-
r ial cel ls (Sautrey et al . 2014). Thirdly, various
aminoglycoside-derived cationic amphiphilic drugs have also
shown effective antibacterial activity against a wide range of
biofilm-forming Gram-positive and Gram-negative bacteria
(Benhamou et al. 2015). Overall, based on their active anti-
bacterial potentials to a wide spectrum of biofilm-forming
bacteria, the chemically modified aminoglycosides can be
considered as a promising alternative for further application
on biofilm inhibition approaches.

Conclusion and future perspectives

The major challenge to combination strategies in developing a
new drug relies on complex antibiotic pharmacology.
Searching for the precise treatment concentrations and dura-
tion for a single antibiotic is already difficult. In order to
achieve the target for two compounds that are synergistically
conjugative in dynamics and pharmacokinetics to maintain
and encourage drug development, single agents may also be
required for clinical trials. The toxicology of each agent, as
well as the combination, must also be carefully investigated,
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Fig. 3 Chemical reaction used for the conjugating of gentamicin with
other active agents and nanoformulation with metallic/polymeric
nanomaterials [information obtained from the literature (Agnihotri et al.
2015; Kondaveeti et al. 2018; Liu et al. 2017; Mugabe et al. 2006b;
Rukholm et al. 2006; Yan et al. 2019)]. a Conjugation of gentamicin to
chitosan followed by two steps. In the first step, chitosan gets oxidized by
periodate which results in the C2–C3 bond cleavage and formation of the
aldehyde group. In the second step, gentamicin conjugated with the alde-
hyde group of oxide chitosan via the Schiff base reaction (Yan et al.
2019). b Formation of a chitosan–gentamicin film by carbodiimide chem-
istry (Liu et al. 2017). Firstly, chitosan film formed by air drying of
chitosan solution; secondly, generation of amide and carboxyl group by
citric acid on the surface of chitosan; and thirdly, covalent grafting of
gentamicin to the available carboxyl group of chitosan via the help of

1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) and N-
hydroxysuccinimide (NHS) as cross-linker. c Synthesis of the alginate–
gentamicin conjugate by carbodiimide chemistry (Kondaveeti et al.
2018). d Encapsulation of gentamicin in a liposome (Rukholm et al.
2006). e Functionalized gentamicin-conjugated silica nanoparticles.
First, synthesis of silica nanoparticles; second, generation of epoxy
groups with the help of 3-glycidyloxypropyltrimethoxysilane; and third,
functionalization with gentamicin (Agnihotri et al. 2015). f Synthesis of
gentamicin-conjugated gold nanoparticles. In the first step, glutathione-
capped gold nanoparticles are synthesized, and in the second step, the
gentamicin is conjugated via condensation reaction upon EDC and NHS
presence (which are involved in the activation of carboxyl group on the
glutathione capping agent) (Perni and Prokopovich 2014)
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whether unexpected drug–drug interactions take place.
Developing combination therapy is more complex thanmono-
therapy. Nevertheless, under the situation where monotherapy
with single-target drugs has led to rapid resistance, the new
single agents have shown efficacy during the past years de-
spite that all antibiotics are at risk of being compromised by
increasing resistance level.

Throughout the past few decades, knowledge about biofilm
formation and other associated virulence properties has been
extensively advanced. With the current situation where human
pathogenic bacteria have vastly developed biofilm formation and

with the production of virulence factors to resist a majority of
conventional aminoglycosides, the discovery of an alternative
control strategy is now highly urgent. Some of the up-to-date
strategies to improve and develop aminoglycoside antibiofilm
activity have been reviewed in the present paper, including (1)
exploitation of the antivirulence potentials of aminoglycosides at
the sub-MIC level, (2) immobilization/encapsulation of amino-
glycosides to various types of nanocarriers, and (3)modifications
in the chemical structure of aminoglycosides. The detailedmech-
anisms of antibiofilm and antibacterial activity of different forms
of aminoglycosides (either free forms or in conjugation/

Fig. 4 Different strategies employed for treating biofilm-forming pathogenic bacteria by free form or conjugate forms of aminoglycoside antibiotics
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nanoformulation forms) have been explained in detail in Fig. 4.
Although these strategies have actively controlled bacterial bio-
film in various means such as preventing biofilm formation,
disrupting the pre-existing mature biofilm, or attenuating the ex-
pression and regulation of virulence properties, extensive studies
are demanded to take place in the future in order to achieve
higher control over bacterial biofilm in the long term. Some
suggestions are presented as follows:

1. The antibiofilm activity of some aminoglycosides
should be studied at the molecular level.

2. The use of aminoglycoside combinations should be care-
fully examined and changed if necessary to prevent new
resistance emergence.

3. The adjuvants that are used to potentiate aminoglycoside
activity should also be studied for their profiles and
activities.

4. With the vast number of new antibiofilm and
antivirulence strategies being developed, other amino-
glycosides should also be exploited for their potentials
using all the summarized alternative strategies.

5. Optimization work toward the culture environment and
storage conditions should be paid more attention.

6. The options of aminoglycoside adjuvants and nanocarriers
should continuously be extended and advanced.

7. Co-delivery between aminoglycosides with other antibi-
otics or bioactive compounds is recommended to im-
prove the drug activity, especially when the drug and
its nanocarriers are weakly bonded.

8. The antibiotic adjuvants/enhancers which are either nat-
urally or chemically synthesized must positively interact
with its conjugated antibiotics without causing side ef-
fects or antagonistic effects to the antibiotics.

9. For clinical trials, an appropriate schedule of applica-
tions should be constructed carefully and specifically to
the aminoglycosides used.

10. Studies of resistant genes must be conducted for more
specific understandings about the internal driving force
of resistant responses.

11. The antibiofilm activity of newly synthesized aminogly-
cosides demands more exploitation.

12. The applications of aminoglycosides in inhibiting hu-
man pathogenic bacteria must be carefully maintained
and regulated by responsible authorities.
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