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Abstract
Fungal pigments, which are classified as secondary metabolites, are polymerized products derived mostly from phenolic pre-
cursors with remarkable structural diversity. Pigments of conidia and sclerotia serve myriad functions. They provide tolerance
against various environmental stresses such as ultraviolet light, oxidizing agents, and ionizing radiation. Some pigments even
play a role in fungal pathogenesis. This review gathers available research and discusses current knowledge on the formation of
conidial and sclerotial pigments in aspergilli. It examines organization of genes involved in pigment production, biosynthetic
pathways, and biological functions and reevaluates some of the current dogma, especially with respect to the DHN-melanin
pathway, on the production of these enigmatic polymers. A better understanding of the structure and biosynthesis of melanins and
other pigments could facilitate strategies to mitigate fungal pathogenesis.
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Introduction

According to Catalogue of Life (https://www.catalogueoflife.org/
), there are about 500 recognized Aspergillus species. Examples
include the geneticmodel for the genus,Aspergillus nidulans; the
primary pathogen for human invasive aspergillosis Aspergillus
fumigatus; the lovastatin-producing Aspergillus terreus; the
GRAS (generally regarded as safe) Aspergillus oryzae and
Aspergillus sojae that are widely used in food fermentation;
and aflatoxin-producing species such as Aspergillus flavus and
Aspergillus parasiticus that negatively impact global food safety
and economics. The genus Aspergillus is named for its distinct
morphology, which resembles an aspergillum used by Catholic
priests to sprinkle holy water. It consists of a conidiophore stipe
terminating in a swollen vesicle that may bear one layer
(uniseriate) of specialized cells called phialides, on which conidia
(asexual spores) are borne (Klich 2002). Biseriate species have a

layer of cells between the vesicle and phialides called metulae. In
addition to producing asexual conidia, some aspergilli also pro-
duce sclerotia. They are resting structures formed by the aggre-
gation of hyphae into discrete, non-pigmented initials that subse-
quently develop into dense, pigmented structures (Willetts and
Bullock 1992). Sclerotia represent a major source of fungal prop-
agules in the field that remain viable for long periods of time
under adverse environmental conditions. Upon onset of favor-
able conditions, they germinate by producing hyphae that even-
tually form aerial conidiophores with conidiospores. Similar to
conidia, sclerotia can harbor a number of secondary metabolites
(Frisvad et al. 2014). In some heterothallic Aspergillus species
such as A. flavus, A. parasiticus, and Aspergillus nomius
(teleomorph in genus Petromyces), sclerotia (stromata) also play
a role in sexual reproduction by containing many ascospore-
bearing fruiting bodies, termed cleistothecia, following fertiliza-
tion by a sexually compatible strain (Horn et al. 2016).

Like other fungi, Aspergillus species produce a variety
of pigments. These pigments are often present in vegeta-
tive structures such as hyphae, reproductive spores such
as conidia (asexual) and ascospores (sexual), and sclero-
tia. Often, these pigments are used to distinguish between
species. Of the fungal pigments, melanins are the most
studied but are highly recalcitrant to structural character-
ization. Both conidial and sclerotial pigments are consid-
ered melanins. Fungal melanins are high-molecular-
weight amorphous substances formed from the oxidative
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polymerization of phenolic or indole products (Cordero
and Casadevall 2017). It is commonly believed by many
researchers that fungal melanins are synthesized from the
polymerization of 1,8-dihydroxynaphthalene (DHN) or,
alternatively, from the polymerization of L-3,4-
dihydroxyphenylalanine (L-DOPA) (Eisenman and
Casadevall 2012). However, this is not entirely true espe-
cially in the case of conidial pigments produced by asper-
gilli. Melanins enable fungi to cope with harsh environ-
ments and unfavorable growth conditions, providing pro-
tection against desiccation, ultraviolet light, ionizing radi-
ation, and oxidative stress (Belozerskaya et al. 2015). In
addition, they contribute to fungal pathogenesis, survival
against phagocytosis, and longevity of fungal propagules
(Bell and Wheeler 1986).

Organization of genes involved in conidial
pigment biosynthesis

The advent of the genomics era has resulted in the avail-
ability of a large amount of genome sequence data.
Although few fungal genomes have been assembled at
the chromosomal level, available sequence contigs or scaf-
folds have allowed researchers to explore and confirm
physical linkage of genes, especially those related to pro-
duction of secondary metabolites. Genes involved in co-
nidial pigment biosynthesis in A. fumigatus form a gene
cluster (Tsai et al. 1999). However, this well-defined orga-
nization seems to be an exception rather than a norm. For
A. niger and A. flavus, two of their pigment genes, namely,
olvA/ayg1 (An14g05350) and brnA (An14g05370) of
A. niger as well as wA (AFLA_006170) and olgA
(AFLA_006180) of A. flavus, are adjacent to each other
on a chromosome (Table 1), while other characterized co-
nidial pigment biosynthetic genes are located on different
chromosomes. This likely is also true for A. oryzae
(Katayama et al. 2016; Machida et al. 2008), a species
genetically closely related to A. flavus. In the case of
A . t e r re u s , t w o o f i t s p i gme n t g e n e s , me l A
(ATEG_03563) and tyrP (ATEG_03564), are situated next
to each other, but it is not known whether additional un-
identified genes are required for conidial pigment biosyn-
thesis. For A. nidulans, only wA (AN8209) (Watanabe
et al. 1999) and yA (AN6635) (Mayorga and Timberlake
1990) have been characterized, and they are located on
chromosome II and chromosome I, respectively. Table 1
summarizes currently known genes involved in conidial
pigment biosynthesis in various aspergilli. For conidial
pigment biosynthesis, gene orthologues encoding polyke-
tide synthases (PKSs) seem to be commonly present in
Aspergillus species, but pigment genes encoding
nonribosomal-peptide synthetases (NRPS) or NRPS-like

enzymes are rare . In addi t ion to the pks genes,
A. fumigatus ayg1 orthologues that encode the YWA1 hy-
drolase are often present. They include those orthologues
confirmed in A. fumigatus and A. niger (Chiang et al. 2011;
Jorgensen et al. 2011; Tsai et al. 2001) and other possible
orthologous genes from A. nidulans, A. flavus, and
A. oryzae (AO090005000332) based on information re-
trieved from the Aspergillus Genome Database, AspGD
(http://www.aspergillusgenome.org/), and a previous
review (Baker 2008). Depending on the pigment precur-
sors, either tyrosinases or laccases are involved in subse-
quent polymerization steps that impart conidia their char-
acteristic colors, which are routinely used as a criterion in
species identification by mycologists.

The YWA1 precursor is commonly synthesized
by specific polyketide synthases

Like the A. nidulans wA knockout mutant, the A. fumigatus
alb1 knockout mutant produces non-pigmented (white) co-
nidia. Both wA- and alb1-encoded PKSs are responsible for
the production of YWA1, a naphthopyrone (Fig. 1).
Heterologous expression of the pks genes in A. oryzae or
A. terreus also has confirmed YWA1 production (Slesiona
et al. 2012; Watanabe et al. 2000). YWA1, a yellow metabo-
lite, is the first precursor for the A. nidulans green pigment
(Watanabe et al. 1999) and for the A. fumigatus bluish/grayish
green pigment (Tsai et al. 2001) in respective mature conidia.
The A. niger albA-encoded PKS also is responsible for the
production of YWA1 and a family of naphthopyrones found
in significant quantities in culture extracts (Chiang et al.
2011). Consistently, the A. flavus wA knockout mutant pro-
duces non-pigmented white conidia (Chang et al. 2010). Most
recently, an A. flavus spontaneous mutant that produces yel-
low conidia because of a deletion in the copper-transporting
ATPase gene specifically involved in conidial pigment bio-
synthesis has been isolated (Chang et al. 2019). This yellow
pigment likely is YWA1, or a naphthopyrone analogue, that is
not converted to downstream polymeric metabolites by the
resulting nonfunctional laccases (apoenzymes) due to the de-
ficiency in the intracellular copper ions necessary for the
laccases’ polymerization function. Parasperone A, a pigment
structurally similar to YWA1, has been isolated from conidia
of a laccase-deficient strain of A. parasiticus (Brown et al.
1993), a species genetically similar to A. flavus. YWA1 is also
the precursor of aurofusarin, a red pigment found in mycelia
and secreted into culture medium by Fusarium graminearum
(Frandsen et al. 2011). However, despite the seemingly initial
common step of naphthopyrone formation among these few
aspergilli, other steps for conidial pigment biosynthesis appear
to be species-dependent.
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Is the DHN-melanin pathway a major source
of Aspergillus pigments?

The majority of Aspergillus species are believed to pro-
duce DHN-melanin (Jorgensen et al. 2011; Tsai et al.
1999) despite the lack of conclusive evidence from liter-
ature. This belief may have been extrapolated from the
well-studied A. fumigatus conidial pigment biosynthesis.
In this particular A. fumigatus pathway, Ayg1, an α/β
hydrolase, converts the 14 carbon YWA1 to the
pentaketide 1,3,6,8-tetrahydroxynaphthalene (T4HN) by
releasing an acetoacetic acid from YWA1 at the same time
(Fujii et al. 2004) (Fig. 1). Interestingly, the synthesis of
T4HN in Collectotrichum lagenarium only requires a

single pks gene (Watanabe and Ebizuka 2004), which sug-
gests that the PKS is specific for the pentaketide synthesis
without the need of a hydrolase. The A. fumigatus ayg1
knockout mutant produces yellowish green conidia, in
contrast to the bluish green conidia of the wild type, due
to the accumulation of YWA1. The presence of DHN-
melanin in an A. fumigatus environmental isolate has been
confirmed by physico-chemical analyses; characteristic
peaks in UV–Vis and IR spectra unique to DHN-
melanin have been identified (Raman and Ramasamy
2017). Since T4HN is an early precursor of the DHN-
melanin pathway, the presence of a functional Ayg1
equivalent hydrolase in any Aspergillus species is a pre-
requisite for channeling YWA1 into the DHN-melanin

Table 1 Conidial pigment biosynthetic genes in Aspergillus species

Gene IDs Product Conidial color Chromosomea Reference

A. fumigatus

alb1 Afu2g17600 Polyketide synthase (1)b White II Tsai et al. 1999

ayg1 Afu2g17550 α/β hydrolase (2) Yellowish green II Tsai et al. 1999

arp2 Afu2g17560 T4HN reductase (3) Reddish pink II Tsai et al. 1999

arp1 Afu2g17580 Scytalone dehydratase (4) Reddish pink II Tsai et al. 1999

abr1 Afu2g17540 Laccase Brown II Tsai et al. 1999

abr2 Afu2g17530 Laccase Brown II Tsai et al. 1999

A. nidulans

wA AN8209 Polyketide synthase White II Watanabe et al. 1999

yA AN6635 Laccase Yellow I Mayorga and Timberlake, 1990

A. niger

fwnA An09g05730 Polyketide synthase Fawn Jorgensen et al., 2011

brnA An14g05370 Laccase Brown Jorgensen et al., 2011

olvA/ayg1 An14g05350 α/β hydrolase Olive Jorgensen et al., 2011

pptA An12g03950 4′-phosphopantetheinyl transferase White Jorgensen et al., 2011

A. flavus

wA AFLA_006170 Polyketide synthase White IV Chang et al. 2010

olgA AFLA_006180 Laccase Dark green IV Chang et al. 2010

ctpA AFLA_051390 Copper-transporting ATPase Yellow I Chang et al. 2019

gldA AFLA_045660 Laccase Gold VII Chang et al. 2019

pptA AFLA_046430 4′-phosphopantetheinyl transferase White VII Chang unpublished

A. oryzae

wA AO090102000545 Polyketide synthase White IV Katayama et al. 2016

yA AO090011000755 Laccase Yellow VII Katayama et al. 2016

A. terreus

melA ATEG_03563 Nonribosomal peptide synthetase-like White Geib et al. 2016

tyrP ATEG_03564 Tyrosinase Fluorescent yellow Geib et al. 2016

A. carbonarius

alb1 172075 Polyketide synthase Fawn Gerin et al. 2018

a Chromosome locations were retrieved from the Aspergillus Genome Database (http://www.aspergillusgenome.org/)
b See Fig. 1 for enzymes involved in specific catalytic steps of DHN-melanin biosynthesis
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pathway. Gene homologs of A. fumigatus ayg1 have been
identified from a few aspergilli including A. nidulans,
A. oryzae, and A. niger (Baker 2008). The A. niger olvA
knockout mutant produces olive-colored conidia and it
can be complemented by An14g05350, an A. fumigatus
ayg1 orthologue, to produce black conidia (Jorgensen
et al. 2011). Although this result suggests that the DHN-
melanin pathway is operational in A. niger, results from
other studies argue against such a notion. Despite the fact
that A. niger olvA/ayg1 complements the ayg1 knockout
mutant to wild type, it is not known why the olvA knock-
out mutant produces conidia that are different in color
from those produced by the A. fumigatus ayg1 knockout
mutant. Chiang et al. (2011) instead reported that A. niger
aygA/ayg1 knockout mutants produce orange pigmented
conidia. The supposed AygA hydrolase of A. niger thus is
unlikely to perform the “shortening” function as reported
for A. fumigatus that converts YWA1 to T4HN. In the
DHN-melanin pathway, scytalone is an intermediate be-
tween T4HN and 1,3,8-THN (T3HN) (Fig. 1). Disruption
of the A. fumigatus arp1 orthologue in A. niger,
An08g099200, that encodes the scytalone dehydratase,
however, does not affect conidial pigmentation of the
resulting A. niger mutant (Jorgensen et al. 2011).
A. nidulans produces both conidia and ascospores. The
ascospore pigment, ascoquinone A, is a dimer of

hydroxyanthraquinone (Brown and Salvo 1994); this me-
tabolite is not related to the DHN-melanin pathway. Taken
together, the involvement of the DHN-melanin pathway in
the formation of conidial pigments of aspergilli appears to
be an exception rather than the rule.

The DHN-melanin pathway has no bearing
on A. flavus conidial pigment biosynthesis

Homologs of A. fumigatus ayg1 are present in A. nidulans
(AN9171) and A. flavus (AFLA_075640), but their genuine
functions in respective species are not known. For A. nidulans,
no experimental evidence regarding the function of AN9171
is yet available. For A. flavus, disruption of AFLA_075640
does not yield a mutant that is different from the wild type in
conidial color (Chang et al. 2010; Saitoh et al. 2012; Tsai et al.
1997). Fungal colonies such as those of Verticillium dahliae,
Leptosphaeria maculans, and A. fumigatus that accumulate
scytalone are light reddish brown (beige) in appearance
(Saitoh et al. 2012; Tsai et al. 1997). Disruption of the
A. flavus gene (AFLA_016140) encoding scytalone
dehydratase, which converts T4HN to T3HN in the DHN-
melanin pathway, also does not affect pigmentation of conidia
and sclerotia (Cary et al. 2014). These gene knockout results
cast doubts on the involvement of the DHN-melanin pathway
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Fig. 1 Formation of an
A. fumigatus conidial pigment
from YWA1 via the 1,8-DHN-
melanin pathway. The
biosynthetic pathway of the
A. flavus conidial pigment likely
bypasses the shortening step that
releases acetoacetic acid from
YWA1. The numbers 1, 2, 3, and
4 in the figure correspond to the
known A. fumigatus genes listed
in Table 1
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in conidial pigment biosynthesis of A. flavus. Expression of
linked genes tends to be co-regulated similar to those in the
A. fumigatus conidial pigment biosynthesis gene cluster. Apart
from being controlled by promoter sequences and transcrip-
tion factors, chromosomal locations of the respective ayg1
orthologues can affect the timing of gene expression, render-
ing activation of catalytic steps in the conidial pigment bio-
synthetic pathway differently. The outcome may be the
bypassing of the “shortening” route demonstrated for
A. fumigatus. In addition, melanin pathway inhibitors such
as tricyclazole and phthalide, which specifically inhibit reduc-
tases that catalyze T4HN and T3HN in the formation of DHN
(Chrysayi Tokousbalides and Sisler 1979; Motoyama and
Yamaguchi 2003), do not alter A. flavus conidial pigmentation
(Chang et al. 2019; Wheeler and Klich 1995). Taken together,
these findings indicate that the DHN-melanin pathway even if
it is intact in A. flavus has no bearing on its conidial pigment
biosynthesis.

More than one pigment is likely associated
with A. niger conidial color formation

The black conidial pigment of A. niger is aspergillin. Conidia
produced by A. niger that are treated with 2,4-dithiopyrimide
(DTP) accumulate a brown pigment (~ 5000 Da) and a green
pigment (~ 368 Da). The latter is thought to be hexahydroxyl
pentacyclic quinoid (Ray and Eakin 1975). DTP can chelate
intracellular copper ions that are critical for the polymerization
function of laccases during conidial pigment biosynthesis.
Application of DTP supposedly results in an outcome similar
to the A. flavus yellow conidial mutant that harbors the defec-
tive copper-transporting ATPase gene (Chang et al. 2019).
Therefore, aspergillin likely is a polymer consisting of two
pigments, that is, the aforementioned brown and green ones
or their derivatives. This notion is supported by two lines of
evidence: (1) all A. niger fawn mutants are complemented by
the pks gene, An09g05730 (Table 1) (Jorgensen et al. 2011)
and (2) the A. niger albA knockout mutant does not produce
non-pigmented white conidia but instead produces yellowish
fawn conidia (Chiang et al. 2011). Like A. niger,
A. carbonarius is another member of the black aspergilli (sec-
tionNigri). An early study indicates that tricyclazole and other
similar inhibitors do not suppress melanin formation in
A. carbonarius conidia and that its melanin is of the
dihydronaphthalene type (Babitskaya et al. 2000). A recent
s tudy showed that the alb1 knockout mutant of
A. carbonarius, like that of the A. niger albA knockout mu-
tant, also produces fawn conidia (Gerin et al. 2018). As men-
tioned earlier, the A. niger aygA knockout mutant produces
orange conidia (Chiang et al. 2011). This orange pigment
likely reflects the mix of two different precursor pigments,
YWA1 and one other yet to be identified and characterized.

Thus, conidial pigment biosynthesis in A. niger is more com-
plex than previously thought.

The involvement of the DOPA-melanin
pathway in some studied aspergilli is
questionable

Another type of melanin, which is derived from L-3,4-
dihydroxyphenylalanine (L-DOPA) via the oxidation of tyro-
sine by tyrosinase, is found in some fungi (Fig. 2). This path-
way resembles mammalian melanin biosynthesis (Hearing
2011). DOPA-melanin is abundant in two highly melanized
A. nidulans strains, MEL1 andMEL2 (Goncalves et al. 2012).
DOPA-melanin is associated with the chitin fraction distribut-
ed throughout the mycelial cell wall ofA. nidulans (Bull 1970;
Pirt and Rowley 1969). However, the involvement of the
DOPA-melanin pathway in the formation of conidial pigment
of this Aspergillus model species is still an open question.
Kojic acid and tropolone are inhibitors of the DOPA-
melanin pathway. Incorporation of these compounds in
growth medium was shown to suppress conidial pigment for-
mation in A. niger, A. flavus, and A. tamarii (Pal et al. 2014).
However, the observed inhibitory effect on A. niger and
A. flavus has been confirmed to be caused by the
dimethylsulfoxide (DMSO) used to dissolve kojic acid
(Chang et al. 2019; Geib and Brock 2017). These findings
are consistent with a much earlier study that shows com-
pounds having the sulfoxide radical, including DMSO, inhibit
pigmentation of A. niger (Carley et al. 1967). Therefore, the
conclusion that the conidial pigments of A. niger and A. flavus
are synthesized via the DOPA-melanin pathway is erroneous.
Similarly, the association of the DOPA-melanin pathway with
A. tamari conidial pigment biosynthesis seems inconclusive.

Biosynthesis of conidial pigment in A. terreus
is unique

Pigment-associated PKSs of A. nidulans, A. fumigatus, and
A. flavus (Table 1; wA, alb1, and wA, respectively) share an
overall amino acid identity of about 70%. In contrast to known
aspergilli, A. terreus is an exception as it lacks such a PKS
homolog (Thywissen et al. 2011). A. terreus instead uses an
NRPS-like enzyme (MelA), the only one found so far, and a
tyrosinase (TyrP) to synthesize its conidial pigment (Fig. 3).
Knockout mutants of melA (ATEG_03563) and tyrP
(ATEG_03564) produce white and bright fluorescent yellow
conidia, respectively (Geib et al. 2016). Structure analysis
indicates that the bright fluorescent yellow compound is
aspulvinone E that originates from condensation of two mol-
ecules of p-hydroxyphenylpyruvate (Fig. 3) by MelA. An ex-
ogenous addition of tyrosine is able to increase aspulvinone E
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content in a concentration-dependent manner. A blue pigment,
that gradually changes to a greenish brown intermediate, ap-
pears to form by the activity of TyrP before it is converted to
the mature cinnamon-brown pigment, which Geib et al.
(2016) named Asp-melanin.

Limited information on fungal sclerotial
pigments

In addition to the genus Aspergillus, production of sclerotia
has been documented among 85 fungal genera in 20 orders of
Dikarya (i.e., Basidiomycota and Ascomycota) (Smith et al.
2015). A common feature of most sclerotia is the presence of
numerous secondary metabolites, many of which appear to
function in chemical defense against insect predators and
competing microbes (Rohlfs and Churchill 2011). In
A. flavus, these include the carcinogenic mycotoxins known
as aflatoxins, as well as tremorgenic mycotoxins such as
aflatrems and aflavinines (Calvo and Cary 2015). Though a
significant amount of attention has been placed on the identi-
fication of sclerotial secondary metabolites and their potential
as novel pesticides and human therapeutic agents, little em-
phasis has been placed on the elucidation of metabolites that
serve as sclerotial pigments, especially in Aspergillus species.
These pigments play a part in the long-term viability and per-
sistence of sclerotia in the field by providing protection from
UV irradiation and extreme temperature and resistance to
fungivory and microbial degradation (Liang et al. 2018;

Rohlfs and Churchill 2011; Schumacher 2016). In general,
pigments present in sclerotia are associated with the outer rind
layer of the mature sclerotium (Willetts and Bullock 1992).
The majority of studies on sclerotial pigments have been per-
formed in the necrotrophic fungal pathogen, Sclerotinia
sclerotiorum. The dark pigments present in S. sclerotiorum
are DHN-melanins derived from the activity of a PKS
(Butler et al. 2009). Interestingly, knockout of the DHN-
melanin biosynthetic genes, SCD1 and THR1, does not
comp le t e l y abo l i sh s c l e ro t i a l p i gmen t a t i on in
S. sclerotiorum, indicating that perhaps an alternative melanin
biosynthetic pathway is functional (Liang et al. 2018). It has
also been confirmed that DHN-melanin-based pigments are
present in sclerotia of the causal agent of gray mold disease,
Botrytis cinerea (Schumacher 2016). However, two separate
PKSs both capable of producing the DHN-melanin precur-
sors, T4HN and 2-acetyl-tetrahydroxynaphthalene (AT4HN),
are present. One PKS, BcPKS12, has been demonstrated to be
required for T4HN production in sclerotia only, while
BcPKS13 is responsible for AT4HN production in conidia
that is subsequently converted to T4HN by the action of the
hydrolase YG1. Numerous Aspergillus species produce scle-
rotia whose pigments are highly variable, ranging from cream
colored to reddish brown to dark brown or black (Frisvad et al.
2004; Frisvad et al. 2019; Frisvad et al. 2014). A. flavus pro-
duces immature sclerotia that are essentially colorless and as
they mature become progressively darker until they reach a
dark brown to black pigmentation at final maturity. To date,
very little information exists as to the chemical nature of
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sclerotial pigments in aspergilli. The existence of paler colored
sclerotial pigments, such as those found in species of
Aspergillus section Circumdati (Frisvad et al. 2004), suggests
that these pigments are not derived from the DHN-melanin
pathway.

Identification of the A. flavus
sclerotium-specific pigment precursor
asparasone A

A comparative transcriptomic analysis of a wild type A. flavus
and its veA gene knockout mutant has shown that a PKS gene,
present in the secondary metabolite gene cluster 27, is signif-
icantly downregulated in the mutant (Cary et al. 2014).
Knockou t o f the c lus t e r 27 PKS gene (pks27 ,
AFLA_082150) yields a mutant that no longer produces dark-
ly pigmented but grayish-yellow-pigmented sclerotia.
Comparative metabolomics of culture extracts from both the
A. flavus wild type and the pks27 knockout mutant by
UHPLC-MS revealed a metabolite of mass 358 Da that was
identified as the anthraquinone, asparasone A. Also detected
was the dehydration product of asparsone A (mass = 340 Da)
as well as another anthraquinone (mass = 316 Da), believed to
represent a derailment product in which only seven malonyl-
CoA units are used to form the polyketide instead of the eight
present in asparasone A (Fig. 4). It has been theorized that
subsequent dehydration of asparasone A, or the 316 Da an-
thraquinone, would result in conjugated olefins that are rapid-
ly polymerized in the presence of laccases to form the dark
pigments’ characteristic of A. flavus sclerotia (Cary et al.
2014). These studies indicate that unlike the use of
polyketide-derived naphthoquinone precursors in the produc-
tion of DHN-melanins in sclerotia of S. sclerotiorum and
B. cinerea, A. flavus sclerotial pigments are formed from an-
thraquinone precursors. This proposition is further supported
by the observation that A. flavus DHN-melanin biosynthetic
pathway scytalone dehydratase gene knockout mutants do not
show reduced sclerotial pigmentation compared with sclerotia
of wild type A. flavus (Cary et al. 2014). The gene cluster

responsible for the production of asparasone A appears to be
present only in section Flavi Aspergillus species, suggesting
that the cluster evolved in response to ecological pressures
linked to the need for these fungi to survive and successfully
reproduce in hostile agrarian environments. The aswA tran-
scription factor gene that regulates sclerotial development in
A. flavus has been identified and functionally characterized
(Chang et al. 2017). Knockout of the aswA gene results in
mutants that produce non-pigmented sclerotia. The production
of these sclerotia in aswA knockout mutants and that of
grayish-yellow pigmented sclerotia in the pks27 knockout
mutants suggests that an additional pigment(s), whose synthe-
sis may be regulated by aswA, might be present but masked by
the darker asparasone A-derived pigment in mature sclerotia.

Transport and localization of conidial
pigments to cell wall

In mammals, DOPA-melanin is synthesized in a lysosome-
related organelle (LRO) known as the melanosome by special-
ized cells called melanocytes. In them, melanin is synthesized
and deposited onto the fibrillary matrix and the resulting me-
lanosomes are transferred to neighboring keratinocytes by exo-
cytosis and internalization (Kondo and Hearing 2011). Fungi
appear to share similar mechanisms for synthesis and traffick-
ing of conidial pigments. Internal melanosome-like organelles
have been reported for Candida albicans (Walker et al. 2010)
andCladosporium carrionii (San-Blas et al. 1996). Fonsecaea
pedrosoi, a human pathogenic fungus, produces dark-brown
conidia. Its conidial pigment is synthesized via the DHN-
melanin pathway since treatment by tricyclazole inhibits pig-
mentation of conidia and sclerotia as well (Franzen et al. 2006).
Ultrastructural characterization has revealed that the
F. pedrosoi melanosome fuses with cell membrane, and sub-
sequently, the DHN-melanin derived pigment is released and
deposited on the conidial cell wall in concentric layers
(Franzen et al. 2008). The finding of A. terreus TyrP, which
hydroxylates and oxidizes aspulvinone E, in subcellular organ-
elles like endoplasmic reticulum or Golgi (Geib et al. 2016)
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Fig. 4 Proposed biosynthetic routes for the formation of an A. flavus sclerotial pigment from two polyketides
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also suggests that the resulting conidial pigment is probably
transported via a similar exocytosis mechanism. For
A. fumigatus and A. nidulans, enzymes involved in early steps
of conidial pigment biosynthesis are located in LROs called
endosomes (Upadhyay et al. 2016). A defect in the endosomal
sorting complex in these aspergilli results in the lack of mature
pigment in conidial cell wall. Interestingly, late biosynthetic
enzymes for pigment formation are found to be secreted and
accumulate in conidial cell wall. This stage-specific subcellular
compartmentalization is supposedly designed for protecting
cells from harmful effects of those melanin-like pigments and
their intermediates, which presumably are highly reactive and
tend to bind inter- and intracellular substances on contact.

Concluding remarks

Despite decades of efforts, research on chemical structures
and biosynthetic pathways of conidial and sclerotial pigments
in aspergilli is still at its infancy. Isolation and identification of
the YWA1 monomer naphthopyrone were achieved a decade
ago. This was possible only because of the use of a heterolo-
gous over-expression system that expresses the A. nidulans
wA gene in a YWA1 non-producing A. oryzae strain. Since
then, with exception of the anthraquinone, asparasone A, that
is isolated from the sclerotia of A. flavus and Asp-melanin
isolated from conidia of A. terreus, virtually no other conidial
or sclerotial pigments of aspergilli have been characterized.
Coupled transcriptomic and metabolomic analysis of
A. flavus conidial and sclerotial mutants should provide addi-
tional clues as to the genes and enzymes responsible for pro-
duction of pigments in these fungal structures. Detailed anal-
ysis of melanin-type pigments using current analytical meth-
odologies has proved difficult because of the heterogeneity
and insolubility of these amorphous polymers over a wide
range of pH and solvents. Treating melanin with harsh
chemicals (Nosanchuk et al. 2015) or using non-destructive
methods like solid-state nuclear magnetic resonance with iso-
topic labeling may be alternatives (Chatterjee et al. 2014). The
significance of the DHN- and DOPA-melanin pathways in the
biosynthesis of these pigments is still unclear and controver-
sial. This brief review identifies main research gaps, suggests
future research avenues, and points out challenges ahead in
elucidating the formation of these fascinating and enigmatic
pigments at the molecular level.
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