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Abstract
Microorganisms are indispensable in the food industry, but wild-type strains hardly meet the current industrial demands due to
several undesirable traits. Therefore, microbial strain improvement offers a critical solution to enhance the food industry.
Traditional techniques for food microbial improvement, such as the use of chemical mutagens and manual isolation/purification,
are inefficient, time-consuming, and laborious, restricting further progress in the area of food fermentation. In this review, the
applications of novel mutagenesis and screening technologies used for the improvement of food microbes were summarized,
including random mutagenesis based on physical irradiation, microbial screening facilitated by a microtiter plate, fluorescence-
activated cell or droplet sorting, and microscaled fermentation in a microtiter plate or microbioreactor. In comparison with
conventional methods, these new tools have the potential in accelerating microbial strain improvement and their combined
applications could create a new trend for strain development. However, several problems that could affect its potential application
may include the following: the lack of specific mutagenesis devices and biosensing systems, the insufficient improvement of the
mixed culture system, the low efficiency when using filamentous fungi and flocculating bacteria, and the insufficient safety
assessment on harnessing genome-editing technology. Therefore, future works on strain improvement remain challenging for the
food industry.
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Introduction

Microorganisms are indispensable in the food industry since
they are suppliers of food and drinks, additives, and preserva-
tives. They also serve as “chefs” conferring attractive food
flavors (Kum et al. 2015) and aroma (Ardo 2006) that are

essential in the culinary industry. In addition, the use of
probiotics as a food supplement demonstrates notable health
improvement by boosting the growth of human gastrointesti-
nal microflora (Pandey et al. 2015). Altogether, these contri-
butions imply that the food industry heavily relies on micro-
organisms and microbial biotechnology.

Wild-type (WT) microbial strains can hardly meet indus-
trial demands because of their undesired traits such as low
yield, low tolerance, low stability, or abundant by-products
in some cases. Researchers have developed various tech-
niques, such as genetic engineering, cellular fusion/hybridiza-
tion, or adaptive evolution to do strain improvement.
However, the applications of genetic modification tools in-
cluding transposon mutagenesis, staggered extension, mining
of novel genes, and random chimeragenesis are restricted in
food microorganisms and in the food industry because of
safety and risk concerns (Félix et al. 2019; Karabín et al.
2018). Food safety on genetically modified organisms
(GMOs) remains a controversial issue among policymakers
and consumers (Karabín et al. 2018; von Wright and Bruce
2003). What’s more, the genetic, even cellular and
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physiological information of most food microbial strains is
different from that of lab strains. Thus, it is not suitable to
employ techniques that are based on genetic manipulation
for food microbe breeding. Besides, although cellular fusion/
hybridization and adaptive laboratory evolution techniques
are efficient (Li et al. 2017; Cao et al. 2012), they are laborious
and time-consuming.

Of all the existing techniques designed for strain improve-
ment, the use of random mutagenesis demonstrates notable
advantages over the other technologies for the improvement
of food microorganisms. First, random mutagenesis is inde-
pendent of the host cell’s genetic information making it effi-
cient for microbes with unknown genomic backgrounds; thus,
it is suitable for most of the foodmicroorganisms. Second, this
tool allows the generation of a mutant library with high genet-
ic diversity, and its manipulation is relatively simple and cost-
effective. Finally, it is not involved to controversial GMO
issue. Altogether, random mutagenesis represents one of the
most useful tools for developing and improving food
microorganisms.

A critical step involved in mutagenesis is to select and
evaluate desired mutants from the mutagenic library.
However, conventional mutant screening is still heavily de-
pendent on shake-flask culturing or manual selection in the
food industry (Aleem et al. 2018; Spadiut et al. 2010), which
is tedious and inefficient. It becomes far more difficult recent-
ly with the emergence of novel mutagenesis technologies that
are highly efficient. In addition, assessment of selected mu-
tants and optimization of bioprocessing for industrial scale
represent a great challenge. Although flask-culturing remains
dominating, this system only offers the “end-point” data and
can hardly provide reproducible and reliable parameters that
are crucial for the scale-up. Moreover, a scale-up system that
relies on a large amount of culture media and expensive nu-
trient requirements would exacerbate the cost of production
affecting downstream prices.

Recently, novel technologies for mutagenesis, screening,
and microscale cultivation have accelerated the strain devel-
opment of industrial microbes (Fig. 1). In contrast, the strain
improvement in the food industry still relies heavily on con-
ventional techniques, holding back its potential development.
In this review, the recent advances on new mutagenesis and
techniques for food microbial screening and cultivation are
summarized, and further prospects and trends in strain im-
provement are discussed. The aim of this review is to address
the importance of these novel techniques and to accelerate the
food microorganism development.

Novel mutagenesis technologies

Chemical mutagens, ultraviolet (UV) irradiation, X-/γ-rays
irradiation, and 60Co radiation are the common techniques

used to facilitate conventional mutagenesis. Although chemi-
cal and UV-mediated mutagenes are prevalent in the food
industry, they pose risk to the health of operators (Table 1).
Moreover, they are laborious and consume too many media.
In this review, only the novel techniques promising in strain
improvement in food industry are introduced.

Atmospheric and room temperature
plasma-mediated mutagenesis

The demand for mutagenesis techniques that are highly effi-
cient and safe for human health is increasing in the food in-
dustry (Table 1). One of them is the atmospheric and room
temperature plasma (ARTP)-intermediated mutagenesis,
which was developed through collaboration between teams
of researchers from Tsinghua University in China (Zhang
et al. 2014). Based on the principle of atmospheric pressure
radiofrequency glow discharge, the high energy released dur-
ing the formation of plasma gives rise to DNA mutations
(Zhang et al. 2015c). In comparison with conventional
methods, ARTP mutagenesis is user-friendly, safe, and fast,
thereby generating higher mutation rate under room tempera-
ture (RT) conditions that are desirable for microbial growth.
Such advantages allow ARTP mutagenesis to be applied
widely to improve the traits of numerous microbial species
(Li et al. 2015; Tan et al. 2015; Wang et al. 2014; Zhang
et al. 2018a).

ARTP mutagenesis exhibits high efficiency in boosting
food production as evident in several studies that show its
successful application in developing strains of food microor-
ganism (Table 2). Recently, ARTP mutagenesis has demon-
strated its power in the overproduction of organic acid and/or
fatty acid. In ARTP-mutated Mortierella alpina, intracellular
arachidonic acid (ARA) can increase by nearly 2-folds and
accounts for a relative increase by 6.65% from the total fatty
acids (Li et al. 2015). In ARTP-treated Yarrowia lipolytica
strains, the titers of α-ketoglutaric acid showed an increase
by 51.8 and 45.4% in a 500-mL flask and 3-L reactor, respec-
tively, when compared to the titers produced by the parental
WT strain (Zeng et al. 2015). In Bacillus coagulans, the pro-
duction of L-lactic acid by ARTP mutants increases substan-
tially by over 40% in 5-L bioreactors (Lv et al. 2016).
Microbes are also important suppliers of docosahexaenoic ac-
id (DHA) whereby its health and clinical benefits trigger an
increasing demand in the food and health industries. Recently,
an ARTP mutant strain of Schizochytrium sp. can produce
14.0 g/L DHA after optimizing the Fe2+ supplementation in
shake-flask culture. Its lipid and DHA contents are 31 and
26% higher than the wild-type Schizochytrium, respectively
(Zhao et al. 2018). In acetic acid bacteria (AAB) Acetobacter
pasteurianu, ARTP treatment does not only lead to an en-
hanced ethanol tolerance by reducing membrane permeability
but also boost significantly the acetic acid titer by nearly 4-
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folds (Wu et al. 2015). In addition, ARTP mutagenesis also
enables high production of amino acids (Cheng et al. 2015;
Wang et al. 2015; Zhang et al. 2018b), vitamins (Cai
et al. 2018; Xu and Zhang 2017), terpenoids (Qiang
et al. 2014; Zhang et al. 2016), polyols (Liu et al.
2017b), enzymes (Jiang et al. 2017; Zhu et al. 2017),
polysaccharide (Song et al. 2018), aroma (Wang et al.
2018), and additives (Lin et al. 2016) intended for the
food industry (Table 2).

Aside from the enhanced production ability of ARTP mu-
tant strains, the technique can also create mutants that reduce a
considerable amount of detrimental by-products, such as the
carcinogenic substance ethyl carbamate (EC) from fermented
food and urea from fermented beverages. In the soy sauce
fermentation, an ARTP mutant strain of Bacillus

amyloliquefaciens does not only exhibit enhanced arginine
production and salinity tolerance but also can reduce the level
of EC and citrulline (an EC precursor) by 19.3 and 15.6%,
respectively (Zhang et al. 2017). The same study also suggests
that ARTP shows stronger mutagenic effect compared to UV
irradiation. In the brewing industry, ARTP mutagenesis could
suppress the undesirable metabolites produced by the wild-
type Saccharomyces cerevisiae during fermentation. An in-
dustrial ARTP mutant S. cerevisiae reduces urea level by
50.6% in rice wine. Such reduction is likely associated with
the upregulation of DUR1, DUR2, and DUR3 genes (Cheng
et al. 2017). In addition, ARTP technology also contributes to
the reduction of toxic methanol (Liang et al. 2014) or acetal-
dehyde (Liu et al. 2018) in brewing yeast. As shown in
Table 2, the improvements of multiple traits occur frequently

Fig. 1 The application of novel technologies for microbial strain
improvement in the food industry. The mutagenic library can be created
by fast, safe, and efficient mutagenesis technologies, including ARTP,
high-LET HIB, LEIP, HEPEB, etc. The mutants with the desired trait
are selected/enriched via sensitive, automatic, and high-throughput

screening technologies. Then the enriched mutants are subject to micro-
scale cultivation coupling with online monitoring, acquiring scalable and
reliable bioprocessing parameters. These optimized parameters enable the
scale-up fermentation
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by using ARTP mutagenesis, suggesting that this tool is effi-
cient and powerful in mutating food microbes.

Iterative ARTP mutagenesis is also a powerful strategy in
improving multiple properties. A recent report on the
ethanologenic bacterium Zymomonas mobilis shows that a
multiplex mutagenesis strategy could create mutants with en-
hanced acetic acid and low pH tolerance (Wu et al. 2019). It is
also demonstrated as a feasible way in food microorganisms.
For example, the Sporolactobacillus sp. mutant YBS1-5
(Table 2) obtained from two rounds of ARTP treatment shows
further improvement as compared to the mutant from the first
ARTP treatment (Sun et al. 2015).

High linear energy transfer heavy ion beam-mediated
mutagenesis

Heavy ion beams (HIBs) can generate high linear energy
transfer (LET) that induces an increased proportion of DNA
double-strand break causing large DNA deletions and/or rear-
rangements (Hu et al. 2017b; Kazama et al. 2007). Compared
to low LET irradiation such as UV rays or X-/γ-rays, high
LET-HIB-mediated mutagenesis displays a wider mutation
spectrum and a higher mutation frequency, thus emerging as
an efficient breeding method (Kazama et al. 2008).

While the continuous use of high LET-HIB for breeding is
usually employed in other organisms, its application to food
microorganisms is very limited with a few reports focusing
mainly on the enhancement of production (Table 3). Using the
fungus Aspergillus niger, Hu et al. (2016, 2017a, 2014) suc-
cessively created some mutants that are citric acid
overproducers via carbon ion irradiations. In particular, a mu-
tant strain H4002 could boost the citric acid concentration up
to 196.0 g/L with a production level of 3.3 g/L/h, which is
currently the highest recorded quantity (Table 3). The same
group also improve the L(+)-lactic acid production of
Lactobacillus thermophiles by the HIB method. The HIB mu-
tant SRZ50 shows enhanced lactic acid production using ei-
ther glucose or fructose as a sole carbon source (Hu et al.

2018). Subclone of the bacteria obtained by another HIB treat-
ment further shows substantial improvement in lactic acid
production (Jiang et al. 2018).

Breeding of edible mushrooms underlies a great challenge,
as it needs the right cultivation method for proper growth and
fruiting body production. Recently, the edible mushroom
Tricholoma matsutake with improved property has been ob-
tained after gron-ion beams treatment with the LET of 310
keV/μm (Murata et al. 2018). The resulting mutant exhibits
not only a dramatic change of phenotype but also shows en-
hanced capability of degrading dye-linked water-insoluble
amylase and cellulose substrates. High LET-HIBs also dem-
onstrate high efficiency in enhancing the production of DHA
(Cheng et al. 2016), lipid (Wang et al. 2009a), and cellulase
activity (Jiang et al. 2016a) in other genera.

Low-energy ion implantation-mediated mutagenesis

Energetic ions are obtainable under vacuum conditions by
acceleration and mass selection. Hypothetically, mutagenesis
by low-energy ion implantation (LEIP) is due to the combina-
tion of energy absorption, mass deposition, and charge trans-
fer of energetic ions in cells (Gu et al. 2008). In comparison
with conventional UV and X-/γ-rays and chemical mutagen-
esis, LEIP-mediated mutagenesis enables higher mutation rate
and wider mutation spectrum (Table 1).

LEIP is a common technique used in plant breeding for
decades, but its application in breeding food microbe begins
just very recently. So far, its reported applications focus main-
ly on enhancing enzymatic activities and producing organic/
fatty acids (Table 4). Proteases mediate the degradation of
proteins into amino acids and small peptides, which contribute
greatly to the specific flavor of fermented foods. The LEIP-
mediated irradiation of the soy sauce producer Aspergillus
oryzae results in significant enhancement of acidic and neutral
protease activities during koji fermentation. Furthermore, the
mutant A. oryzae exhibits substantial enhancement in protease
secretion, protease mRNA expression, and mycelial

Table 1 Comparison of mutagenesis techniques

“Mutagen” ARTP LET-HIB HEPE LEIP LIR UV/chemicals

Operating safety High Unknown Unknown Unknown Unknown Low or toxic

Operation simplicity Simple Complicated Complicated Complicated Complicated Simple

Mutation efficiency High High High High High In variety, low to medium

Mutational spectrum Wide Wide Wide Wide Unknown Limited

Penetrating ability to liquid cultures Weak Strong Weak Weak Unknown Weak

Equipment/system size Small Large Large Large Unknown Small

Operating cost Mediate High High High High Low

Commercial availability Yes No No No No Yes

ARTP atmospheric and room temperature plasma, LET-HIB high linear energy transfer heavy ion beam, HEPE high-energy pulse electron beam, LEIP
low-energy ion implantation, LIR laser irradiation
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Table 2 Recent applications of ARTP mutagenesis for microbial strain improvement in the food industry

Mutant strain(s) Improvement Reference

For organic acids

Yarrowia lipolytica 1-C6 Titers of α-ketoglutaric acid were enhanced by 51.8 and 45.4% in
500-mL shake flask and 3-L reactor, respectively

Zeng et al. (2015)

Mortierella alpina D20 Maximum arachidonic acid (ARA) production was 6.82 g/L, a
1.9-fold increase of intracellular ARA. The relative ARA content
increased by 6.65% of total fatty acids

Li et al. (2015)

Acetobacter pasteurianus U1-1 Enhanced ethanol tolerance (11%) and decreased membrane
permeability; titer of acetic acid reached 32.83 g/L or increased by 385.7%

Wu et al. (2015)

Aspergillus niger AA120 Enhanced tolerance against 20 g/L tannin; enhanced biomass to
32.9 g/L, 43.76% higher than the parent strain; boosted citric acid
titer by 20.34% or 130.8 g/L

Zhang et al. (2018a)

Bacillus coagulans GKN316 45.39 g/L lactic acid was produced in the fermentation using a high
concentration H2SO4 catalyzed steam-exploded hydrolysate

Jiang et al. (2016b)

Bacillus coagulans IH6 and IIIB5 L-lactic acid production was increased by 42.75 and 46.1% in
5-L reactors, respectively

Lv et al. (2016)

Aspergillus niger II-2-A1, IV-7-C6,
and V-11-C5

Gluconate productions were 15.5, 32.8, and 12.1% higher than that
of the parental strain, sugar consumption rates were 17.5, 17.3, and
30.6% higher than that of the parent strain

Shi et al. (2015)

Schizochytrium sp. mz-17 Maximum DHA titer was 14.0 g/L in 250-mL shake flask, over 2.1-folds
higher than the wild-type; DHA percentage accounted for 50.9% of
total fatty acid, nearly 2.2-folds higher than the wild type

Zhao et al. (2018)

For amino acids

Corynebacterium glutamicum ARG3-15 L(+)-arginine titer is 45.36 g/L and productivity was 0.571 g/L/h, 50.8
and 66.0% higher than the starting strain; production of other extracellular
amino acids in the mutant was reduced but L-arginine was increased

Cheng et al. (2015)

Corynebacterium glutamicum
SYPS-062-33a

Mutant A36-pDser accumulated 34.78 g/l L(+)-serine with a yield at
0.35 g/g sucrose

Zhang et al. (2018b)

Streptomyces sp. FEEL-1 Enhanced the ε-poly-L(+)-lysine (ε-PL) productivity; ε-PL production
was 68.1% higher than the parent strain

Wang et al. (2015)

For vitamins

Bacillus amyloliquefaciens H.β.D.R.-5 Production of menaquinone-7 was increased to 52.6 mg/L in 500-mL
flask and 61.3 mg/L in 7-L bioreactor using maize meal hydrolysate
as feedstock

Xu and Zhang (2017)

Sinorhizobium meliloti 320 Improvement of vitamin B12 mutant MC5-2 reached 156 ± 4.2 mg/L production Cai et al. (2018)

For terpenoids/lipids

Blakeslea trispora Improve the fermentation efficiency of lycopene by 55%
concentration increase

Qiang et al. (2014)

Streptomyces movaraensi Increase the production of glutamine aminotransferase by 27% Jiang et al. (2017)

Aspergillus nigerIII-F-2, VII-F-6, IV-D-1 2.0–2.2 × 103 U/mL, ~ 70% higher yield of glucoamylase than the parent strain Zhu et al. (2017)

Rhodosporidium toruloides np11 Improve the production of carotenoids and lipids; accumulated
0.23 g lipids/g cell dry weight and 0.75 mg carotenoids/g CDW

Zhang et al. (2016)

For reducing by-products

Bacillus amyloliquefaciens ARTPC12 High tolerance to NaCl (18%); improved genetic stability; arginine titer
was enhanced by 18.0%; citrulline concentration was reduced by
15.6%; EC concentration was reduced to < 13 μg/kg, a reduction of 19.3%

Zhang et al. (2017)

Saccharomyces cerevisiae S12 Methanol titer was reduced to 104.8 mg/L, 72.5% decreased methanol
productivity; alcoholic content was increased to 15.3% (v/v), 8.9% higher
than the starting strain

Liang et al. (2014)

Saccharomyces cerevisiae 5-11C Expression of genes DUR1, DUR2, and DUR3 in the mutant was reduced
by 3.3- and 2.2-folds; urea content was reduced to 9–9.7 mg/L, 50.6%
decrease in rice wine

Cheng et al. (2017)

Saccharomyces cerevisiae LAL-8a Acetaldehyde content was reduced to 2.2 mg/L, 88.2% less than the parent strain Liu et al. (2018)

Others

Gluconobacter oxydans A-2-64 1,3-Dihydroxyacetone productivity was increased to 90.2 g/L in a
flask culture, showing 26.3% higher than the starting strain

Lin et al. (2016)

Bacillus amyloliquefaciens FMME088 Enhanced the production of the acetoin; mutant H-5 produced acetoin
up to 68.2 g/L in a shake flask

Wang et al. (2018)

Yarrowia lipolytica SWJ-1b Mutant M53 produced 64.8 g/L erythritol from 100 g/L glycerol Liu et al. (2017b)
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morphology (Zhao et al. 2012). Aside from proteases, LEIP
mutagenesis is also applied successfully to enhance the activ-
ity of xylanase (Li et al. 2007), thermostable α-amylase (Li
et al. 2011), chitosanase (Su et al. 2006), and lipase (Ji et al.
2008). Moreover, LEIP mutant microbe enhances the produc-
tion of lactic acid (Li et al. 2012b; Wang et al. 2009b), DHA
(Fu et al. 2016), 1,3-dihydroxyacetone (Lin et al. 2016),
sophorolipids (Li et al. 2012a), astaxanthin (Liu et al. 2008),
and glutathione (Qian et al. 2013). These applications demon-
strate the strength of LEIP in the breeding of many food mi-
croorganisms. The recent development of ion implantation as
a novel way to introduce DNA element into the cells displays
great potential in microbial breeding in the future (Gu et al.
2008).

Other techniques

The strain improvement for food microbes in the future is also
possible with the use of other physical techniques to induce
mutagenesis. For instance, a high-energy pulse electron beam
(HEPEB)-mediated technology can trigger substantial DNA
double-strand breaks (DSBs) with little effect on the cellular
membrane integrity and enzymatic activity. Recent works on
HEPEB show great potential in food microbiology, particular-
ly in microbial breeding. For instance, this technique enhances
the tolerance and ethanol production of S. cerevisiae (Zhang
et al. 2012a, b, 2013). Another promising tool in microbial
breeding is the application of laser technology. The technolo-
gy generates heat, electricity, pressure, and magnet that allow

energy accumulation of DNAmolecules to an active state and
subsequently trigger chemical and/or physical changes in the
DNA, such as strand breaking or cross-linking (Liu et al.
2013; Yu et al. 2010).

Screening technology

Mutagenesis is just the first step in the microbial breeding
process. Advanced mutagenesis technology creates innumer-
ous mutants. However, an obvious gap between efficient mu-
tagenesis and microbial strain screening makes identification
of the mutants of interest from a mutated library much more
challenging. Conventional screening relies heavily on manual
isolation/purification and flask culture, which are laborious,
tedious, and inefficient. While the microbial selection is rela-
tively straightforward when choosing the obvious phenotype
(e.g., antibiotic/nutrition/tolerance selective pressures), the se-
lection of a nonobvious phenotype becomes more arduous,
thus requiring new and efficient screening techniques. In the
succeeding texts, we discuss current microbial screening tech-
nologies that show great potential in improving the selection
of desirable food microorganisms.

Microtiter plate-based screening

To date, microtiter plate (MTP)-based screening technology is
favored because of its moderate to high throughput and auto-
mation abilities and cost efficiency, making it a suitable

Table 3 Recent applications of LET-HIB for strain development in the food industry

Mutant(s) Improvement Reference

Aspergillus niger H4002 177.7 to 196.0 g/L citric acid was accumulated with the productivity
of 3.0–3.3 g/L/h

Hu et al. (2014)

Aspergillus niger HW2 118.9 g/L citric acid was accumulated with the productivity of
2.2 g/L/h using cornstarch as feedstock

Hu et al. (2016, 2017a)

Aspergillus niger H11201 β-Glucosidase activity is 1340.4 U/mL, increased by 62.23% Jiang et al. (2016a)

LactobacillusthermophilusSRZ50 Productions of L(+)-lactic acid were increased to 23.2 g/L and 23.2 g/L
using glucose and fructose as sole carbon sources

Hu et al. (2018)

Lactobacillus thermophilus A69 L(+)-lactic acid was accumulated to 114.2 g/L and 1.2 g/L/h, 16.2%
higher than the starting strain

Jiang et al. (2018)

Aurantiochytrium sp. T-99 DHAwas increased by 50% to 0.27 g/L/h and 30% to 27 g/L Cheng et al. (2016)

Rhodotorula glutinis M5 and M16 Lipid contents were 28.8 and 30.7%, and lipid concentrations were
increased by 76.5 and 91% to 0.60 and 0.65 g/L, respectively

Wang et al. (2009a)

Tricholoma matsutake Ar 59 A different colony morphology from the parent strain; stronger amylose-
and cellulose-degrading activities to degrade water-insoluble amylase
and cellulose substrates

Murata et al. (2018)

Table 2 (continued)

Mutant strain(s) Improvement Reference

Hericium erinaceus 414, 236, and 323 Biomass was increased from 14.1 to 17.6%; mycelium polysaccharide
content was increased ranging from 29.4 to 97.9%

Song et al. (2018)

1522 Appl Microbiol Biotechnol (2020) 104:1517–1531



technology platform for preliminary screening (Long et al.
2014). A screening indicator is a key factor to allow the high
sensitivity of MTP-based screening. General screening tech-
niques usually use a single indicator based on the colorimetric
assay (Rühmann et al. 2015). However, it is difficult to meet
the demands for both high sensitivity and accuracy. A
prevalent screening procedure is usually comprised of
preliminary and secondary steps. The pH is a reliable and
versatile indicator for the preliminary screening of those
microbes that alter the pH or generate organic acids. Zeng
et al. (2015) developed an HTS method based on pH change
to select Y. lipolytica mutants with a high yield of α-
ketoglutaric acid (α-KG). In the study, ARTP mutant strains
undergo two rounds of separate screening using bromocresol
and quinaldine red in MTPs. Another team develops a three-
step HTS method that combines colony isolation, pH-sensing
assay at A616, and L-lactate oxidase (LOD) assay at A500. They
used a U-shaped deep-well MTP to screen the B. coagulans
mutants overproducing lactic acid (Lv et al. 2016).
Consequently, the technique allows the selection of 35 mu-
tants with the desired phenotype from 750 mutant colonies
and finally selects two mutants with the highest L-lactic acid
yield. In addition, a 24-well U-bottomMTP with bromocresol

purple as pH indicator enables the selection of L-lactic acid
overproducers from a HIB mutant pool of L. thermophilus
(Jiang et al. 2018). On the other hand, Shi et al. (2015) showed
an efficient selection of A. niger mutant that overproduces
gluconate using a 48-deep-well MTP. The researchers firstly
screened mutants using a bromocresol green (a pH indicator),
followed by a second screening using gluconate-chelated
CuSO4. This method selects three gluconate overproducers
out of 1000 mutants. Based on the immobilization of pH-
sensing carboxy fluorescein and the pH-insensitive reference
sulfohodamin, an HTS method in MTP enables screening of
microbes from milk and yogurt where in situ screening is
usually difficult (John et al. 2003a). Moreover, pH indicators
are used for the preliminary screening of mutants with en-
hanced enzyme production (Zhu et al. 2017) and reduced
by-products (Zhang et al. 2017). The secondary screening
commonly uses a colorimetric assay in selecting the specific
characteristics of the product of interest.

Fluorescence-activated cell sorting

Flow cytometry (FC) enables counting, monitoring,
enriching, and sorting of microbial cells suspended in fluid

Table 4 Recent applications of LEIP for strain improvement in the food industry

Mutant(s) Improvement Reference

Aspergillus niger N212 Xylanase was increased by 90.6% to 610 IU/mL; optimized fermentation temperature was
increased to 30 °C

Li et al.
(2007)

Aspergillus oryzae 100-8 Acid protease activity of 2834.6 U/g and neutral protease activity of 2601.0 U/gwere achieved;
activity of acid protease was enhanced about 44.1% at 36 h during koji fermentation;
mutated mycelium was stronger and thicker

Zhao et al.
(2012)

Bacillus amyloliquefaciens RL-1 Secreted and thermostable α-amylase activity was increased by 57.1% to 58.5 U/mL Li et al.
(2011)

Bacillus sp. S65F5 Chitosanase was increased by 6.1-folds to 25 U/mL; fermentation time was shorted to 56 h Su et al.
(2006)

Rhizopus arrhizus N1023 Lipase was enhanced by 165% to 175 μ/mL in a shaking flask culture Ji et al.
(2008)

Lactobacillus casei N-2 L(+)-lactic was improved by 38.8% to 136 g/L Li et al.
(2012b)

Schizochytrium sp. S1 DHA titer was boosted to 6.5 g/L, a 61% increase than the parent strain; DHA content
accounted for 46.2% of total lipid

Fu et al.
(2016)

Gluconobacter oxydans I-2-239 1,3-Dihydroxyacetone productivity was increased to 103.5 g/L, 115.7% higher than the wild
strain; cultivation time was shortened to 36 h

Lin et al.
(2016)

Wickerhamiella domercqiae var.
sophorolipid N3-18 and others

104.5 and 135 g/L sophorolipids (SLs) were produced in a shake flask and a 5-L bioreactor,
respectively, increased 84.7% than the parent; acidic SLs were increased 2.0-folds;
diacetylated lactonic SL with a C18 monounsaturated fatty acid was boosted by 105.4%

Li et al.
(2012a)

Phaffia rhodozyma E5042 Astaxanthin yield achieved to 2510 μg/g DCW in 50-L bioreactor, an increase of 125.5% Liu et al.
(2008)

Hansenula polymorpha HP28 GSH titer was increased by 1.6 times to 337.2 mg/L in shaking flasks
Biomass was increased by 9.1%
Fermentation time (in 500-mL flask) reduced to 42 h

Qian et al.
(2013)

Rhizopus oryzae RQ4015 The titer and productivity of L(+)-lactic acid were increased by 10 and 46.7%, reached 121 g/L
and ~ 3.4 g/L/h, respectively, using glucose as sole carbon source; over 80 g/L L(+)-lactic
acid was produced using the mix of glucose (75 g/L) and xylose (25 g/L) produced

Wang et al.
(2009b)
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streams. FC technology uses fluorescence and microfluidic
techniques for high-throughput characterization, identifica-
tion, and screening of food microorganisms. Among them,
fluorescence coupled with FC allows fast and real-time
screening of the desired microbial strains. Fluorescent signals
that correlate with cellular chemical or physical characteristics
of the target strain enable microbial selection through
fluorescence-activated cell sorting (FACS). For instance,
FACS is applied in the screening of strains with a phenotype
that overproduced the essential antioxidant glutathione (γ-
glutamyl-L-cysteinylglycine, GSH). Selecting a mutant with
a high content of GSH is critical. To date, yeast is the main
GSH producer in the food industry. S. cerevisiae mutant
G-143, a product of ethyl methanesulfonate (EMS) mutagen-
esis that produces high GSH content, is isolated based on the
fluorescence intensity formed by intracellular GSH using
monochlorobimane (mBCl) (Wang et al. 2010).

Flow cytometry-based technique using two nucleic acid
stains, i.e., SYBR Green II RNA gel and propidium iodide,
enables an accurate assessment and cell sorting of
Lactobacillus sakei under heat and acid stress conditions
(Bonomo et al. 2013). Through this protocol, fluorescent in-
tensities and types could identify cells with different viabilities
and conditions. In addition, a combination of FACS and fluo-
rescence in situ hybridization (FISH) using a specific 16S
rRNA probe labeled with fluorescein isothiocyanate (FITC)
allows the identification and selection of functional acetic acid
bacteria in vinegar. This procedure enables relatively short
screen time to select strains that have high resistance to acetic
acid and/or with a high yield of acetic acid from
Komagataeibacter, Acetobacter, and Gluconobacter genera
(Trček et al. 2016).

Aside from the heterogeneous probes, native molecular
elements are also applicable for FACS. Vitamin B12 (VB12)
is widely used in the food industry with increasing demand in
the global market. To date, mutagenesis is still a major means
to enhance its production, so the selection for high-yield mu-
tants becomes critical. Cai et al. (2018) developed an HTS
system for isolating Sinorhizobium melilotimutants with high
VB12 content. In this system, the riboswitch RNA element of
btuB, a key gene for VB12 biosynthesis, regulates the expres-
sion of GFP and lacI reporter system. This allows the identi-
fication and selection of cells based on the positive correlation
between intracellular VB12 level and fluorescence intensity.
Using this system, the same team isolates an ARTP mutant
MC5-2 that is capable of producing VB12 by 21.9% higher
than the wild-type strain.

Fluorescence-activated droplet sorting

Droplet microfluidics emerges as a screening technology with
high-throughput and high-resolution characteristics. Picoliter-
sized aqueous droplets are dispersed in a continuous

fluorinated oil phase, allowing stable compartmentalization
by surfactants. Theoretically, every variation can be detected
and sorted based on its size and associated fluorescence.

Screening microbes producing enzymes represents a chal-
lenge, due to the lack of obvious phenotype and low efficiency
of the conventional screening. Furthermore, current physio-
logical and biochemical methods used in enzymatic assays
are often laborious and expensive. Droplet microfluidics-
based screening provides a solution as this tool enables fast
screening rate (i.e., thousands of droplets per second) just by
using a tiny reaction volume. Sjostrom et al. (2014) developed
a fluorescence-activated droplet sorting (FADS)-based HTS to
select yeast cells with improved secretion ofα-amylase from a
whole-genome mutated cell library. The method enables a
saturated screening of the mutant library with a great reduction
of reagent consumption. In a following study, researchers
from the same group selected dozens of S. cerevisiae mutants
with enhancedα-amylase secretion ability fromUVmutagen-
esis libraries using two rounds of HTS based on FADS
(Huang et al. 2015), demonstrating the reliability of their
method. Whole-genome sequencing then revealed 330 muta-
tion sites within 146 protein-encoding genes in the genome
that are related to secretion modulation. Finding these un-
known but critical loci and genes would have been impossible
without the use of FADS.

For filamentous fungi such as A. niger, MTP-based screen-
ing is usually neither efficient nor cost-effective. Even FACS-
based screening is also problematic because of the oversized
A. niger mycelia. By contrast, FADS demonstrates promising
results as an efficient technology for the HTS of filamentous
fungi. Using the same fluorescein as the two studies men-
tioned above, a UV-mutated A. niger library with enhanced
α-amylase activity is enriched by approximately 200-folds
through FADS. In comparison with a UV-mutated reference
strain, 37% of the sorted mutants show higher amylase activ-
ity (Beneyton et al. 2016).

In addition, FADS-based HTS also demonstrates a power-
ful capacity to screen lipase overproducers (Qiao et al. 2017),
p-coumaric acid-overproducing S. cerevisiae strain (Siedler
et al. 2017), or vitamin overproducer lactic acid bacteria
(LAB) strain (Chen et al. 2017). A comprehensive review of
its application for strain improvement of LAB has been pub-
lished elsewhere (Chen et al. 2018). Although these examples
were not specifically associated with mutagenesis, they dem-
onstrate that droplet microfluidics-based screening is promis-
ing for strain improvement in the food industry.

Microscaled cultivation

Although mutant enrichment can be performed through HTS,
the selection of the desired mutant microbe for fermentation
remains a challenge. On one hand, a lack of kinetics
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information in flask culture system would likely result in poor
reproducibility. On the other hand, it is impossible to assess
every mutant of interest in scaled bioreactors. Thus,
microscaled cultivation is currently developed and applied in
strain improvement for bioprocess monitoring and for control
and optimization. Considering fermentation aims to producing
at an industrial scale, desirable microscale fermentation needs
to meet several basic criteria, such as scalability, reliability,
and real-time monitoring. The principles and applications of
microscale cultivation in pharmaceutical or industrial micro-
organisms have been reviewed (Long et al. 2014; Schäpper
et al. 2009); hence, this review focuses only on their potential
application and development in food microbes.

Online process monitoring

Process monitoring is crucial for fermentation. However, con-
ventional monitoring is based on “off-line” techniques which
require sampling out of a reactor to do measurement. In addi-
tion, pH and DO values are conventionally measured using
electrodes that need calibration. However, modern fermenta-
tion processing concerns more about online and noninvasive
monitoring with medium to high throughput than ever before.
Since MTP-based cultivation can meet the demands of
throughput, it is prevalent to develop novel monitoring
techniques.

Mutant microbes are desirable materials to investigate in-
tracellular metabolic flux. However, the flux tends to be sus-
ceptible by microbial growth status. The combination of mi-
croscale cultivation with molecular techniques allows the task
to be easier. In lysine-producing mutants of Corynebacterium
glutamicum, the MTP-based online monitoring associated
with cultivation feeding 13C isotope reveals that changes on
kinetics significantly disturbed the metabolic flux for lysine
production (Wittmann et al. 2004). Oxygen transfer rate
(OTR) is a critical parameter for aerobic fermentation, but it
greatly differs between regular MTPs and shaking flasks, and
thus, this parameter is a major bottleneck for the scale-down or
scale-up of microbial fermentation. A microscale system de-
veloped for the amino acid producer Corynebacterium
glutamicum shows that biomass and specific growth rate pa-
rameters are comparable betweenMTPs and flask. The system
involves a setup for both oxygen-sensitive and reference
fluorophores that are immobilized at the bottom of wells and
used a 96-well MTP to sense the concentration of dissolved
oxygen (DO) (John et al. 2003b).

Recently, a MTP fermentation system called BioLector mi-
crobial bioreactor is available in the market. By means of
scattered light and fluorescence optic measurement tech-
niques, it can be used to analyze strain phenotype and growth,
screen mutants, and/or optimize medium and other fermenta-
tion parameters. Compared with conventional bioprocessing
tools, BioLector is labor and cost-effective and has high

reproducibility. Infrared fluorescent oxygen-sensitive nano-
particle was demonstrated as a reliable method to monitor
OTR of Hansenula polymorpha and Gluconobacter oxydans
via BioLector-based respiration activity monitoring system
(RAMOS) (Jang et al. 2017). The results prove that none of
the fluorescence intensities, concentrations, and types dis-
turbed the DO measurement by infrared fluorescence.
However, RAMOS is only available in small-scale fermenta-
tion such as a flask or milliliter-scale microbioreactors. Flitsch
et al. (2016) constructed a 48-well MTP-based μRAMOS
device with reduced pneumatic valves and sensors but with
a steady well-to-well integration. The cultivation of microbes
such as H. polymorpha in this device shows a comparable
OTR with the flask culture system. In contrast to a bioreactor,
microscale cultivation shows higher efficiency with reduced
cost and media consumption.

Process control and optimization

Microscaled cultivation is able to accelerate the optimization
of biological and bioprocessing parameters with high
throughput. By means of the BioLector microbioreactor
platform equipped with the smart design of triggering
sampling or dosing by pipetting robot, Rohe et al. (2012)
quickly optimized fermentation conditions for high lipolytic
activity inC. glutamicum after testing multiple parameters in a
mean time such as pH, OTR, inoculation and induction time,
specific growth rate, biomass, and enzymatic activity.
Aspergillus terreus is a main producer for itaconic acid.
Microscaled culture system performed using MTPs simplifies
and speeds up the optimization process for itaconic acid pro-
duction. The cultivation demonstrates the critical roles of
CuSO4 and KH2PO4, as well as the dispensability of nitrogen
and phosphate for fermentation (Hevekerl et al. 2014).

Scalability and reliability are critical properties for micro-
scale fermentation. In the examples mentioned above, Rohe
et al. (2012) found that biomass accumulation and substrate
utilization during microscale fermentation were quite similar
to that when using a 1-L bioreactor. In 20-L bioreactors, both
parameters reduced but still comparable to the smaller-scaled
reactors, but the cutinase activities under the optimal condi-
tions were comparable in all scales. Similarly, the results stud-
ied by Hevekerl et al. (2014) also demonstrated reliability and
scalability of microscale fermentation since the bench-scale
fermentation using the optimized medium showed high pro-
duction of itaconic acid. However, MTP-based cultivation for
some filamentous fungi remains problematic. The application
of the Duetz-MTP system allows comparison of fungal fatty
acid producers Mucor circinelloides, Mo. alpina, and
microalga in various scales. Biomass accumulation, lipid con-
tent, and ARA production show relative scalability between
MTPs, bench-top, and 25-L bioreactor, but the reproducibility
varies between techniques (Kosa et al. 2018). In A. niger, 2-
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phenylethanol (2-PE) production in FlowerPlate MTP cultiva-
tion shows a 35% reduction compared with that in flasks, even
with the addition of homogenate chemicals (Huth et al. 2017).

Microfermentation

MTP-based system for aerobic fermentation relies on a special
well (Funke et al. 2009), a lid (Schleputz and Buchs 2014),
and external power to improve oxygen mass transfer.
Alternatively, a milliliter-scale bioreactor is equipped with a
novel stirrer that enables good mixing and high oxygen trans-
fer rate (Bolic et al. 2016). Magnetic stirring and computation-
al fluid dynamics (CFD) allow one- and bi-directional mixing
and estimate the mixing time. This system generates high
compatibility and flexibility (0.5–2 mL) in S. cerevisiae and
Lactobacillus paracasei. In particular, this is also suitable in
the case of filamentous fungi with high-viscosity fermenta-
tion. Further findings suggest that viscosity up to 35 mPa
did not show any major influence on the oxygen transfer rate
and the mixing process. The details on microscale cultivation
technology and machines have been reviewed recently
(Puskeiler et al. 2005).

In addition, MTP-based fermentation is developed for
mixed cultured food. Ethanol and acetic acid levels produced
by AAB are critical for the flavor of vinegar. The use of
FlowerPlate BioLector allows a high-throughput system for
bacterial selection and process investigation in a microscaled
setup. Moreover, the design of a custom-made lid coupled to
MTP cultivation permits simultaneous online monitoring, au-
tomatic sampling and measurement, efficient mass transfer,
and prevention from evaporation. The MTP cultivation sys-
tem could efficiently prevent evaporation of ethanol, acetic
acid, and culture media. On top of that, the fermentation per-
formance is comparable to that in a 9-L bioreactor (Schleputz
and Buchs 2014).

Anaerobes are a special kind of food producers. So far, the
study on miniaturized cultivation system for anaerobic fermen-
tation is rare. A newly developed special MTP-based system,
called OVAMO, uses Oxyrase, vacuum, and mineral oil to
realize an in situ anaerobic environment in 96-well MTPs
(Lam et al. 2018). This cost-effective system enables the
growth of probiotics such as Bifidobacterium longum and car-
bohydrate monitoring in MTPs. The product obtained from
OVAMO is comparable with that obtained from anaerobic jars.

Future perspectives

Although modern technologies for strain development are
widely applied, some identified challenges could affect its
potential application. These challenges may include the lack
of specific mutagenesis devices and biosensing systems, the
insufficient improvement of the mixed culture system, the low

efficiency when using filamentous fungi and flocculating bac-
teria, and the insufficient safety assessment on harnessing
genome-editing technology. Hence, strain improvement in
the food industry still needs a lot of work in the future.

Combined mutagenesis

Repetitive treatments by a single mutagenesis technology
would likely reduce mutation efficiency. For example, lactic
acid production by Sporolactobacillus after the first round of
ARTP treatment could boost by nearly 40%, while the second
round could add around 11% on its production (Sun et al.
2015). Combined treatment is also efficient to improve the
strain of food microbes. Gluconobacter oxydans is an out-
standing example where the combined treatment with three
mutagenesis techniques generates a significant overproduc-
tion of 1,3-dihydroxyacetone. The first process uses UV mu-
tagenesis to select the overproducer strain U-2-115. This strain
shows a 48.8% increase of 1,3-dihydroxyacetone production
compared to the original one. The second process subjects the
U-2-115 mutant into ARTP treatment generating a second
mutant A-2-64, which can produce 26.3% more than the first
mutant strain. The final process uses LEIP treatment to create
the mutant strain I-2-239. This mutant strain shows dihy-
droxyacetone production of 103.5 mg/mL, i.e., 14.7 and
115.7% increase compared to the strain A-2-64 and the orig-
inal strain L-6, respectively (Lin et al. 2016).

The combination of mutagenesis technology with other
biotechniques shows some promising results as it works
synergistically and efficiently. Jin et al. (2018) created an
engineered S. cerevisiae strain via ARTP mutagenesis and
metabolic engineering. This approach results in high
astaxanthin yield of up to 10.1 mg/g dry cell weight (DCW),
which is so far the highest yield recorded from a yeast culture
using a flask. In B. coagulans, mutants derived from ARTP
and ALE treatment can grow in a medium with 80% diluted
acid hydrolysates (Jiang et al. 2016b). Moreover, genome
shuffling coupled with mutagenesis is also reported to im-
prove the breeding of food microbes (Zhang et al. 2015a).

Development of biosensing systems

Undoubtedly, the biosensing system plays a central role for
screening and microscale cultivation for being high through-
put, highly sensitive, and reliable and for its ability to monitor
microbial culture in real time. The type, development, and
potential use of biosensors are reviewed elsewhere (Gredell
et al. 2012; Han et al. 2018; Johnson et al. 2017; Mertens and
Liese 2004; Schallmey et al. 2014; Shibasaki and Ueda 2014;
Zhang et al. 2015b). So far, there are very few progresses on
the use of biosensors in the food industry for sensing and/or
selecting pH (Casimero et al. 2018), oxygen and cellular
viability(Strianese et al. 2009), aroma (Liu et al. 2015), or
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amino acid producers (Liu et al. 2017a; Mustafi et al. 2012),
lagging behind the actual needs of the food industry. So far,
real applications of biosensing systems in the industry are rare,
but they would be promising in the near future, in particular in
pharmaceutical or biotechnological plants producing high
value-added products, which have been addressed in recent
reviews (Neelam et al. 2019; Lam et al. 2012). However, they
have not been widely applicable in the food industry yet. We
can predict that microscale fermentation-equipped biosensing
systems will be available for screening and process optimiza-
tion in the food industry, but their cost will be critical to apply
in the food industry.

Strain improvement for special food microorganisms

Traditional fermented food by mixed cultures

Mixed microbial cultures play a substantial role in the produc-
tion of traditional food, including Chinese liquor, pickles, soy
sauce, and fermented soya. Because of the great economic,
nutritional, and cultural values offered by traditional food,
the improvements in their nutritional contents and flavors
are increasingly attractive. However, efficient mutagenesis
and screening techniques for mixed cultures are much more
difficult than for pure microbial cultures, because the mixed
cultures form a consortium in which cellular interaction, evo-
lution, and survival are different from pure cultures, and such
a complicated consortium rather than a certain individual
member confers food diverse flavors, metabolites, and so on.
The functions of the microorganisms in mixed cultures are
different, so it is hard to unify the mutation and screening
directions. Meanwhile, different microorganisms in mixed
cultures have different sensitivities to mutation factors, and it
is difficult to screen a suitable mutation technique for mixed
microbe mutation. A compromised mutagenesis strategy for
mixed culture is to mutate a few cultured members and then
acclimatize them to a mixed culture condition (Zhang et al.
2015a). However, the strategy does not consider the mixed
cultures as an organic whole and neglects the contribution of
uncultured or nonisolated microbes in the mixed cultures. In
addition, it is infeasible to uncultured but functional species. A
desirable mutagenesis technology for mixed cultures should
enable in situ and efficient mutation of all microbial members
at one time. Therefore, improvement of the mutagenesis tech-
niques must involve the following modifications: treating a
larger cell amount, optimizing the treatment time and strength,
and maintaining steady mutation efficiency in a solution. On
the other hand, HTS will be a primary requirement for mixed
cultures though it will be challenging to perform. A recent
report on the use of droplet-based microfluidics for the HTS
of novel enzyme resources from metagenomic library pro-
vides a promising strategy on screening mixed cultures of
food microbes (Hosokawa et al. 2015).

Screening and microscale cultivation of filamentous fungi
and flocculating bacteria

Filamentous fungi and flocculating bacteria are especially im-
portant for fermented food because of their high yield, high
tolerance, and easy recovery. However, the formation of bio-
mass agglomerates or flocs makes the screening and assess-
ment more challenging. Oversized pellets and/or uneven
phase in the solution constrain the application of screening
methods, which are dependent on optical density, surface
characteristics (e.g., using FACS), and droplet microfluidics-
based technology. Since filamentous fungi are vulnerable to
mechanic shearing and tend to generate high viscous culture
broth during fermentation, the scalability of microcultivation
for fungi still requires improvement. To partly address this
concern, a recent study creates a three-dimensional model to
stimulate the hyphal growth and OTR of the filamentous fun-
gus Rhizopus oligosporus at a microscale and solid-state fer-
mentation (Coradin et al. 2011). Hence, microscale cultivation
significantly guides in understanding any specific fungi even
though its robustness remains to be tested.

The genome editing and breeding of food
microorganisms

Genome-editing technology using the CRISPR system is a
recent powerful tool (Doudna and Charpentier 2014; Hsu
et al. 2014). Since it introduces no foreign genetic elements
into the host genome, it is regarded as safe and different from
genetic modification (GM). So far, most applications of the
CRISPR technique were reported in LAB or yeast. Using such
technique could efficiently enhance the production of food-
grade lactic acid (Jang et al. 2017) or N-acetylglucosamine
(Zhou et al. 2019) without introducing antibiotic markers or
heterogeneousDNA.During yeast breeding, CRISPR enabled
to enhance thermotolerance (Mitsui et al. 2019) or reduce its
foam of sake (Ohnuki et al. 2019). In addition, researchers
also demonstrated the efficacy and feasibility of applying
CRISPR in microbial populations. Barrangou and
Notebaart (2019) and Goh and Barrangou (2019) have
reviewed advances on using CRISPR techniques to en-
gineer probiotics for the aim of therapy and health, or
reshaping microbial populations of the food supply for
food safety. In addition, there were reports on develop-
ing CRISPR tools in edible mushroom (Binhu and Das 2019)
or Lactobacillus plantarum and Lactobacillus brevi (Huang
et al. 2019), displaying great potential for strain development
in the food industry. However, the study of Leenay et al.
(2019) indicated that the precision of CRISPR varied and
was likely host-dependent. This result reminds us again to
be cautious to the food safety and risk management by the
genome-editing techniques (Mays and Nair 2018; Varela and
Varela 2019).
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