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Abstract
Maternal nutrition during late pregnancy and lactation is highly involved with the offspring’s health status. The study was carried
out to evaluate the effects of different ratios of methionine and cysteine (Met/Cys: 46%Met, 51%Met, 56%Met, and 62%Met;
maintained with 0.78% of total sulfur-containing amino acids; details in “Materials and methods”) supplements in the sows’ diet
from late pregnancy to lactation on offspring’s plasma metabolomics and intestinal microbiota. The results revealed that the level
of serum albumin, calcium, iron, and magnesium was increased in the 51% Met group compared with the 46% Met, 56% Met,
and 62% Met groups. Plasma metabolomics results indicated that the higher ratios of methionine and cysteine (0.51% Met,
0.56%Met, and 0.62%Met)–supplemented groups enriched the level of hippuric acid, retinoic acid, riboflavin, and δ-tocopherol
than in the 46% Met group. Furthermore, the 51% Met–supplemented group had a higher relative abundance of Firmicutes
compared with the other three groups (P < 0.05), while the 62% Met–supplemented group increased the abundance of
Proteobacteria compared with the other three groups (P < 0.05) in piglets’ intestine. These results indicated that a diet consisting
with 51%Met is the optimumMet/Cys ratio from late pregnancy to lactation can maintain the offspring’s health by improving the
serum biochemical indicators and altering the plasma metabolomics profile and intestinal gut microbiota composition, but higher
proportion of Met/Cys may increase the possible risk to offspring’s health.
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Introduction

Deficiency or excess of maternal nutrition, especially ma-
ternal dietary protein intake during pregnancy or lactation
can significantly influence the growth and development of
offspring piglets. Adequate maternal nutrition supplemen-
tation during gestation enhances placental growth, vascu-
lar development, and placental nutrient transport (Herring
et al. 2018; Zhang et al. 2019). Insufficient protein intake
during pregnancy can cause fetal loss, intra-uterine
growth restriction (IUGR), and reduced neonatal or post-
natal growth due to a deficiency in specific amino acids,
which are essential for cell metabolism and function.
Excess dietary protein intake during pregnancy can also
cause IUGR and fetal loss due to the toxicity of ammonia,
homocysteine, and H2S, which are induced from amino
acid catabolism (Herring et al. 2018; MacKay et al.
2012; Wu 2016). Furthermore, sufficient maternal
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nutrition during lactation is necessary for mammary de-
velopment, milk volume, and milk quality, and that con-
tinues to regulate the piglets’ growth and development
through maternal milk, which contains carbohydrates,
proteins, and oligosaccharides. In addition, the transmis-
sion of colostrum or milk nutrition to neonatal piglets can
enhance immunity, gastrointestinal development, diges-
tive absorption, barrier function, and stimulate visceral
organ and protein synthesis (Martin Agnoux et al. 2015;
Uruakpa et al. 2002; Zhang et al. 2018).

Sulfur-containing amino acids (SAAs), particularly me-
thionine (Met) and cysteine (Cys), are important for main-
taining the cell integrity functions by altering the redox
state of cells. Furthermore, Met and Cys can reduce the
toxicity of toxic compounds, free radicals, and ROS
(reactive oxygen species; Townsend et al. 2004). Met is
one of the most important essential amino acids in animal
nutrition that is obtained from diets, whereas Cys is a
semi/non-essential amino acid obtained from Met metab-
olism necessary for the synthesis of glutathione. These
SAAs provide the cellular pool of sulfur homeostasis
and play a crucial role in the regulation of one-carbon
metabolism during pregnancy (Kalhan 2016; Shoveller
et al. 2005). Furthermore, SAAs are also shown to be
indispensable for neonatal piglets’ normal growth, nutri-
ents metabolism, normal mucosal growth, and gut barrier
function (Fang et al. 2010; Liu et al. 2019). Moreover,
recent studies revealed that maternal essential amino acid
supplementation during pregnancy and lactation affects
fetal growth, reproductive performance, IUGR, offspring
health, and diseases later in life (Dallanora et al. 2017;
Wei et al. 2019; Xu et al. 2019; Zhong et al. 2016).

Intestinal microbiota in the gastrointestinal ecosystem
plays a crucial role in host health. The pig gut microbiota
demonstrates dynamic composition and diversification,
which alters over time and on the entire gastrointestinal
tract. The colonization of piglets’ gut microbiota started at
birth and shaped by the consumption of the sow’s colos-
trum and milk, building a milk-oriented microbiome.
Thus, the suckling period is a crucial window of gut mi-
crobiota modification (Frese et al. 2015; Isaacson and
Kim 2012; Li et al. 2018). Furthermore, plasma bio-
markers and metabolomics are also effective tools for
the detection of early health complications (Azad et al.
2018a; Verheyen et al. 2007). However, the collation of
SAAs in maternal diet from late pregnancy to lactation on
offspring piglets’ gut microbiota alteration and metabo-
lites in serum plasma remained unknown. Therefore, the
present study was aimed to evaluate the effects of differ-
ent ratios of maternal Met and Cys supplementation from
late pregnancy to lactation on offspring piglets’ plasma
metabolomics and alteration of intestinal gut microbiota
composition.

Materials and methods

Animals and experimental treatment

A total of 40 pregnant (Landrace × LargeWhite) gilts (approx-
imately at day 90 of gestation), with similar parity (2–3 fe-
tuses) were randomly allotted into four dietary treatment
groups: (a) 46% Met group: a basal diet with additional
0.12% Cys (diet contained 0.36% Met and 0.42% Cys, Met/
SAAs = 46%); (b) 51%Met group: a basal diet with additional
0.04% Met and 0.08% Cys (diet contained 0.40% Met and
0.38% Cys, Met/SAAs = 51%); (c) 56% Met group: a basal
diet with additional 0.08%Met and 0.04%Cys (diet contained
0.44% Met and 0.34% Cys, Met/SAAs = 56%); and (d) 62%
Met group: a basal diet with additional 0.12% Met (diet
contained 0.48% Met and 0.30% Cys, Met/SAAs = 62%),
were fed from late gestation (85–90 days of gestation) to days
21 of lactation. The basal diet (Supplemental Table S1) was
formulated with 0.36% Met and 0.30% Cys, Met/Cys ratio of
the four groups were same 0.78% of total SAAs, and met the
NRC-(2012) requirements.

Experimental gilts were separately kept in gestation
crates (2.0 m × 0.6 m) during late pregnancy (days 90 to
110 of gestation) and were transferred to the farrowing
house approximately on day 110 of gestation (2.2 m ×
1.5 5 m), where they remained until weaning. In the
farrowing house, crates had a piglet creep area provided
with a heat lamp. The sows were fed at 6:00 am and
2:00 pm with approximately 3.2 kg of food daily.
Experimental animal had free access to drink water at all
times.

Sample collection

At day 21 of post-farrowing, one piglet from each sow
(similar body weight), a total of ten piglets from each
supplemented group were taken for sample collection.
5 mL of blood from each piglet was collected from the
jugular vein, and then centrifuged at 3000 rpm at 4 °C for
10 min to obtain plasma and immediately shifted into a
new centrifuge tube and kept at − 80 °C for future analy-
ses. Then the piglets were sacrificed as described in our
previous study (Azad et al. 2018a), and the sample of
intestinal content (jejunum, ileum, colon, and cecum)
were collected and then immediately frozen in liquid ni-
trogen and stored at − 80 °C for future analyses.

Analysis of plasma biochemical indicators

The plasma samples obtained from piglet serum (stored at
− 80 °C) were thawed naturally. Then the samples were
centrifuged at 3000 rpm for 10 min, and the supernatants
(approximately 360 μL) were transferred into a 1.5-mL
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centrifuge tube. The plasma biochemical indicators in-
cluding TP (total protein), ALB (albumin), LDH (lactate
dehydrogenase), AST (glutamic oxaloacetic aminotrans-
ferase), ALT (alanine aminotransferase), GGT (gamma-
glutamyl transpeptidase), HDL (high-density lipoprotein),
LDL (low-density lipoprotein), BILT (total bilirubin),
CREA (creatinine), GLU (glucose), LACT (lactic acid),
BUN (blood urea nitrogen), NH3 (serum ammonia), Ca
(calcium), I (iron), Mg (magnesium), and P (phosphate)
were determined using commercially available kits (F.
Hoffmann-La Roche Ltd., Basel, Switzerland) in line with
the manufacturers’ guidelines.

Determination of plasma metabolite changes using
LC-MS analysis

Preserved plasma samples (− 80 °C) were thawed at room
temperature, then 100 μL of plasma aliquots (n = 8) were
transferred to 300 μL methanol (Merck, Darmstadt,
Germany) and added 10 μL internal standard (2-chloro-L-
phenylalanine, 3.1 mg/mL) (Sigma-Aldrich, St. Louis, MA,
USA); after that, the samples were vortexed for 30 s and
centrifuged at 12,000 rpm for 15 min at 4 °C. 200 μL of the
supernatant was transferred to sample vial for LC-MS
analysis.

Fig. 1 Effects of different maternal Met and Cys ratios in sow diet from
late pregnancy to lactation on piglets (a) average daily weight gain from
day 1 to day 21 of lactation, (b) weaningweight, and (c) final bodyweight
of litters on day 21 of lactation. Values are expressed as means (n = 10)
with their SEM indicated by vertical bars. Asterisks represent
significantly different means (P < 0.05). 46% Met, sows fed a basal diet

with additional 0.12% Cys; 51% Met, sows fed a basal diet with
additional 0.04% Met and 0.08% Cys; 56% Met, sows fed a basal diet
with additional 0.08% Met and 0.04% Cys; and 62% Met, sows fed a
basal diet with additional 0.12% Met from late pregnancy to day 21 of
lactation

Table 1 Effects of different
maternal Met/Cys ratio on piglet’s
plasma biochemical indicators

Parameters 46% Met 51% Met 56% Met 62% Met

TP (g/L) 71.60 ± 1.58b 73.28 ± 0.95ab 75.93 ± 1.37a 75.60 ± 1.41ab

ALB (g/L) 41.18 ± 0.87 43.42 ± 0.69 41.50 ± 0.94 40.92 ± 1.58

AST (U/L) 33.6 ± 3.81b 32.50 ± 3.93b 32.17 ± 2.38b 48.17 ± 2.38a

LDH (U/L) 377.20 ± 9.5b 387.00 ± 10.86b 382.50 ± 24.09b 452.17 ± 13.66a

BUN (mmol/L) 5.22 ± 0.50 5.68 ± 0.35 5.30 ± 0.44 5.55 ± 0.49

CREA (μmol/L) 187.00 ± 12.55 178.83 ± 13.04 173.17 ± 15.26 184.17 ± 11.60

GLU (mmol/L) 4.70 ± 0.51 4.92 ± 0.10 5.38 ± 0.34 5.05 ± 0.55

Ca (mmol/L) 2.67 ± 0.02 2.74 ± 0.02 2.71 ± 0.05 2.67 ± 0.04

P (mmol/L) 2.55 ± 0.16 2.55 ± 0.05 2.67 ± 0.11 2.63 ± 0.11

HDL (mmol/L) 0.76 ± 0.03 0.75 ± 0.06 0.67 ± 0.03 0.71 ± 0.06

LDL (mmol/L) 0.67 ± 0.05 0.74 ± 0.03 0.66 ± 0.03 0.80 ± 0.05

I (μmol/L) 24.49 ± 2.38 29.29 ± 1.96 25.67 ± 1.76 24.92 ± 2.90

NH3 (μmol/L) 133.32 ± 20.39 117.17 ± 6.43 121.22 ± 16.94 121.50 ± 13.28

Mg (mmol/L) 1.99 ± 0.02 2.03 ± 0.02 1.99 ± 0.03 2.01 ± 0.03

Values are expressed as means ± SEM, n = 10. Means in the same row with different lowercase letters were
significantly different among groups (P < 0.05). 46%Met, sows fed a basal diet with additional 0.12% Cys; 51%
Met, sows fed a basal diet with additional 0.04% Met and 0.08% Cys; 56% Met, sows fed a basal diet with
additional 0.08% Met and 0.04% Cys; and 62% Met, sows fed a basal diet with additional 0.12% Met from late
pregnancy to day 21 of lactation
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Plasma metabolic analysis was carried out using an
ACQUITYTM UPLC-QTOF system (Waters, Manchester,
England). A Waters ACQUITY UPLC HSS T3 column
(2.1 mm× 100 mm, 1.8 μm) was used for chromatographic sep-
aration of all samples and the temperature of the column was
maintained at 40 °C. The mobile phase (A) contained with water
with 0.1% formic acid (Sigma-Aldrich, St. Louis, MO, USA)
and the mobile phase (B) contained with acetonitrile (Merck,
Darmstadt, Germany) with 0.1% formic acid. The column flow
rate was 0.30 mL/min, and the sample injection volume was
6 μL. The gradient conditions for the metabolic separation pro-
cess of the chromatograph are shown in supplemental Table S2.
Electrospray ionization (ESI) was performed in both positive and
negative modes. The positive mode conditions are presented in
supplemental Table S3 and the negative mode conditions are
presented in supplemental Table S4. A Massxlynx 4.1 software
(Waters, Dublin, Ireland) was used for data processing. Finally,
the processed data were standardized using Excel 2007 to obtain
Rt (retention time), Mz (mass/charge ratio), observation (sam-
ples), and peak intensity. Furthermore, the SMICA-P 11.0
(Umetrics, Umea, Sweden) was used for group data standardiza-
tion, and principal component analysis (PCA) and partial least
square discriminant analysis (PLS-DA)were carried out to obtain
the metabolic information and significant differences of group
data.

16S rDNA sequencing of intestinal microbiota

Piglet intestinal samples (n = 8) from four different supple-
mented groups were sequenced 16S rDNA as previously de-
scribed (Azad et al. 2018a). Briefly, the intestinal DNA was
extracted using the QIAamp DNA stool Mini kit (Qiagen,
Hilden, Germany) according to the manufacturer’s instruc-
tions. A NanoDrop ND-1000 instrument (NanoDrop
Technologies Inc., Wilmington, DE, USA) was used to

determine the DNA concentration and purity. The PCR
primers 515F (5’-GTGCCAGCMGCCGCGGTAA-3′) and
926R (5’-CCGTACAATTCMTTTGAGTTT-3′) were used
for the amplification of 16S rDNA. The amplified PCR prod-
ucts were then extracted by agarose gel electrophoresis (2%
agarose; Qiagen, Hilden, Germany).

According to the manufacturer’s guidelines, a TruSeq®
DNA PCR-free Sample Preparation kit (Illumina, San
Diego, CA, USA) was used to construct sequencing libraries.
The constructed gene-sequencing library was quantified using
Qubit@ 2.0 Fluorimeter and Q-PCR. Finally, an Illumina
HiSeq2500 (Illumina, San Diego, CA, USA) was used to se-
quence each library. Raw sequences are available in the NCBI
Sequence Read Archive with access ion number
PRJNA579317.

Statistical analysis

All experimental results were expressed as mean ± SEMs
(standard error of mean). Statistical data were analyzed using
the SPSS 23.0 (SPSS Inc., Chicago, IL, USA) software for
Windows. The growth performance and bacterial community
compositions were tested using a one-way analysis of vari-
ance (ANOVA) program, and significant differences between
the groups were analyzed using Duncan’s multiple range test.
To determine the correlation between various levels of plasma
metabolite and gut microbial genera abundance, the Pearson
correlation test was performed using GraphPad Prism v.7.0
(GraphPad Software, San Diego, CA, USA). P values of
<0.05 were taken to indicate statistical significance.

Results

Effects of different maternal Met/Cys ratio
on offspring’s growth

We observed the effects of different ratios of Met and Cys
supplements in the sow diet from late pregnancy to lactation
on offspring’s growth performance. The results for the average
weight gain of piglets, weaning weight, and final weight of
piglets on day 21 of lactation are depicted in Fig. 1. The results
show that the 46% Met group significantly improved the av-
erage weight gain, weaning weight, and final body weight of
litters compared with the 62% Met group, while 51% Met
group and 56% Met group also improved these indices com-
pared with the 62% Met group but not significantly.

Effects of different maternal Met/Cys ratio on piglet’s
plasma biochemical indicators

At day 21 of lactation, plasma biochemical indicators of
piglets are presented in Table 1. Compared with the 56%

�Fig. 2 Score plots of PCA, PLS-DAmodels, and permutation test results
of PLS-DA (n = 8). The PCA score plots between the (a1) 46%Met group
(brown dots) and 51% Met group (blue stars), (b1) 46% Met group
(brown dots) and 56% Met group (red triangles), (c1) 46% Met group
(brown dots) and 62%Met group (green rhombuses), (d1) 51%Met group
(blue stars) and 56%Met group (red triangles), (e1) 51%Met group (blue
stars) and 62% Met group (green rhombuses), and (f1) 56% Met group
(red triangles) and 62%Met group (green rhombuses); the PLS-DA score
plots between the (a2) 46% Met group (brown dots) and 51% Met group
(blue stars), (b2) 46% Met group (brown dots) and 56% Met group (red
triangles), (c2) 46% Met group (brown dots) and 62% Met group (green
rhombuses), (d2) 51% Met group (blue stars) and 56% Met group (red
triangles), (e2) 51% Met group (blue stars) and 62% Met group (green
rhombuses), and (f2) 56% Met group (red triangles) and 62% Met group
(green rhombuses); and the permutation test results of PLS-DA (a3–f3),
respectively. 46% Met, sows fed a basal diet with additional 0.12% Cys;
51% Met, sows fed a basal diet with additional 0.04% Met and 0.08%
Cys; 56% Met, sows fed a basal diet with additional 0.08% Met and
0.04% Cys; and 62% Met, sows fed a basal diet with additional 0.12%
Met from late pregnancy to day 21 of lactation
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Met groups, the 46% Met group significantly (P < 0.05)
decreased the level of TP, and the concentration of ALB
was also lower than in the 51% Met and 56% Met groups.
In addition, the 46% Met group showed a lower BUN and
iron concentration compared with the other three groups.
The 62% Met group significantly increased (P < 0.05)
plasma AST and LDH contents compared with the 46%
Met, 51% Met, and 56% Met groups. Furthermore, the
62% Met group had also increased GLU and NH3 con-
tents compared with other supplemented groups but not
significantly. Moreover, compared with the 46% Met,
56% Met, and 62% Met groups, the level of serum Ca,
I, and Mg was improved in the 51% Met group.

Effects of different maternal Met/Cys ratio on piglet’s
plasma metabolomics

The results of PCA showed the clear separation between
inter-groups on the score plots (Fig. 2a1–f1). SMICA-P
11.00 was used for this process. Later, the supervised
multidimensional statistical method and PLS-DA was
used to obtain the metabolic information with significant
differences. The PLS-DA models (Fig. 2a2–f2) showed
that the 46% Met group (brown dots) and 51% Met group
(blue stars) (R2X = 0.461, R2Y = 0.997, Q2 = 0.913), the
46% Met group (brown dots) and 56% Met group (red
triangles) (R2X = 0.413, R2Y = 0.994, Q2 = 0.929), the
46% Met group (brown dots) and the 62% Met group
(green rhombuses) (R2X = 0.56, R2Y = 0.998, Q2 =

0.956), the 51% Met group (blue stars) and the 56%
Met group (red triangles) (R2X = 0.476, R2Y = 0.99,
Q2 = 0.818), the 51% Met group (blue stars) and the
62% Met group (green rhombuses) (R2X = 0.534, R2Y =
0.994, Q2 = 0.881), and the 56% Met group (red triangles)
and the 62% Met group (green rhombuses) (R2X = 0.506,
R2Y = 0.995, Q2 = 0.886) were clearly separated.
Thereafter, the models were sort out to determine whether
the model was “over-fitting” (Fig. 2a3–f3).

The results presented in Table 2 indicated the different
metabolite changes in piglets’ plasma after addition of
different Met/Cys ratio in maternal sow diets (46% Met
vs. 51% Met, 46% Met vs. 56% Met, 46% Met vs. 62%
Met, 51% Met vs. 56% Met, 51% Met vs. 62% Met, and
56% Met vs. 62% Met), with VIP > 1 and t < 0.045. Sixty
metabolites were obtained; 46% Met vs. 51% Met, 46%
Met vs. 56% Met, 46% Met vs. 62% Met, 51% Met vs.
56% Met, 51% Met vs. 62% Met, 56% Met vs. 62% Met,
containing 27, 45, 45, 41, 49, and 26 metabolites, respec-
tively (Table 2). Twenty-six metabolites (hypotaurine,
phenylacetic acid, creatine, L-asparagine, hypoxanthine,
phosphohydroxypyruvic acid, hippuric acid, sebacic acid,
myo-inositol, L-tyrosine, L-tryptophan, indolelactic acid,
gluconic acid, pantothenic acid, xanthurenic acid, L-cys-
teine, cytidine, D-glucose-6-phosphate, alpha-CEHC,
tetradecanedioic acid, retinoic acid, sphinganine,
xanthosine, cAMP, riboflavin, and δ-tocopherol) were
found only in the lower Met/Cys ratio groups comparison
(46% Met vs. 51% Met, 46% Met vs. 56% Met, and 46%

Table 3 Effects of different ratio of Met/Cys on Alpha diversity indices of intestinal communities of piglets

Item 46% Met 51% Met 56% Met 62% Met

Cecum

Effective tags 68,794 ± 2788b 77,608 ± 2030.43a 81,202 ± 1000.46a 75,378 ± 2269.09a

OTU 522 ± 25.65a 561 ± 20.87a 380 ± 34.12b 475 ± 1636a

Shannon 5.43 ± 0.27a 5.10 ± 0.13a 4.12 ± 0.42b 5.17 ± 0.21a

Chao 523.55 ± 25.32a 486.78 ± 17.62a 388.46 ± 37.11b 481.54 ± 15.66a

Colon

Effective tags 71,262 ± 3364.62b 79,544 ± 2308.86ab 83,166 ± 2493.60a 74,014 ± 3419.03b

OTU 545 ± 33.58 552 ± 18.04 469 ± 40.02 538 ± 21.85

Shannon 5.65 ± 0.17a 5.05 ± 0.10a 4.40 ± 0.34b 5.38 ± 0.10a

Chao 535.51 ± 39.85 568.77 ± 21.95 474.58 ± 39.76 549.49 ± 17.73

Ileum

Effective tags 80,175 ± 27.74 80,168 ± 42.18 78,227 ± 3032.40 80,508 ± 13.9.57

OTU 841.25 ± 43.93 762.51 ± 75.46 924.72 ± 50.56 829.36 ± 70.99

Shannon 6.15 ± 0.36 6.00 ± 0.42 6.31 ± 0.25 6.62 ± 0.15

Chao 836.56 ± 41.30 766.43 ± 75.81 927.10 ± 43.97 835.57 ± 68.14

Values are expressed as means ± SEM, n = 6. Means in the same row with different lowercase letters were significantly different among groups
(P < 0.05). 46% Met, sows fed a basal diet with additional 0.12% Cys; 51% Met, sows fed a basal diet with additional 0.04% Met and 0.08% Cys;
56% Met, sows fed a basal diet with additional 0.08% Met and 0.04% Cys; and 62% Met, sows fed a basal diet with additional 0.12% Met from late
pregnancy to day 21 of lactation
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Met vs. 62% Met), while sixteen differential metabolite
including hypotaurine, thymine, L-histidine, L-glutamate,
phosphohydroxypyruvic acid, myo-nositol, L-tyrosine, L-
tryptophan, indolelactic acid, gluconic acid, pantothenic

acid, L-cystine, cytidine, xanthosine, XMP (xanthosine
monophosphate), and glycocholic acid were found in the
higher Met/Cys ratio groups (51% Met vs. 56% Met, 51%
Met vs. 62% Met, and 56% Met vs. 62% Met).

Fig. 3 The relative abundance of piglets’ intestinal microbiota (ileum,
colon, and cecum) and the ratio of Firmicutes to Bacteroidetes at the
phylum level at day 21 of lactation. Values are expressed as means (n =
8) with their SEMs indicated by vertical bars. Asterisks represent
significantly different means (P < 0.05). 46% Met, sows fed a basal diet

with additional 0.12% Cys; 51% Met, sows fed a basal diet with
additional 0.04% Met and 0.08% Cys; 56% Met, sows fed a basal diet
with additional 0.08% Met and 0.04% Cys; and 62% Met, sows fed a
basal diet with additional 0.12% Met from late pregnancy to day 21 of
lactation
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Effects of different maternal Met/Cys ratio on piglet’s
intestinal microbiota

We sequenced the V4-V5 region of the 16S rDNAof intestinal
samples obtained from four different Met/Cys supplementa-
tion group. The alpha diversity data were obtained through the
process of trimming, assembly, and quality filtering. The ef-
fective tags, OTUs (operational taxonomic unit), Shannon,
and Chao indices of piglets intestinal are presented in
Table 3. In the cecum, the results showed that the OTU,
Shannon, and Chao indices in the 56% Met group were sig-
nificantly (P < 0.05) lower than in the other three groups.
Furthermore, 56% Met group also had a significantly lower
Shannon index in the colon compared with the other three
groups. There was no significant difference observed of these
indices in the ileum.

The intestinal microbial taxonomy was determined using a
taxon-dependent analysis. Figure 3 shows the piglets’ intesti-
nal microbial composition at the phylum level. Firmicutes,
Fuscobacteria, and Bacteroidetes were the most dominant
phyla in the ileum, colon, and cecum and were > 90% of the

total composition. The most dominant taxa in the ileum were
Firmicutes and Bacteroidetes (59% to 74% and 15% to 30%,
respectively). In the colon and cecum, Firmicutes and
Bacteroidetes were also most abundant, (45% to 60% and
27% to 37% in the colon, and 39% to 71% and 23% to 43%
in the cecum, respectively). In addition, Firmicutes to
Bacteroidetes ratio in the 56% Met group was significantly
(P < 0.05) higher compared with the other three groups
(Fig. 3). Furthermore, taxonomic differences at the phylum
level revealed that the abundance of Firmicutes in the colon
and cecum was significantly (P < 0.05) higher in the 51%Met
group compared with the other three groups, while the abun-
dance of Proteobacteria in the colon and cecum was higher in
the 62% Met group than in the other three groups (Fig. 4). In
the ileum, there was no taxonomic difference observed among
the various groups.

The most dominant bacterial genera in the piglets’ ileum,
colon, and cecum at the genus level are shown in Fig. 5.
Lactobacillus, Fuscobacterium, Bacteroides, and
Ruminococcaceae_UCG-002 were the most abundant genera
in the piglets’ ileum, colon, and cecum. The abundance of

Fig. 4 Taxonomic differences in piglets’ intestinal microbiota (colon and
cecum) in the various groups at the phylum level at day 21 of lactation.
Values are expressed as means (n = 8) with their SEMs indicated by
vertical bars. Asterisks represent significantly different means
(P < 0.05). 46% Met, sows fed a basal diet with additional 0.12% Cys;

51% Met, sows fed a basal diet with additional 0.04% Met and 0.08%
Cys; 56% Met, sows fed a basal diet with additional 0.08% Met and
0.04% Cys; and 62% Met, sows fed a basal diet with additional 0.12%
Met from late pregnancy to day 21 of lactation
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Lactobacillus in the colon and cecum was significantly
(P < 0.05) higher in the 51% Met group compared with the
other three groups (Fig. 6). In the ileum, the abundance of
Clostridium_sensu_stricto_1 was significantly (P < 0.05)
higher in the 56% Met group than in the other groups. In the
colon, the relative abundance of Fuscobacterium was signifi-
cantly higher in the 56% Met group compared with the other
groups, while 51%Met group had a significantly higher abun-
dance of Ruminococcaceae_UCG-002 compared with the
other groups (Fig. 6). The 46% Met group had significantly
(P < 0.05) higher abundance of Alloprevotella in the cecum
compared with the other three groups.

Correlation between the plasma metabolites levels
and abundance of piglet’s intestinal microbial genera

Pearson correlation (r) analysis results are shown in Fig. 7.
The correlation between the levels of different plasma metab-
olite and the piglets’ intestinal gut microbiota abundance at the
genus level (P < 0.05) is as follows: positive correlation be-
tween L-glutamate levels and Ruminococcaceae_UCG-002
abundance (r = 0.384, P = 0.0642), between L-tryptophan
levels and Ruminococcaceae_UCG-002 abundance (r =
0.369, P = 0.0763) in the colon; and between hypotaurine
levels and Alloprevotella abundance (r = 0.477, P = 0.0082),

Fig. 5 The relative abundance of
piglets’ intestinal microbiota in
various groups at the genus level
at day 21 of lactation (n = 8). (a)
Ileum, (b) colon, and (c) cecum.
46% Met, sows fed a basal diet
with additional 0.12% Cys; 51%
Met, sows fed a basal diet with
additional 0.04% Met and 0.08%
Cys; 56% Met, sows fed a basal
diet with additional 0.08% Met
and 0.04% Cys; and 62% Met,
sows fed a basal diet with
additional 0.12% Met from late
pregnancy to day 21 of lactation
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between gluconic acid levels and the abundance of
Alloprevotella (r = 0.433, P = 0.0344), between L-glutamate
levels and the abundance of Alloprevotella (r = 0.480, P =
0.0176), and between δ-tocopherol and the abundance of
Alloprevotella (r = 0.504, P = 0.0119) in the cecum.

Discussion

Maternal nutrition is essential for fetal growth and develop-
ment. Research evidence has proven that adverse nutritional
conditions during late gestation may permanently change the
structure and function of specific organs in the offspring and
lead to many diseases later in life (Hsu and Tain 2019;
Mennitti et al. 2015). SAAs are involved in numerous crucial

roles in the gut to maintain its function such as digestion,
absorption, and metabolism of nutrients, the immune func-
tions of the intestinal layer, and maintenance of mucosal bar-
rier against foreign antigens (Fang et al. 2010). Met and Cys
are known to affect protein metabolism. In addition to their
role in protein synthesis, methionine and cysteine are also
important in special conditions, like stress and inflammation.
The demand for SAAs is essential for pregnant sows’ health
and as well as their offspring piglets’ growth, but inadequate
intake or an excessive SAAs in the maternal diet may cause
negative effects (Garlick 2006; Stipanuk et al. 2006; van de
Poll et al. 2006). In the present study, the 46% Met group
significantly increased the average weight gain, weaning
weight, and the final weight of piglets compared with the other
three groups. The 51% Met and 56% Met groups had an

Fig. 6 Taxonomic differences in piglets’ intestinal microbiota (ileum,
colon, and cecum) in various groups at the genus level at day 21 of
lactation. Values are expressed as means (n = 8) with their SEMs
indicated by vertical bars. Asterisks represent significantly different
means (P < 0.05). 46% Met, sows fed a basal diet with additional

0.12% Cys; 51% Met, sows fed a basal diet with additional 0.04% Met
and 0.08% Cys; 56% Met, sows fed a basal diet with additional 0.08%
Met and 0.04% Cys; and 62% Met, sows fed a basal diet with additional
0.12% Met from late pregnancy to day 21 of lactation
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increased tendency on the average weight, weaning weight,
and the final weight of piglets, but the higher proportion of
SAAs supplementation (62% Met group) decreased these pa-
rameters. One of the possible explanations might be the excess
proportion of SAAs supplementation from late pregnancy to
lactation reduced average weight, weaning weight, and final
body weight of offspring piglets.

Dietary supplements from gestation to lactation not only
are effective for the pregnant sows but also have a collateral
effect on the offspring piglet’s growth and health. Met and Cys
are the constituents’ tissue proteins, and, when insufficient,
they lead to reduced protein synthesis (Tesseraud et al.
2009). In general, serum total protein and serum albumin are
the indicators of sufficient supply of dietary protein, whereas

AST, BUN, and CREA are the identifying biomarkers of kid-
ney and liver damage or failure (Aiello 2016; Huang et al.
2019; Remus et al. 2019). The increases in total protein and
albumin levels in serum reflect improved nutrient utilization.
In addition, increased serum albumin can prevent irreversible
oxidative losses by absorbing excess SAAs and then transfer
them to peripheral tissues to assist local protein synthesis (De
Feo et al. 1992; Remus et al. 2019). The current study showed
that the serum protein was increased according to the increase
of SAAs proportion. Furthermore, maternal supplemented
51% Met group showed an improved serum ALB than in
the other groups but not significantly. The 51% Met group
also increased the concentration of Ca, I, and Mg in piglets’
serum than in the other groups. These increases indicate that

Fig. 7 Pearson’s correlation analysis between piglets’ plasma metabolite levels and the abundance of piglets’ intestinal gut microbiota at the genus level
(n = 6)
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maternal dietary SAAs supplementation increases the mineral
absorption during late pregnancy and lactation, which are
most needed during the late gestation and lactation for mater-
nal health and neonatal growth and development (da Silva
et al. 2019; Kovacs 2016).

Metabolism is one of the most important expressions of the
body’s abrupt response to environmental disturbance that plays
a crucial role in the biological ecosystem (Ding et al. 2019b).
Plasma metabolite alteration has been shown to be possible
biomarkers for different diseases (Gao et al. 2013). In the pres-
ent study, the different proportion of maternal SAAs supple-
mentation during late gestation to lactation was altered 233
metabolites in piglet’s plasma. In comparison with the 46%
Met group, the 51% Met and 56% Met groups increased the
levels of hypotaurine, pyroglutamic acid, hippuric acid, retinoic
acid, riboflavin, and δ-tocopherol. These improved levels of
plasma metabolites benefit the offspring piglet’s health.
Studies have shown that a lower concentration of pyroglutamic
acid may increase the risk of traumatic brain injury, mild cog-
nitive impairment, and Alzheimer’s disease (Trushina et al.
2013; Yi et al. 2016). In addition, pyroglutamic acid can protect
protein degradation by CD26/dipeptidyl peptidase IV (Ding
et al. 2019b). An intermediate product in the biosynthesis and
antioxidant activity, hypotaurine, plays a crucial role in oxida-
tive stress and acts as a protective agent under different phys-
iological conditions (Fontana et al. 2004). An increased con-
centration of serum hypotaurine and taurine have also been
found in inflammatory diseases, oxidative stress, and chronic
kidney disease (Suliman et al. 2002; Zhang et al. 2015).
Weaning is the most critical health-challenging stage for pig-
lets. Several studies have been reported that the levels of vita-
min E (tocopherol) and vitamin A (retinoic acid) plasma con-
centration dramatically reduced at/after weaning (Barbalho
et al. 2019; Buchet et al. 2017; Lauridsen and Jensen 2005).
Like other mammals, piglets cannot synthesize vitamin E and
vitamin A and must be taken in from supplemented diet.
Vitamin A and vitamin E play potential roles in embryonic
growth and development, regulation of cell growth, antioxidant
activity, immune regulation, and maintenance of the epithelial
surface (Barbalho et al. 2019; Traber 2012). The present study
showed that maternal SAAs supplementation during late ges-
tation to lactation improved vitamin E and vitamin A concen-
trations in piglets’ serum. Furthermore, the concentration of
plasma riboflavin was also improved in the 51% Met, 56%
Met, and 62% Met groups in comparison with the 46% Met
group. Riboflavin (vitamin B2) is one of the B vitamins that act
as coenzymes for a number of enzymatic reactions and plays
key metabolic functions for biological oxidation-reduction as-
sociated with energy production, antioxidant protection, and
homocysteine metabolism (Thakur et al. 2017; Xin et al.
2017). Moreover, the addition of a different proportion of
SAAs in the maternal diet also improved gluconic acid, L-tryp-
tophan, pantothenic acid, indolelactic acid, and L-glutamate

levels in piglet plasma, which have been found in related with
improved growth, intestinal functions, and mucosal barrier
functions in weaning piglets (Hou and Wu 2018; Liang et al.
2018; Sabui et al. 2018).

Gut microbiota colonization plays a crucial role in normal
intestinal development, the establishment of gut homeostasis,
and mucosal function (Ding et al. 2019a; Hooper and
Macpherson 2010). Accumulating evidence indicates that ma-
ternal diet supplementation affects the newborn’s gut microbi-
ota structure (Azad et al. 2018a; Fukumori et al. 2019;
Robertson et al. 2018). Bacteria Firmicutes and Bacteroidetes
are the most abundant phyla in piglets’ gut microbiota during
the weaning transition (Chen et al. 2017). In our present study,
Firmicutes and Bacteroidetes were the most abundant phyla in
piglet’s cecum, colon, and ileum. The endogenous infection
may occur when the immune function of the body becomes
imbalanced or the gut microbiota composition alters (Azad
et al. 2018b). In the present study, a higher proportion of ma-
ternal SAAs supplementation (62% Met group) significantly
increased the concentrations of Proteobacteria in piglet’s colon
and cecum. Proteobacteria, which consists of a variety of path-
ogens, such as Escherichia, Salmonella, Vibrio, and
Helicobacter. In addition, 56% Met group increased the abun-
dance of Clostridium_sensu_stricto_1 in ileum, which may
contribute to inflammation (Janowski et al. 2013).

In conclusion, the health of young animals is highly depen-
dent upon maternal nutrition. An adequate maternal SAAs
supplementation from late gestation to lactation may affect
the offspring piglet’s health. In our present study, the 51%
Met group increased the piglets’ serum ALB, Ca, and Mg,
but the higher proportion of SAAs supplementation (62%
Met group) decreased the level of ALB and Ca and associated
with increased Proteobacteria abundance in colon and
cecum. Furthermore, the young animal’s growth and
health may improve through the upregulation of plasma
metabolites such as hypotaurine, pyroglutamic acid, and
vitamins (A, B, and E). Therefore, the present study
output provides a dose reference for future research into
the different ratios of SAAs supplementation during late
gestation and lactation.
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