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Abstract
The aim of this review is to give a summary of natural lignocellulose-degrading systems focusing mainly on animal digestive
tracts of wood-feeding insects and ruminants in order to find effective strategies that can be applied to improve anaerobic
digestion processes in engineered systems. Wood-feeding animals co-evolved with symbiotic microorganisms to digest
lignocellulose-rich biomass in a very successful way. Considering the similarities between these animal gut systems and the
lignocellulose-based biotechnological processes, the gut with its microbial consortium can be a perfect model for an advanced
lignocellulose-degrading biorefinery. The physicochemical properties and structure of the gut may provide a scheme for the
process design, and the microbial consortium may be applied as genetic resource for the up-scaled bioreactor communities.
Manipulation of the gut microbiota is also discussed in relation to the management of the reactor communities.
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Introduction

In order to mitigate global climate issues caused by increasing
anthropogenic greenhouse gas (GHG) emissions, fossil energy
carrier consumptions must be drastically reduced and organic
municipal, agricultural, and agro-industrial wastes should be
properly treated (Aguirre-Villegas and Larson 2017; Aneja
et al. 2009; Bogner et al. 2008). Utilization of plant biomass
for both material and energetic use can be considered an impor-
tant strategy to contribute to these aims, but further improve-
ments of the current state of technology are necessary
(Sawatdeenarunat et al. 2015). The major structural component
of plant cells is lignocellulose, a complex matrix composed of
cellulose (D-glucose homo-polysaccharide), hemicellulose (het-
ero-polysaccharide containing both C6 and C5 sugars, such as
arabinose, galactose, glucose, mannose, and xylose, as well as
their uronic acids), lignin (hetero-polymer of mainly aromatic
compounds, such as p-coumaryl alcohol, coniferyl alcohol, and

sinapyl alcohol), pectin (hetero-polysaccharide rich in
galacturonic acid) and various minor components (proteins,
terpenic oils, fatty acids, fatty acid esters, and inorganic compo-
nents). For more details about the composition of lignocellulose,
see the following references (Rubin 2008; Scharf and Tartar
2008). Annually, approximately 200 billion tons of lignocellu-
losic biomass is produced (da Silva et al. 2012) and a consider-
able part of it is treated as waste, such as agricultural wastes or
green cuts from parks and gardens. Despite the energy potential
conserved in the polysaccharide structure, the cost-effective uti-
lization of lignocellulose is hampered by its recalcitrant nature.
The plant cell-wall material has evolved complex structural and
chemical mechanisms to withstand external digestion by mi-
crobes and animals, which makes the hydrolysis of these main
biopolymers the rate-limiting step of biochemical conversion
processes. Nature offers already successful and established sys-
tems that decompose dead plant material relatively fast, as a
result of complex interactions of numerous bacteria, fungi, pro-
tists, and a variety of wood-feeding animals (Cragg et al. 2015).
Compared to conventional anaerobic digesters, lignocellulosic
biomass breakdown in rumen of cow is estimated to be three
times more effective (Bayane and Guiot 2011). In the digestion
system of wood-feeding termites, the rate of biomass biodegra-
dation is even higher (Okwakol 1980). Therefore, more detailed
knowledge on the digestion mechanisms of specific herbivores
and the contribution of co-evolved microorganisms in their gut
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might be applied in the design of novel biorefinery concepts.
Biomimicry or biomimetics is an emerging strategy studying
the principles in biological systems that have been evolved over
geological times to apply this knowledge to create novel technol-
ogies for the purpose of solving complex challenges (Dicks
2017; Vincent et al. 2006). The aim of this review is to give an
overview of effective natural lignocellulose-degrading systems
with high biotechnological application potentials in biorefineries
focusing mainly on animal digestive tracts of wood-feeding in-
sects and ruminants with a major focus on their symbiotic mi-
crobial partners. The potential utilization of such microbiota in
engineered systems for biomass conversion will also be
discussed. Besides biological treatment and enhancement op-
tions, the structure and physiology of the digestive tract of effec-
tive herbivorous animals may provide a better design for future
lignocellulose-utilizing biorefinery systems. Due to the important
role of the microbiota in nutrition and health of the host, potential
manipulation of the microbial community has attracted lots of
research in case of livestock animals. Management of bioreactor
microbiota is similar in many aspects; therefore, the review will
give also an overview on these topics.

Structural and functional differences
between animal gut systems and biogas
reactors

During evolution, animals developed highly sophisticated di-
gestive systems to get maximum benefit from various food
sources to gain energy, to sustain their lives, and to be suc-
cessful in reproduction. These “ecosystem engineers” have
completed the optimization period of the digestion process
for all kinds of feedstock (Godon et al. 2013). Compared to
the digestion systems in animals, human-engineered anaero-
bic digestion (AD) is a relatively new technology, which still
deals with challenges especially regarding limited hydrolysis
rates of lignocellulosic biomass.

In nature, there are many invertebrate (e.g., termites or
some beetle larvae) and vertebrate animals (e.g., ruminants)
that evolved digestive tracts having the ability to effectively
degrade lignocellulosic substrates thanks to the specific struc-
ture and the symbiotic interactions with a wide variety of
microorganisms colonizing the digestion tract (Auer et al.
2017; Bayane and Guiot 2011; Ozbayram et al. 2018d). The
gut systems of these animals are considered as efficient bio-
reactors (Brune 2007). Furthermore, it is assumed that the
smaller body size of the animals enables higher concentrations
of cellulolytic enzymes contributing to faster degradation of
these substrates.

Biomass digestion in insects highly depends on the symbi-
otic relationships with microorganisms, whereas the microor-
ganisms provide various compounds, such as digestive en-
zymes and nutrients (amino acids, vitamins, etc.) (Andert

et al. 2010; Berasategui et al. 2016). Members of the family
Scarabaeidae (order Coleoptera) are abundant in grassland
environments, and larvae of this family are mostly herbivo-
rous and digest plant material very effectively (Huang et al.
2010). They have unique digestive tracts with three compart-
ments: the first part is a foregut, the second part is a long
midgut with alkaline conditions, and the third part is an ex-
panded hindgut, also called paunch or fermentation chamber
(Fig. 1a) (Engel and Moran 2013; Huang et al. 2010).

A considerable amount of energy is spent on chewing and
grinding the food particles to smaller pieces to improve their
digestibility. As part of the foregut, strong mandibles as well
as a proventriculus region (also called gizzard) with teeth-like
cuticle structures and a strongly developed muscle layer
around it have been evolved for the more effective mechanical
treatment/grinding of the plant biomass. The so-called crop is
a flexible part of the foregut between the esophagus and the
proventriculus, with the function of temporary storage.
Another typical characteristic of the scarab larvae is a long
midgut with high pH conditions and an expanded hindgut
with lower pH environment. Such pH gradients play a role
in the digestive process for effective decomposition and ab-
sorption of nutrients. The high pH in the midgut is a key driver
for enhancing the solubility of various polymers, such as
hemicellulose and lignin (Huang et al. 2010). Alkaline condi-
tions of the midgut enable dissolution of lignin and de-
esterification of intermolecular ester bonds, increase the sur-
face area and porosity, and decrease crystallinity of the bio-
mass (Kim et al. 2016). Rows of caeca circle the midgut tract
with hypothesized functions related to digestion, nutrient and
fluid reabsorption, and ion homeostasis. The entry of
Malpighian tubes, which are involved in excretion and osmo-
regulation, marks the transition from midgut to hindgut. A
highly muscular pyloric sphincter separates these two sections
and enables the food transfer from midgut to hindgut (Huang
et al. 2010). The dilated hindgut has lobe-like structures and is
considered the main region for digestion of (hemi)celluloses.
The pH of the lumen content is closer to neutral, but the redox
potential is more negative compared to the midgut (Cazemier
et al. 2003; Lemke et al. 2003) providing appropriate condi-
tions even for methanogenesis. However, only the central part
of the paunch is completely anoxic due to the oxygen diffu-
sion through the epithelial tissue.

Termites and their evolutionary sister group, the cockroach
family Cryptocercidae, have similar digestive systems and
can digest wood effectively in their hindgut by cooperating
with microbial symbionts (Bauer et al. 2015; Watanabe and
Tokuda 2010). Generally, the digestive systems are composed
of the mouth, esophagus, salivary glands, foregut, midgut, and
hindgut. The mandibles are used to grind solid particles, and,
according to the size of the animal, the mandible’s size gets
smaller from cockroaches to termites. Whereas lower termites
and cockroaches have a large anterior part in the form of a
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crop in their foreguts, higher termites have a reduced crop.
The volume of the midgut in termites is smaller compared to
that of cockroaches. Moreover, cockroaches have bigger gas-
tric ceca in the anterior midgut than lower termites. In cock-
roaches, the hindgut is divided into two compartments, name-
ly ileum and rectum. However, termites have more specialized
hindguts composed of ileum, enteric valve, paunch, colon,
and rectum (Watanabe and Tokuda 2010). Termites are very
efficient in cellulolytic biomass degradation with estimated
degradation rates of 74–99% for cellulose and 65–87% for
hemicellulose carried out mainly by microbial symbionts
(Watanabe and Tokuda 2010).

The ruminants are considered the most important foregut
fermenters having a special four-chamber stomach (reticulum,
rumen, omasum, and abomasum) (Fig. 1b). The feed fermen-
tation and the absorption of the resulting volatile fatty acids
(VFAs) take place in the first three chambers, including rumen,
reticulum, and omasum, collectively named forestomach. The
fourth part is called a true stomach (abomasum) regarding its
acidic conditions. The rumen microbiota is responsible to con-
vert ingested biomass to VFAs, providing 70–85% of the nu-
trients absorbed by ruminants (Noel et al. 2017). The produced
VFAs are continuously absorbed by the rumen epithelial cells,
thus maintaining stable conditions for microbial activities
(Bayane and Guiot 2011). The most distinct feature of the
ruminants is a mechanism called rumination, which means that
the animals regurgitate the large particles of the semi-digested

substrate and chew again for long periods to enhance the sur-
face of the feed for enzymatic attacks (Welch 1982).

AD is a good example of a biotechnological application in the
field of renewable energies as well as in waste management (De
Vrieze and Verstraete 2016). The conversion of biomass into
methane-rich biogas is a complex biochemical process occurring
in four steps, namely hydrolysis, acidogenesis, acetogenesis, and
methanogenesis. It is completely carried out by synergistic inter-
actions among the members of a diverse microbial community
(Wei 2016). The process occurs in a controlled engineered sys-
tem, in which operational parameters, such as temperature,
mixing, hydraulic retention time, and solid retention time, are
maintained in the reactor (Fig. 1c).

There are two major types of ideal continuous reactors, the
plug flow reactor (PFR) and the continuous stirred tank reactor
(CSTR). The PFR has usually a cylindrical geometry where the
reactor content progresses from the inlet in the axial direction to
the outlet as a series of infinitely thin coherent “plugs.” A key
assumption is that the reactor content is perfectly mixed in the
radial but not in the axial direction and each plug is considered a
separate small batch reactor. CSTRs consist of awell-stirred tank,
which is fed (semi)continuously and at the same time the
digestate stream is removed. If all four AD steps take place in a
single reactor, the system is called as one-stage digestion. In
contrast, two-stage digestion systems consist of two sequential
reactors to separate hydrolysis and acidogenesis in the first stage
from acetogenesis and methanogenesis in the second stage

Fig. 1 Simplified schemes of (a) the gut of the sun beetle larva, (b) the
gut of a ruminant represented by a cow, (c) a current biogas reactor
digesting plant biomass, and (d) a future biorefinery based on the gut

system of herbivorous animals. CHP, combined heat and power system;
SCFAs, short-chain fatty acids; MCFAs, medium-chain fatty acids
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(Nkemka et al. 2015). The main functional difference between
the animal gut and the current AD systems is that the process in
the gut is optimized toward production of VFAs that are utilized
by the animal, while methane is just a side product of
hydrogenotrophic or methylotrophic methanogenesis (Breznak
1982; Brune and Dietrich 2015; Mason and Stuckey 2016). In
current engineered AD systems, a high degree of biomass deg-
radation is only achieved becausemethanogenesis is amajor sink
of VFAs and acetoclastic methanogenesis is involved in addition
to hydrogenotrophic methanogenesis. Besides hydrogenotrophic
methanogenesis, homoacetogenesis, in which hydrogen is used
to reduce carbon dioxide to acetate, is another hydrogen sink in
the gut of wood-feeding termites (Tholen and Brune 1999;
Tholen and Brune 2000) and ruminants (Gagen et al. 2015;
Henderson et al. 2010). Although homoacetogenic bacteria are
also found in biogas reactors treating biomass (Demirel and
Scherer 2008), due to thermodynamic reasons, they do not play
a major role in reductive acetogenesis but rather in the reverse
process of syntrophic acetate oxidation, which is coupled to
hydrogenotrophic methanogenesis (Schnürer et al. 1999;
Westerholm et al. 2019). Nevertheless, Siriwongrungson and
co-workers found that under altered conditions these bacteria
can indeed perform homoacetogenesis (Siriwongrungson et al.
2007). In biomethanation systems utilizing extra hydrogen gen-
erated from excess electricity of other renewables, this process is
supposed to play an important role (Omar et al. 2018; Wahid
et al. 2019; Zabranska and Pokorna 2018).

The high efficiency of lignocellulose degradation by spe-
cialized animals is also due to their unique characteristics of
the digestive systems. Different mechanisms in the digestive
systems, such as enzymatic attacks (e.g., by cellulases,
xylanases, esterases, ligninases), mechanical grinding, and
chemical conditions (e.g., alkaline or acidic conditions), con-
tribute to the successful solubilization of lignocellulosic com-
pounds. The fermentation products are removed continuously
by different mechanisms to promote degradation, for instance
VFAs by absorption on epithelial surface and hydrogen by
methanogenesis or homoacetogenesis. The compartmentaliza-
tion in biomass-feeding animals, such as ruminants, enables
both homogenization and stratification of digestate during fer-
mentation. Rumination is the main characteristic of these ver-
tebrate animals, a process creating new surface areas for mi-
croorganisms to degrade polymers. Moreover, radial and/or
axial oxygen gradients along the digestive system may con-
tribute to delignification of these compounds. Some microor-
ganisms are located on the epithelium or trapped in the mucus
retaining them in the digestive tract, and adhesion on the lig-
nocellulosic particles facilitates the contact with the feed
(Bayane and Guiot 2011; Mason and Stuckey 2016). Since
hydrolysis rate in these animals is faster than in a typical
anaerobic digester, biomimicry is an important approach for
successful innovations (Mason and Stuckey 2016). Thus, in
order to enhance the digestion performance, some additional

approaches, such as pre-treatment (chemical, physical, enzy-
matic), bioaugmentation, and co-digestion strategies, should
be integrated in future sophisticated AD systems. Moreover,
the biorefinery concept can be incorporated in such AD sys-
tems by including compartmentalization and utilization of car-
boxylic acids as additional products besides biogas (Fig. 1d).

Major differences in microbial communities
from gut and current engineered AD systems

Recent trends in high-throughput amplicon sequencing and
metagenome analysis of microbial communities and decreas-
ing sequencing costs have led to proliferation of studies inves-
tigating lignocellulose-degrading communities in various nat-
ural and engineered environments.

The gut microorganisms with direct or indirect roles in
lignocellulose degradation belong to Bacteria, Archaea, and
Eukarya, such as protists and fungi. Figure 2 shows key fam-
ilies of the three domains of life found as abundant members
of the microbiota of termite gut, beetle larvae gut, rumen, and
AD systems. There is a strong link between the phylogenetic
classification of the host and the microbial community of ar-
thropods (Ley et al. 2008). The gut of scarab beetle larvae,
Pachnoda spp. (Coleoptera: Scarabaeidae), harbors diverse
bacterial communities involved in the degradation of plant
materials. Previous studies pointed out that Bacteroidetes,
Proteobacteria, and Firmicutes are the predominant phyla in
the hindgut compartment, while Actinobacteria members are
most abundant in the midgut (Andert et al. 2010; Egert et al.
2003). Due to the alkaline conditions in the midgut of beetle
larvae, the bacterial richness is much lower than that of the
hindgut, where diverse microbial processes and high concen-
trations of fermentation products occur (Andert et al. 2010). A
new species, Promicromonospora pachnodae, excreting
xylanases and endoglucanases, was also isolated from the
hindgut of Pachnoda marginata larvae (Cazemier et al. 2003).

The digestive tract of beetle larvae, termites, and ruminants
harbors also archaeal communities dominated by
methanogens (Brune 2014; Cunha et al. 2011; Hook et al.
2010; Paul et al. 2017; Shi et al. 2015). There are two main
pathways to produce methane. During acetoclastic
methanogenesis, methane is produced by conversion of acetic
acid to methane by Methanosarcinales comprising the fami-
lies Methansarcinaceae and Methanotrichaceae (formerly
Methanosaetaceae ) . The members of the genus
Methanothrix are strictly acetoclastic methanogens and use
only acetate as a substrate for methanogenesis (Oren 2014).
The members of Methansarcinaceae are usually not predom-
inant but frequently found in the gut of insects and ruminants,
and the presence of the strict acetotrophMethanothrix has not
yet been reported (Janssen and Kirs 2008).
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In contrast, hydrogenotrophic methanogens, such as
Methanococcales, Methanobacteriales, Methanomicrobiales,
and Methanocellales, produce methane by reduction of carbon
dioxide with hydrogen (Bayane and Guiot 2011; Buan 2018;
Christy et al. 2014). Methane formation can also be carried out
through the methylotrophic pathway, in which methylated com-
pounds, such as methanol, methylamines or methylated thiols,
are converted into methane by Methanomassiliicoccales,
Methanobacteriales, or Methanosarcinales (Enzmann et al.
2018). Methylotrophic methanogens are classified into two
groups based on the way the reducing equivalents are provided.
In case ofMethanosarcina, one methyl-CoM is oxidized to CO2

via the reverse hydrogenotrophic pathway to generate the reduc-
ing equivalents for three methyl-CoM to methane (Enzmann
et al. 2018). Hydrogen-dependent methylotrophs, such as mem-
bers of the Methanomassiliicoccales, cannot oxidize the methyl
groups to CO2; therefore, they require hydrogen as electron
donor for methanogenesis (Lang et al. 2015). In the beetle
larvae, Crenarchaeota is the most abundant archaeal phylum
in the midgut, while species belonging to the Euryarchaeota

(mostly Methanobacteriaceae) are dominant in the hindgut
(Egert et al. 2003).

Termites (order Blattodea) comprise diverse species and are
divided into lower and higher termites (Inward et al. 2007).
Lower termites contain symbiotic protists in their hindguts, such
as Trichomonadida, Hypermastigida (class Parabasalea), and
Oxymonadida (class Oxymonadea), which excrete cellulases
for plant biomass degradation (Ohkuma 2003). These symbionts
can be horizontally transferred between the individuals in a col-
ony (Kitade 2004; Ohkuma 2003). Moreover, each colony of
termites may have different microbial communities due to the
diet and/or living environment (Minkley et al. 2006). Whereas
themicrobiota of lower termites comprise flagellated protist sym-
bionts, the hindgut in higher termites (family Termitidae), which
constitute the major part of all termite species, has different phys-
icochemical conditions not suitable for these protozoan symbi-
onts (He et al. 2013; Warnecke et al. 2007). Generally, the hind-
gut microbial community is dominated by bacteria. Besides, in
some higher termites, amoebae were detected in the gut system
playing a role in cellulose digestion (Brune and Ohkuma 2010).

Fig. 2 Potential key families
found as abundant members of
the microbiota of termite gut,
beetle larvae gut, rumen, and AD
systems. The data for the tree was
derived from the Taxonomy
database in NCBI using common
tree option (https://www.ncbi.
nlm.nih.gov/Taxonomy/
CommonTree/wwwcmt.cgi). All
the families mentioned in the
review were added manually and
saved as phylip tree format. Then,
the tree was drawn using iTOL v4
software (Letunic and Bork
2019). The colors represent the
three domains as follows: purple
for Bacteria, pink for Archaea,
and green for Eukarya
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The bacterial hindgut community of higher termites is considered
a great source for motile bacteria. Species belonging to the
Spirochaetes and Fibrobacteres are dominant in this environ-
ment. Treponema has been described to be the most abundant
genus in the hindgut of higher termites (Warnecke et al. 2007). In
the lower termites, the hindgut community is dominated by spe-
cies belonging to the Spirochaetes, Bacteroidetes, and
Proteobacteria. It was found that termites contribute substantial-
ly to global methane emissions, which is estimated around 3–15
Tg CH4 yr

−1 (Saunois et al. 2016). The methane is mostly pro-
duced by the hydrogenotrophic pathway, whereas acetoclastic
methanogenesis was not yet detected in termites. The methane
production rate in lower termites is dependent on the activity of
hydrogen-producing gut flagellates, while hydrogen in higher
termites is mostly produced by fermenting bacteria.
Methanobrevibacter is the most abundant archaeal genus in the
hindgut of lower termites. In higher termites, members of the
Methanosarcinales (genus Methanimicrococcus) and the
Methanomicrobiales in addition to Methanobacteriales (genus
Methanobrevibacter) were also detected (Hongoh et al. 2003;
Ohkuma 2003). Furthermore, Thermoplasmatales and
Crenoarchaeota were also found in some termites (Ohkuma
2003). More information about the gut microbiota of the termites
can be found in detailed reviews by Brune (2014) and Brune and
Dietrich (2015).

As in the beetle larvae, termites, and wood roaches, a diverse
microbial community in ruminants carries out the plant material
degradation. In the rumen, protozoa comprise almost 50% of the
total rumen microbial biomass and produce similar fermentation
products as bacteria (Choudhury et al. 2015). A total of 30–40%
of fiber degradation in the rumen is accomplished by ciliates
(Bayane and Guiot 2011). The bacteria associated with protozoa
can accomplish various functions, such as serving electron sinks
through nitrogen fixation, acetogenesis, or methanogenesis, and
can provide nutrients for the protozoan host organisms. This
relationship can be ecto- or endosymbiotic having benefits both
to the protozoan host and symbiotic prokaryotes (Levy and Jami
2018). Furthermore, nearly 20% of the rumenmicrobial biomass
is composed of anaerobic fungi, mostly of the phylum
Neocallimastigomycota, that play an active role in the degrada-
tion of lignified plant biomass (Choudhury et al. 2015). There are
numerous studies that investigated the microbial community
structure, dynamics, and functions of rumen microbiota
(Ozbayram et al. 2018b; Pitta et al. 2014; Söllinger et al. 2018;
Zened et al. 2013). The bacterial community of the rumen fluid is
dominated by the phyla Bacteroidetes, Firmicutes, and
Proteobacteria in different proportions depending on the animal
(Ozbayram et al. 2018b; Pitta et al. 2014; Söllinger et al. 2018;
Zened et al. 2013). Additionally, the phylum Fibrobacteres in-
cludes several important rumen bacteria, such as Fibrobacter
succinogenes and Fibrobacter intestinalis, which contribute to
the degradation of plant material in the rumen environment
(Ozbayram et al. 2018b; Ransom-Jones et al. 2012). Moreover,

some members of this phylum were recently found in termites
(Rahman et al. 2016). As a significant feature, Prevotella (order
Bacteroidales, phylum Bacteroidetes) is the most abundant ge-
nus in the rumen, playing a key role in the breakdown of proteins
and carbohydrates and excreting cellulolytic enzymes like
carboxymethylcellulase and xylanase (Nyonyo et al. 2014).
Henderson et al. (2015) described Butyrivibrio and
Ruminococcus as well as unclassified Lachnospiraceae,
Ruminococcaceae, Bacteroidales, and Clostridiales belonging
to the core rumen bacterial community. Methane production in
the rumen is a secondarymicrobial activity while the major func-
tion of rumen fermentation is to produce VFAs (Bayane and
Guiot 2011). However, ruminants are considered one of the ma-
jor contributors to methane emissions. The emissions vary ac-
cording to the ruminant species. Whereas 26–497 g methane per
day is emitted from a dairy cattle, the daily values in beef cattle
and Suffolk sheep were found as 161–396 and 22–25 g, respec-
tively (Broucek 2014). The genera Methanobrevibacter,
Methanobacterium, and Methanomicrobium are dominant
methanogens in the rumen environment and thus have been de-
fined as characteristic hydrogenotrophic rumen methanogens
(Bayane and Guiot 2011). In a recent study, the order
Methanomassiliicoccales, which comprises hydrogen-
dependent methylotrophic methanogens, was found to be abun-
dant in the rumen fluid (Jin et al. 2017; Ozbayram et al. 2018b;
Söllinger et al. 2018).

According to the hologenome concept, multicellular organ-
isms should be considered holobionts (host plus symbionts) with
their hologenome (host genome plus metagenome of the symbi-
onts) rather than individuals as a level of selection in evolution
(Rosenberg and Zilber-Rosenberg 2011, 2016; Zilber-Rosenberg
andRosenberg 2008). The gutmicrobiota as part of the holobiont
co-evolved with their hosts over millions of years, while
engineered AD systems are typically ad hoc inoculated without
much consideration of selecting the most effective microbiota
(Godon et al. 2013). The co-evolution of gut symbionts with
their host requires specific transfer mechanisms from parents to
offspring, which will be discussed later in this review. The bac-
terial communities of biogas systems are mostly dominated by
Firmicutes and Bacteroidetes members (Kröber et al. 2009;
Lucas et al. 2015; Lv et al. 2019), and a diverse microbial com-
munity takes a part in each step of biogas production. Hydrolytic
and fermenting bacteria, namely Clostridia, Micrococcus,
Bacteroides, Butyrivibrio, Fusobacterium, Selenomonas, and
Streptococcus excrete various enzymes, such as cellulases,
cellobiases, xylanases, amylases, proteases, and lipases, for hy-
drolyzing the insoluble biomass polymers into smaller units.
Moreover, anaerobic microorganisms can excrete extracellular
enzyme complexes, so-called cellulosomes, to degrade plant cell
walls and form various fermentation products, such as ethanol
and organic acids (Doi and Kosugi 2004). Right after hydrolysis,
sugars, long-chain fatty acids, and amino acids are converted into
VFAs, such as acetic, propionic, butyric, and other short-chain
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carboxylic acids, alcohols, H2, and CO2 by fermentative bacteria,
such as Streptococcus, Lactobacillus, and Bacillus, during
acidogenesis, which is considered the fastest step during AD
(Christy et al. 2014). VFAs longer than two carbon atoms and
alcohols longer than one carbon atom are further converted to
acetate, hydrogen, and carbon dioxide in the acetogenesis step
(Schink 1997) involving, e.g., the genera Smithella,
Pelotomaculum, Syntrophobacter, and Syntrophomonas
(Mathai et al. 2015). This syntrophic oxidation process should
be distinguished from homoacetogenesis, which is acetate for-
mation by using hydrogen to reduce carbon dioxide to acetate.
Acetate is a central metabolite of the AD process that is either
converted directly to CH4 and CO2 by acetoclastic methanogens
or is oxidized to H2 and CO2 or formate by syntrophic acetate-
oxidizing bacteria (SAOB). However, the latter process is only
possible if the hydrogen partial pressure is kept low by
hydrogenotrophic methanogens (Westerholm et al. 2016).

The predominant methanogenic pathway for biogas produc-
tion in anaerobic digesters is dependent on the feedstock and
operating conditions (Karakashev et al. 2005; Nettmann et al.
2010). The concentrations of ammonia and VFAs have an effect
on the composition of themethanogenic community (Karakashev
et al. 2005). Ziganshin et al. (2016) highlighted that the genus
Methanoculleus was positively correlated with the NH3 concen-
tration, whereas the prevalence of Methanocorpusculum,
Methanobacterium, andMethanosaeta was negatively correlated
with the NH3 level in biogas reactors. In another study, the same
group showed that the organic loading rate shapes the methano-
genic community in anaerobic digesters treating distillers’ grains
(Ziganshin et al. 2011).Methanosarcina species were abundant in
the reactors operated at a high organic loading rate and supple-
mented with iron hydroxide. However, acetoclastic methanogens
of the genus Methanothrix (formerly Methanosaeta) dominated
the well-performing reactors operated at lower organic loading
rates. In large-scale agricultural biogas reactors,
Methanobacterium, Methanosaeta and Methanoculleus were
found as the most abundant genera (Lucas et al. 2015). The me-
thanogenic communities in agricultural biogas plants were dom-
inated by the orders Methanomicrobiales, Methanosarcinales,
and Methanobacteriales (Nettmann et al. 2008; Rastogi et al.
2008). Fungi (such as Ascomycetes andAspergillus) and protozoa
(such as Amoeboflagellates, Cyclidium, Naeglaria,
Rhynchomonas, Vorticella, Trichomonas) were detected in anaer-
obic digesters in lower abundances compared to rumen and ter-
mites. However, their role in the substrate degradation remains
unknown (Bayane and Guiot 2011; Güllert et al. 2016).

Transfer of gut microbiota
between generations

The microorganisms in the gut of herbivorous animals either
belong to the core microbiota as obligate endosymbionts or

just transient members of the community as non-core, facul-
tative endosymbionts acquired from the environment.
According to the hologenome concept, the obligate endosym-
bionts co-evolved with their hosts (Rosenberg and Zilber-
Rosenberg 2011, 2016, 2018). The host is mainly defined at
the species level; however, intra-species variations might exist
as discussed earlier. Therefore, effective transfer mechanisms
of beneficial microbes from the parent to the offspring are
important. The way the gut endosymbionts are transmitted
from one generation to the next is often related to the impor-
tance of the service(s) that they provide for the host (Shapira
2016). It is especially challenging in case of insects with dif-
ferent lifestyles between the larva and the imago stage. In
many cases, the effective transfer of these microorganisms
requires the bacteria to persist in the environment for a longer
period, which might allow their potential transfer and utiliza-
tion also in engineered systems.

The vertical transfer of beneficial microorganisms is pre-
vailing in case of social insects as was shown in a study
assessing the gut microbiota of two social termites
(Mastotermes darwiniensis, Heterotermes aureus), a social
wood roach (Cryptocercus punctulatus) and a non-social
cockroach (Periplaneta americana) (Sabree et al. 2012). The
gut of social termites harbors a more conserved microbial
community similar to that of other termites, whereas cock-
roaches harbor more variable gut communities that differ
among individual hosts and contain more typically environ-
mental microbes. Wood roaches are the sister group to ter-
mites and display an early stage of sociality, and their gut
community structures are similar among individuals (Sabree
et al. 2012). Proctodeal trophallaxis is considered the main
transfer mechanism of the microbiota in case of termites
(Hongoh et al. 2005; Kohler et al. 2012) and wood-feeding
cockroaches of the genus Cryptocercus (Nalepa 2015). A re-
cent study showed that rather a “mixed mode” of transmission
combining vertical (colony-to-offspring) and horizontal (col-
ony-to-colony) transfer has been the major driving force shap-
ing the gut microbiota of termites (Bourguignon et al. 2018).
Another example for strict vertical transmission of symbionts
is found in many stinkbug species where the mother lays eggs
covered by feces-derived capsules (egg-smearing) containing
the endosymbionts. The juveniles ingest the capsules after
hatching and inoculate themselves with the symbionts
(Fukatsu and Hosokawa 2002; Hosokawa et al. 2006). Reed
beetles also use egg-smearing for the vertical transfer of sym-
bionts (Kolsch and Pedersen 2010). An alternative way to
acquire gut endosymbionts is via horizontal transmission, in
which symbionts are derived from the environment as found
in crickets and solitary cockroaches (Engel and Moran 2013).
Environmentally acquired symbionts represent higher genetic
variation, which could provide more opportunities for adapta-
tion, but also allows the settlement of non-beneficial “cheater”
microorganisms (Shapira 2016).
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In conclusion, the major mechanisms of endosymbi-
ont transfer of insects include direct strict vertical trans-
mission through producing specific symbiont-containing
capsules for the eggs via defecation (egg-smearing),
forms of coprophagy or proctodeal trophallaxis, defecat-
ing and feeding in the same habitat, and acquiring mi-
croorganisms from the environment, or a kind of mixed
mode of transmission.

In case ofmammals, themajor inoculation happens during the
transition through the birth canal (vaginal and anal microbiota)
and during breast feeding (colostrum,milk, and skinmicroorgan-
isms) (Fernandez et al. 2013; Rodriguez et al. 2015). The colo-
nization of the rumen of various livestock species (cattle, sheep,
and goats) was investigated by many studies because of the
prospect of effective manipulation of microbiota to improve the
capacity to harvest energy from the feed (better utilization of
forage with less methane production) (Hook et al. 2010; Yanez-
Ruiz et al. 2015). The whole gastrointestinal tract, including the
rumen, was assumed to be sterile at birth but is rapidly colonized
by microorganisms within the first day of life (Guzman et al.
2015; Ziolecki and Briggs 1961). All major types of rumen mi-
croorganisms are already present during the pre-ruminant period
in milk-feeding calves (Li et al. 2012). Jami et al. also detected
some rumen bacteria essential for mature rumen function as early
as one day after birth (Jami et al. 2013). Rey and co-workers
showed that themicrobial community establishment is rapid after
birth and sequential (Rey et al. 2014). Proteobacteria are domi-
nant in the early phase, but, then, they are gradually replaced by
Bacteroidetes as themain phylum. Later, between days 3 and 12,
the bacterial community includes most of the bacteria present in
the developed rumen; however, in different relative abundances.
Ciliates are detected in the rumen of young ruminants within two
weeks after birth and supposed to be transferred by the saliva of
the mother (Eadie 1962). This was proved by isolation of infants
from their mother, which led to the lack of protozoa establish-
ment in the rumen (Bryant and Small 1960; Eadie 1962).
Anaerobic fungi (e.g., Neocallimastix frontalis) are also able to
develop in the rumen before feeding on solid substrates as shown
previously (Fonty et al. 1987). Early establishment (days 2 to 4)
of methanogenic archaea long before the first solid feeding was
shown in lamb rumen (Fonty et al. 1987). By the application of
modern molecular techniques, the detection of methanogens at
an even earlier stage (first day or neonatal stage) of dairy calves
was possible (Guzman et al. 2015). Transition from liquid (milk)
to solid feed has a major impact on the community structure as
shown by many studies (Jami et al. 2013; Rey et al. 2014). It can
be concluded that the ruminal microbial community establish-
ment happens before intake of solid food, but, then, the arrival of
solid substrate shapes the community structure (Rey et al. 2014)
and the anatomic development occurring at last (Jiao et al. 2015).
Factors influencing early life colonization (presence of mother
vs. artificial feeding etc.) of the rumen have been reviewed in
detail by Yanez-Ruiz et al. (2015).

Management of the microbiota of various gut
and AD systems

Due to the important role of the microbiota in nutrition of
various ruminant livestock species, the possibility to influence
the microbial community in order to improve the performance
of the animals (better utilization of the fodder) has attracted
lots of research in the last decades (Chalupa 1977; Hart et al.
2008; Yanez-Ruiz et al. 2015). Some part of knowledge ob-
tained from engineering attempts of animal gut microbiota
might be transferred to AD systems.

Weimer et al. (2010) investigated the stability and host
specificity of the ruminal bacterial communities of a cow fol-
lowing a massive exchange of the rumen content including
active microbiota derived from another cow. The microbial
community structure was altered but returned to a state resem-
bling more to the original structure than the one from the
donor. Mitigation of methane emission is an important issue
in case of ruminants, not just to reduce the GHG emission
from the animal husbandry sector but also to better utilize
the carbon in the fodder converting it into meat rather than
into methane (Hook et al. 2010). In AD reactors, the enhance-
ment of methane production is usually aimed; however, such
reactors can also be utilized to produce carboxylates as value-
added products (Agler et al. 2011; Janke et al. 2016; Urban
et al. 2017). In such cases, the inhibition of methanogenesis is
desired. A review on the potential utilization of plant extracts,
such as essential oils, saponins, and organosulfurous com-
pounds, to manipulate rumen fermentation was published pre-
viously (Hart et al. 2008). Bromochloromethane (BCM), as a
well-known inhibitor of methanogenesis, was applied to
young goats to alter their methanogenic community structures
(Abecia et al. 2013, 2014). The treatment resulted in a reduc-
tion of methane emission but could not completely eliminate
it, and 4 months after the treatment the community structure
was similar to the ones in non-treated specimens (Abecia et al.
2014). Fonty et al. (2007) inoculated gnotobiotic lambs with a
functional rumen microbiota lacking methanogens. Reductive
acetogenesis was an effective H2 sink and sustained a func-
tional rumen; however, H2 utilization was much lower than in
lambs with ruminal methanogens. Additional examples and
more details about the potential re-programming of the rumen
microbiota can be found in the detailed review by Yanez-Ruiz
et al. (2015). A not yet fully confirmed hypothesis of that
review is that once the rumen community is more or less
constant, there is little room for alteration. Similar difficulties
might arise during attempts of microbial community modifi-
cation of stable (steady state) anaerobic digesters. Application
of living microorganisms by addition to the fodder (direct-fed
microbes) is applied for ruminants to improve feed utilization
(Klieve et al. 2003; Martin and Nisbet 1992) or to mitigate
methane emission (Jeyanathan et al. 2014). This approach is
similar to the application of probiotics in human medicine.
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Probiotics are defined as live microorganisms that, when ad-
ministered in adequate amounts, confer a health benefit on the
host (Hill et al. 2014). The application of probiotics in animal
production was previously reviewed (Kmet et al. 1993; Musa
et al. 2009).

Bioaugmentation is a well-established biotechnological
method to introduce microorganisms to a bioprocess. It is very
similar to the application of probiotics used for health im-
provement via influencing the gut microbiota. There are many
requirements for an effective probiotic treatment, and, in an
analogous way, similar prerequisites can be listed for strains
used for bioaugmentation (Table 1)

There aremany studies at laboratory-scale demonstrating pos-
itive effects of bioaugmentation (Table 2), but only few strains or
complex cultures fulfill the criteria described in Table 1.

Successful recovery and increase ofmethane production com-
pared to the control was achieved by adding a propionate-
degrading enrichment culture to an overloaded reactor (Tale
et al. 2011) involved in degradation of propionate or long-chain
fatty acids. Remediation of ammonia toxicity of biogas reactors
was also possible by adding either a pure culture of the ammonia-
tolerant methanogen Methanoculleus bourgensis MS2 or a
mixed culture containing M. bourgensis as a predominant
methanogen (Fotidis et al. 2017; Fotidis et al. 2014).

Improving the AD of lignocellulose with microorganisms
having excellent degradation properties has been proposed
and investigated by many studies (Cater et al. 2015). Adding
living microorganisms instead of free enzymes is, in theory,
more efficient, because microorganisms can regenerate and
produce various useful enzymes at the same time. Bagi and
co-workers tested the enhancement potential of two H2-pro-
ducing strains, Enterobacter cloacae and Caldicellulosiruptor
saccharolyticus, using a complex substrate in batch experi-
ment. Biogas production increased by 160–170% compared
to the control, which was partially due to the cellulolytic ac-
tivity of the second strain (Bagi et al. 2007). The enhancement
potential of these two strains was later also tested in a series of
continuous feeding experiments in CSTRs applying various
substrates and reactor conditions (Ács et al. 2015; Herbel et al.
2010; Kovacs et al. 2013) (Table 2). Another strain of the
genus Caldicellulosiruptor, namely Caldicellulosiruptor
bescii, was successfully used to enhance methane production
from steam-explosion treated birch in a batch experiment

(Mulat et al. 2018). Another target genus of bioaugmentation
is Clostridium. The mesophilic Clostridium cellulolyticum
(Desvaux 2005) and the thermophilic Clostridium
thermocellum (Akinosho et al. 2014), species well adapted
to a cellulolytic lifestyle, were successfully applied to enhance
AD of various lignocellulosic biomass (Lü et al. 2013; Öner
et al. 2018; Peng et al. 2014; Tsapekos et al. 2017) (Table 2).
These strains produce cellulosomes and due to their major
fermentation products consisting mainly of formic, acetic, lac-
tic, and succinic acids, and ethanol besides carbon dioxide and
hydrogen, they are also perfect candidates for consolidated
bioprocessing (CBP). CBP applications combine the enzyme
production, hydrolysis, and fermentation stages into a single
step, which, in theory, improve the process efficiency by elim-
inating the need for addition of exogenous hydrolytic en-
zymes. The enhancement potential of anaerobic fungi was
also demonstrated in batch experiments, but less pronounced
effects were observed in continuous experiments (Nkemka
et al. 2015; Prochazka et al. 2012) (Table 2).

Comparison of such enhancement experiments is not easy,
because the control inoculum plays also an important role in
the extent of enhancement. The microbiota in an inoculum
from a system not treating lignocellulosic substrates is less
accommodated to lignocellulose degradation, and, therefore,
a more pronounced enhancement is expected via bioaugmen-
tation. A well-operating biogas reactor treating partially or
solely lignocellulosic biomass for a long period can be less
effectively enhanced further. Although many successful bio-
augmentation efforts were demonstrated in small batch scale,
the applications of the same strains in continuous experiments
were less efficient and the observed methane yield enhance-
ment was lower and often transient. Similar to the human
probiotic applications, this is probably due to the fact that
the introduced strains do not became stable members of the
AD community. Martin-Ryals and co-workers demonstrated
that frequent and repeated bioaugmentation can be rather ef-
fective (Martin-Ryals et al. 2015). However, such continuous
addition of cultivated microorganisms would be extremely
expensive at large-scale AD plants. Another approach is to
use mixtures of strains or even more complex microbial com-
munities. Ozbayram and co-workers demonstrated the appli-
cability of enrichment cultures derived from the rumen micro-
bial communities of sheep (Ozbayram et al. 2017), goat, and

Table 1 Requirements for probiotics and strains used for effective bioaugmentation of AD systems

Requirements Probiotic strain Bioaugmentation strain

Effect Live microorganism, which is capable of exerting a beneficial effect on the
host animal, e.g., increased growth or resistance to disease.

Live microorganism, which is capable of exerting a beneficial effect on the
system, e.g., increased gas production or resistance to process inhibition.

Toxicity The strain must be non-pathogenic and non-toxic.
Amount It should be applied as viable cells in large amount.
Survival Surviving and metabolizing in the gut environment, e.g., resistance to low

pH and organic acids, maintenance of genetic stability in gut microbiota.
Surviving and metabolizing in the reactor environment; maintenance of

genetic stability in reactor microbiota.
Stability Strain should be stable and viable for extended periods under storage and application conditions.
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cow (Ozbayram et al. 2018c). An important finding was that a
considerable amount of bioaugmentation culture compared to
the indigenous microbiota is necessary for an effective en-
hancement, and only a minor fraction of the bioaugmentation
culture could establish in the final community at the end of the
experiments. De Vrieze and Verstraete suggested in a recent
review paper (De Vrieze and Verstraete 2016) that an effective
strategy could be the introduction of so-called keystone spe-
cies, which are not involved in the process itself but are re-
quired to be present for structural organization or enhanced
proliferation and activity of the community members with the
desired (hemi)cellulolytic activity. As a recent example, Ács
and co-workers demonstrated that addition of a non-
cellulolytic Enterobacter cloacae strain successfully enhanced
the methane production from maize silage, which was partial-
ly achieved by the increased abundance of the polymer-
degrading Clostridiales derived from the standard inoculum
(Ács et al. 2015). Addition of manure with its complex micro-
biota, including effective fiber-degrading strains or ensiled
plant biomass containing lactobacilli, has many beneficial ef-
fects observed by biogas plant operators. However, the posi-
tive effects of the introduced complex microbiota cannot be
clearly separated from the ones originating from the substrate
(trace elements, lactate, pre-digested polymers). According to
the strict definition of probiotics, foods containing potentially
beneficial live and active cultures should not be called
probiotics (Hill et al. 2014).

Despite promising laboratory-scale demonstration of bioaug-
mentation, successful large-scale applications are still missing.
This is probably due to the fact that alteration of a stable micro-
bial community by introducing allochthonous microbiota is dif-
ficult, similarly as it applies to established gut microbiota. In case
of process failure or underperformance, the addition of still a
large number of cells would be needed for effective establish-
ment of the bioaugmented microorganisms.

Genome mining for lignocellulose-modifying
enzymes appropriate for industrial
applications

Although gut symbionts play crucial roles in lignocellulose deg-
radation, many animals can also produce endogenous enzymes
that contribute in a complementary way to the overall biomass
utilization. The host input was mainly investigated in case of
lower termites (Cairo et al. 2011). In several studies, the whole
digestome, defined as the pool of host and symbiont genes that
collaborate for high efficiency lignocellulose digestion, was in-
vestigated by metagenomics or metatranscriptomics (Tartar et al.
2009). While the symbionts play major roles in the hindgut, the
host enzymes are produced mainly in the salivary glands and act
in the foregut and middle gut. Relatively high levels of oxygen
can be detected in these compartments compared to the hindgut,T
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which promotes lignin modification (Ke and Chen 2013; Ke
et al. 2010). Tartar and co-workers identified several genes with
potential roles in either lignin degradation or protection from
toxicmetabolites (e.g., reactive oxygen species) generated during
lignin degradation in the lower termiteReticulitermes flavipes via
metatranscriptomic approach (Tartar et al. 2009). Laccases, cata-
lases, esterases, cytochrome P450, superoxide dismutases, epox-
ide hydrolases, and glutathione peroxidases are produced by the
host, and they are probably involved in the degradation of lignin
and its metabolites. In addition, genes encoding endogenous car-
bohydrate active enzymes associated with cellulose degradation
and related to various glycosyl hydrolase families (GHF) were
also detected. These enzymes are potential targets of
bioprospecting. Especially, addition of lignin-modifying en-
zymes could be part of pretreatment strategies in gut-inspired
biorefinery systems. There are many enzyme preparations com-
mercially available for biorefinery applications, mainly for
bioethanol production, but all are similar in composition and
have been mostly optimized for acid-pretreated corn stover
(Banerjee et al. 2010). However, mimicking gut systems would
require other pretreatment chemistry and developed enzyme
cocktails should be compatible with mimicked gut conditions
(e.g., alkaline conditions in case of insect larvae systems).
Besides endogenous enzymes, microbial symbionts are also po-
tential sources of novel enzymes that can be derived by cultivat-
ing them. However, obtaining pure cultures is quite complicated
in case of many anaerobic microorganisms. Molecular tech-
niques provide an alternative approach, i.e., genes can be obtain-
ed by metagenomics and metatranscriptomics and then
expressed in heterologous systems. Subsequently, their enzymat-
ic activity can be screened and potential well-performing lignin-
or carbohydrate-active candidates can be used for mass produc-
tion. This approach was demonstrated by Hess and co-workers
by sequencing and analyzing 268 Gb of metagenomic DNA
from microbes adherent to plant fibers incubated in cow rumen
(Hess et al. 2011). From this dataset, 15 metagenome-assembled
microbial genomes were reconstructed together with 27,755
genes encoding putative carbohydrate-active enzymes. A selec-
tion of 90 candidate genes were expressed, of which the majority
produced proteins that were enzymatically active against cellu-
losic substrates, some of them with low sequence similarity to
known enzymes. The general approach presented in this study is
applicable to other gut systems and various environmental and
engineered systems. A similar metagenomics approach was used
for the investigation of camel rumen (Gharechahi and Salekdeh
2018), moose rumen (Svartström et al. 2017), Vietnamese native
goat rumen (Do et al. 2018), Indian buffalo rumen (Singh et al.
2014), goat rumen (Lim et al. 2013), and cow rumen (Dai et al.
2015; Stewart et al. 2018) . However, recent studies showed that
ruminant feces are probably a poor proxy for the lignocellulolytic
potential of the host (Al-Masaudi et al. 2017); therefore, its utili-
zation as inoculum or as target of genome mining is limited.
Heterologous expression of the novel genes and testing of

enzyme activity were only performed in few cases, including
heterologous expression of lignocellulolytic proteins cow rumen
(Del Pozo et al. 2012) and buffalo rumen (Shah et al. 2017).

Besides the bottlenecks of finding novel enzymes with
good biotechnological potential (Ferrer et al. 2016), the pro-
duction costs should be drastically reduced for economic ap-
plication in AD systems. An alternative approach is the pro-
duction of lignocellulolytic enzymes directly within the plant
biomass via the so called in-planta expression approach
(Abdeev et al. 2003; Borkhardt et al. 2010; Harrison et al.
2011, 2014; Jiang et al. 2011). Enzyme expression can be
regulated in a way that they are expressed at a particular stage
of development or specifically induced. The potential of in-
planta lignocellulolytic enzyme production was reviewed
elsewhere (Willis et al. 2016).

Potential biomimicry of the gut in advanced
reactor engineering

We should be careful when copying the concept of the diges-
tive tract into an engineered system because various gut sys-
tems have no uniform features, such as shape, flux, and
mixing. The idea to simulate animal digestive tracts in
engineered reactors is not new. Many attempts were made to
enhance the methane yield in biogas reactors inspired by ru-
minants. The most well-known systems are the rumen simu-
lation technique (RUSITEC) (Czerkawski and Breckenridge
1977) and the rumen-derived anaerobic digestion system
(RUDAD) (Gijzen et al. 1988). Briefly, an anaerobic digester
is seeded by rumen-based microbial inoculum in the
RUSITEC system, whereas RUDAD is a two-stage system
composed of an acidogenic rumen reactor and a high rate
methanogenic reactor to sustain optimum conditions for both
hydrolysis and methanogenesis. Two-stage anaerobic digester
systems are quite similar to RUDAD and show better perfor-
mance compared to single-stage digesters (Akobi et al. 2016;
Lindner et al. 2016). It was reported that a few RUDAD sys-
tems were constructed and operated in industrial scale to treat
municipal solid wastes (Deublein and Steinhauser 2008).

In a recent study carried out by Bize and co-workers, a
biomimetic approach was integrated in anaerobic digesters,
which the authors designated as bovid-like engineered diges-
tive system (Bize et al. 2015). They achieved better perfor-
mance in COD removal in the systems inoculated with cow
rumen inoculum. Due to their powerful skills in lignocellulose
degradation, a considerable literature has grown up around the
theme of termite digestive tract for almost a century (Brune
and Dietrich 2015). However, most of the work carried out on
industrial application failed to scale-up this cellulolytic sys-
tem. While termites have mastication, we have pre-treatment
steps for size reduction in the engineered systems, which play
a vital role for effective degradation rates in the further steps. It

500 Appl Microbiol Biotechnol (2020) 104:489–508



is an energy-consuming step contributing the greatest share to
the operational costs (Watanabe and Tokuda 2010).

Lignin has a complex structure resisting biochemical deg-
radation and limits lignocellulose degradation. Oxygen is nec-
essary for lignin degradation/modification, which acts as co-
substrate during the oxidative enzymatic breakdown (Breznak
and Brune 1994; Scharf and Tartar 2008). Ke and co-workers
showed that termites can also modify and/or break down lig-
nin compounds through their gut system. Degradation starts in
the foregut and then continues in the midgut of the termites,
which is not completely anaerobic (Ke et al. 2011). Oxic treat-
ment steps can be integrated in the biomass utilization systems
as a first step, or a biomimicking reactor system might include
a pre-digestion reactor that is not strictly anoxic.

Godon and his colleagues suggested some points to be
taken into consideration while biomimicking animal digestive
tracts (Godon et al. 2016). In summary, adjusting mesophilic
temperature, extreme pH hydrolysis (acidic for vertebrates,
alkaline for insects), using grinding approach rather than cut-
ting, specific enzyme addition, and including oxidative en-
zymes could be incorporated into gut-inspired future AD sys-
tems. Alkaline pre-treatment was integrated in AD processes,
and results revealed significant enhancement on methane
yield (Janke et al. 2017; Sambusiti et al. 2013; Sträuber et al.
2015; Zheng et al. 2009). As another approach, size reduction
has positive effects on biogas yield in digesters treating ligno-
cellulosic feedstock as it promotes the hydrolysis rate by in-
creasing the surface area (Leite et al. 2015; Silva et al. 2012).
Enzyme addition revealed 10–34% enhancement of the meth-
ane yield (Bruni et al. 2010; Vervaeren et al. 2010). However,
in another study, the biogas yield and methane yield were not
affected by enzyme addition (Romano et al. 2009).

Moreover, there are successful applications of co-
inoculation of anaerobic digesters with ruminal microbiota.
The level on the enhancement of methane yield differed ac-
cording to the study (Deng et al. 2017; Ozbayram et al. 2018a;
Quintero et al. 2012;Wall et al. 2015). Furthermore, our recent
studies showed that bioaugmentation with rumen-derived mi-
crobial communities also enhanced the methane production in
biogas reactors operated in batchmode (Ozbayram et al. 2017,
2018c). However, another attempt to use rumen fluid as co-
inoculum was not significantly effective on cellulose degrada-
tion compared to sludge from a municipal solid waste digester
alone (Chapleur et al. 2014), which means that the enhance-
ment effect is system-dependent.

Perspectives and future challenges

Lignocellulosic biomass has still a great and largely untapped
potential for the biorefinery approach producing high-value
chemicals and energy carriers. Current engineered systems
are underperforming, especially in comparison to the gut

systems of few herbivorous animals specialized for lignocel-
lulosic biomass consumption. The new generation of meta-
omics technologies enable us to better understand the back-
ground of this superior performance and hopefully provide us
useful information for the significant improvement of our cur-
rent technological systems.

However, different criteria apply for evolution driven by nat-
ural selection and economic considerations for industrial appli-
cations. Biomimicry of the gut systems might bring us closer to
faster and significantly better lignocellulose to biofuel conver-
sion; however, the invested cost will not necessarily be covered
by the higher profit as a result of increased biogas or carboxylate
production. Nevertheless, it would be still beneficial to establish
and explore such improved engineered systems based on gut
biomimicry. Later on, some costly treatment elements of the
gut-based engineered system could be omitted and the decrease
of the conversion rate could be investigated for further economic
optimization. We can expect biotechnological developments in
other fields that may contribute to a more economic animal gut
mimicking system development. For example, a full implemen-
tation of the animal gut strategies might require addition of ex-
ternal enzymes, but current relatively high prizes of
(hemi)cellulolytic enzymes prevent such strategies. Alternative
solutions could be the implementation of in-planta expression of
particular enzymes in energy plants as a strategy for accelerated
lignocellulose digestion (Mir et al. 2017; Willis et al. 2016).
Despite the challenges, the gut structure and inhabiting microbi-
ota, the interaction of the community members, the enzymes and
enzyme complexes evolved over millions of years will provide
inspirations and valuable resources for process engineers to im-
prove lignocellulose biorefineries.
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