
GENOMICS, TRANSCRIPTOMICS, PROTEOMICS

An exploration of smokeless tobacco product nucleic acids:
a combined metagenome and metatranscriptome analysis

R. E. Tyx1 & A. J. Rivera1 & L. M. Keong2
& S. B. Stanfill1

Received: 24 July 2019 /Revised: 11 October 2019 /Accepted: 31 October 2019
# The Author(s) 2019

Abstract
Smokeless tobacco (ST) products are used worldwide and are a major public health concern. In addition to harmful chemicals
found in these products, microbes found in ST products are believed to be responsible for generating harmful tobacco-specific
nitrosamines (TSNAs), the most abundant carcinogens in ST. These microbes also contribute endotoxins and other pro-
inflammatory components. A greater understanding of the microbial constituents in these products is sought in order to poten-
tially link select design aspects or manufacturing processes to avoidable increases in harmful constituents. Previous studies
looked primarily at bacterial constituents and had not differentiated between viable vs nonviable organisms, so in this study, we
sought to use a dual metatranscriptomic and metagenomic analysis to see if differences exist. Using high-throughput sequencing,
we observed that there were differences in taxonomic abundances between the metagenome and metatranscriptome, and in the
metatranscriptome, we also observed an abundance of plant virus RNA not previously reported in DNA-only studies. We also
found in the product tested, that there were no viable bacteria capable of metabolizing nitrate to nitrite. Therefore, the product
tested would not be likely to increase TSNAs during shelf storage. We tested only a single product to date using the strategy
presented here, but succeeded in demonstrating the value of using of these methods in tobacco products. These results present
novel findings from the first combined metagenome and metatranscriptome of a commercial tobacco product.
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Introduction

Smokeless tobacco (ST) products are used by more than 300
million people worldwide, constituting a major public health
concern globally (Agaku et al. 2014; NIH/CDC 2014; Wang
et al. 2015). Besides toxicants and carcinogens designated by
the International Agency for Research on Cancer (IARC), to-
bacco products also contain bacteria, fungi, and viruses (Tyx
et al. 2016; Liu et al. 2013; Rivera et al., in submission). Certain

microorganisms in tobacco contribute to the formation of my-
cotoxins, endotoxins, and nitrosamines; tobacco-specific N-ni-
trosamines (TSNAs) are thought to be the most abundant and
potent carcinogens in ST products (Ayo-Yusuf and Connolly
2011; Fisher et al. 2012; Larsson et al. 2008; Lawler et al. 2013;
Song et al. 2016; Zitomer et al. 2015). The presence of micro-
bial populations also generate other potentially harmful constit-
uents, such as endotoxins and other pro-inflammatory mole-
cules (Rubinstein and Pedersen 2002; Tyx et al. 2016). There
is a need for a deeper understanding of microbes that have an
impact on the harmful chemicals found in ST products and
which organisms remain viable in the purchased products.
This information will provide a foundation for identifying
means of mitigating the aforementioned negative impacts.

Microbial activity during the manufacturing of ST tobacco
products and cigars contributes to the metabolism of reducing
sugars that results in decreased harshness and improved flavor
but also leads to the production of nitrite (Davis 1999). Tobacco
fermentation is characterized by rapidly changingmicrobial com-
munity structures and consequently product chemistry. Cigar
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fermentation, the best characterized process to date, is character-
ized by a microbial succession and resulting chemical changes
observed during an 18-day process (Di Giacomo et al. 2007).
The dynamic metabolism can also result in production and ac-
cumulation of extracellular nitrite that reacts with tobacco alka-
loids to form TSNA (Di Giacomo et al. 2007; Fisher et al. 2012).
In a recent 16S community analysis, we predicted that respiratory
(assimilatory) nitrate reductases could be involved in these pro-
cesses when oxygen levels are low. These were predicted in
abundance across products, encoded in the nar operon genes of
Staphylococcus, Corynebacterium, and Lactobacillus genera,
and certain members of the Enterobacteriaceae family (Tyx
et al. 2016).

Most past investigations of microbial communities in ST
products have used culture-independent methods, mainly
targeting DNA marker sequences (16S, 18S, ITS) (Al-
Hebshi et al. 2017; Han et al. 2016; Smyth et al. 2017; Tyx
et al. 2016); these molecular approaches cannot differentiate
DNA from living and that from deceased microorganisms.
Because culture-independent experiments often rely on
DNA isolations only, previous studies lacked the ability to
differentiate live organisms from DNA persisting in the sam-
ple. One method to more accurately assess viable versus non-
viable organism presence is metatranscriptomic analysis,
which uses RNA to make a cDNA library that is then subject-
ed to DNA sequencing. To date, only one RNA extraction
from tobacco leaves has been previously described in the lit-
erature (Su et al. 2011). That particular study only focused on
bacteria that could be washed off the leaves, and was not from
a processed, ready-to-use product.

In the present study, we obtained a commercial moist snuff
product bought from a tobacco wholesaler in the Atlanta area. A
leading brand moist snuff was chosen as these type of products
are the most popular of all ST sold in the USA (Richter et al.
2008). We characterized both RNA (as cDNA) and DNA librar-
ies, in order to gain knowledge of the types of microbes, alive or
otherwise, and their biochemical processes that may be active
after production. The aim of this study was to evaluate a com-
bined DNA and RNA shotgun sequencing approach to elucidate
potentially viable microorganisms present in a moist snuff prod-
uct and characterize genes being expressed by these microbes,
especially those that are particularly active throughout processing
(metagenome) or that are prevalent and likely viable in purchased
products (metatranscriptome).

Methods

Tobacco samples

Tobacco samples were purchased locally through a third-
party contractor to the US Centers for Disease Control
and Prevention. Three tins of the product were combined

in an amber glass bottle (250 ml) and homogenized by
rotating. The product was kept under storage conditions
at − 80 °C until DNA and RNA were extracted.

Nucleic acid extraction

Nucleic acids were extracted from tobacco products using
the MoBio PowerSoil Total RNA isolation kit (MO BIO
Laboratories Inc.; Carlsbad, CA, USA) combined with the
RNA PowerSoil DNA elution accessory kit (QIAGEN
Inc.; Chatsworth, CA), with few modificat ions.
Modifications included using the MPBio Lysing matrix
E (MP Biomedicals, Santa Ana, CA, USA) in lieu of the
bead-beating tubes from the PowerSoil kit, and the addi-
tion of a final cleanup step using QIAGEN DNEasy col-
umns. RNA yield was quantified using a Qubit 2.0 with
the RNA HS Assay (Thermo Fisher; Waltham, MA,
USA).

Library preparation and sequencing

Library preparation for the metagenome was performed
using the TruSeq nano LT kit (Illumina, Inc.; San Diego,
CA). The metatranscriptome library was prepared using
NEBNext Ultra II RNA Library Prep Kit for Illumina
(New England Biolabs; Ipswich, MA, USA). Library
quality was assessed using an Agilent Bioanalyzer 2100
with a High Sensitivity DNA chip (Agilent Technologies;
Santa Clara, CA, USA), and quantity was assessed using a
Qubit 2.0 with the Qubit dsDNA HS Assay Kit (Thermo
Fisher; Waltham, MA, USA). The metatranscriptome li-
brary was initially sequenced on an Illumina MiSeq using
the MiSeq Reagent Nano Kit V2 (500 cycles) to provide a
comprehensive assessment of library quality. Then the li-
brary was re-sequenced on a MiSeq Reagent Kit V2 (500
cycles) for greater sequencing depth.

Data QC processing, filing, and annotation

All reads were subject to a QC protocol consisting of
removal of adapter sequences, PhiX sequences, and qual-
ity cutoff of Q20 using SICKLE with minimum sequence
length of 60 bp after quality truncation (SICKLE version
1.33) (Joshi and Fass 2011). Sequences were filed at
NCBI SRA, accession SRR7719421. After QC, the
metagenome sequencing run resulted in 12,626,111
paired reads (25,252,222 total) and the combined
metatranscriptome data sequencing runs resulted in
13,564,027 paired reads (27,128,054 total). Metagenome
assembly was performed using SPADES Meta v3.10.0
(Bankevich et al. 2012; Nurk et al. 2017) with default
parameters, limited to 400-GB RAM and using 40
threads.
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Prior to upload to IMG/M-ER andMG-RAST, paired reads
from the metatranscriptome sequencing runs were combined
using bbmerge.sh script with default settings, v8.92, https://
sourceforge.net/projects/bbmap/, resulting in 97.1% of reads
joining together into 13,174,617 sequences. The IMG
Genome ID numbers are as follows: metatranscriptome:
3300012934, metagenome: 3300019856.

16S pipeline

Paired reads from two runs were catenated and the first 9
(sequencing run 1) or 10 bases (sequencing run 2) were re-
moved from each sequence. Reads aligning to PhiX were then
filtered and removed. Remaining reads were quality-filtered
using SICKLE under default parameters (version 1.33). The
paired reads were merged using USEARCH and also filtered
using USEARCH with a “maxee” value of 1.0 (Edgar 2010).
Merged, filtered reads were dereplicated using usearch “–
fastx_uniques,” and operational taxonomic units (OTUs) were
clustered using usearch “–cluster-otus” with “minsize” of 2,
removing singletons (Edgar 2013). An OTU table was con-
structed using usearch “–usearch_global” command and tax-
onomywas assigned using usearch “–utax” algorithmwith the
RDP v15 trainset (from http://drive5.com/usearch/manual/
utax_downloads.html), trained with the specified 250
utaxconfs file. OTUs with less than 99 % confidence to the
16S RDP trainset at the domain level were removed (66% of
data), with the remaining 34.03% corresponding to 16S
sequence (2,200,065/6,464,947 reads). The full 16S pipeline
is in Supplemental Text A.

Read mapping

BBMERGE (part of BBMAP utilities, https://sourceforge.net/
projects/bbmap/) v36.02 was used to provide mapping
coverage statistics.

EMIRGE analysis

Paired read files were used with the EMIRGE script
v0.60.3 (Miller 2013; Miller et al. 2011). A bowtie
(Langmead et al. 2009) database was created from the
Silva 111 SSU reference database (reference file name:
SSURef_111_NR_tax_silva_trun.ge1200bp.le2000bp.fix-
ed.sorted.97.fasta). EMIRGE output sequences were sub-
jected to BLAST (megablast) search at NCBI against the
NR/NT database (Altschul et al. 1990). The version of the
script used was v0.60.3 with the parameters: –l 242 –i 208
–s 73 (metatranscriptome) and –l 242 –i 285 –s 69
(metagenome).

Results

Phylogeny and abundance approach

RNA was extracted from a leading brand ST product and
converted to cDNA. Because numerous ways exist to compare
phylogenetic abundance on shotgun metagenome data
(metaphlan, phyloshop, megan, kraken, and R packages such
as Phyloseq) (Huson et al. 2007; Mitra et al. 2011; Shah et al.
2011; Truong et al. 2015), phylogenetic data on the
metagenome and metatranscriptome annotation were gathered
using multiple methods. The first approach used results from
files uploaded to the IMG/M-ER system, including assembled
reads (metagenome) with corresponding read mapping aver-
age depth statistics, and for the metatranscriptome, uploading
pair-joined reads. The second approach took advantage of the
fact that without depleting ribosomal RNA first, most of the
reads were ribosomal, mainly 16S and 23S. We used this
knowledge to analyze the cDNA using a 16S community
analysis pipeline; uparse was used for OTU picking, and utax
was used for assigning taxonomy (Edgar 2010; Edgar 2013).

Phylogenetic abundances and IMG/M-ER analysis
of the metatranscriptome

Raw reads were filtered and processed for quality control, and
read pairs were joined before uploading for annotation in
IMG/M-ER. Of 13,174,617 reads uploaded to the IMG/M-
ER system, 10,535,953 (80.0%) were annotated. Of those,
98.2%, or 10,239,347 of 10,535,953 total reads annotated in
IMG/M-ER were attributed to RNA genes, mainly 23S and
16S rRNA, 64% and 34% of annotated reads, respectively.
This level of rRNA is close to what should be expected from
a sample without any ribosomal RNA clean up procedure
(Rosenow et al. 2001). While the ribosomal sequences are
not immediately useful in determination of genetic content,
they are useful in defining taxonomic representation. More
specifically, 3,550,824 (34.1%) of reads were identified as
16S in IMG/M-ER. This percentage agreed closely with the
marker gene (16S) analysis of the overall data set (see
“Methods”: 16S pipeline section)

In the IMG/M-ER system ’s annota t ion of our
metatranscriptome data, 1.58% of annotated reads (164,856)
were attributed to protein-encoding genes. This relatively
small number is likely not sufficient to give high confidence
to low-expression genes in the metatranscriptome, but we felt
it provided enough information to gain a high-level overview
of what genetic content was being expressed and was even
somewhat higher in number than the number of hits ascribed
to protein-encoding genes in the assembled metagenome
(21,628 annotated gene hits). In fact, the number of assigned
genes with COG IDs, which we used here for analysis, was
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roughly double in the metatranscriptome, compared with the
metagenome (31133 for the former, and 16350 for the latter).

Results for phylum-level abundance are found in Table 1.
Bacteria were the most abundant in all annotated gene copies,
80.7% (84177/104279 classified gene copies at 30% + nucle-
otide identity) in the metatranscriptome, and 99.2% (4816480/
4856474 gene copies at 30% + identity) in the metagenome.
The four fungal phyla that IMG reported were Ascomycota,
Basidiomycota, Blastocladiomycota, and Chytridiomycota.
The metatranscriptome had very few sequences attributed to
Fungi, 0.16% of gene copies (162/104279 gene copies). The
metagenome reflected this lack of fungal sequences, as only
0.03% (1627/4856474) gene copies were attributed to these
four phyla. Virus sequences were highly represented in the
metatranscriptome at 18.8% of annotated gene copies
(19576/104279 counts), but only 0.26% (13027/4856474
gene copies) in the metagenome. This was due to a high
amount of RNAvirus identified in the metatranscriptome sam-
ple, mainly attributed to Virgaviridae, the family of viruses
that tobacco mosaic virus (TMV) belongs to.

Overall, taxonomic abundance at the family level was de-
termined using the “Radial Tree” command in IMG/M-ER
and presented as Fig. 1, and in tabular form in Table 2. It
should be noted that all low-abundance families, comprising
of 111 families, were grouped into a category labeled
“Others.” A square root transformation was used in Fig. 1 to
create the figure in order to give better detail to lower abun-
dance phylogeny. The relative abundance profile of the highly
represented Firmicutes phylum is broken down further in Fig.
2. Tabulated data for Fig. 2 is given in Supplementary
Table S1.

Using 16S tools with shotgun sequencing data: cDNA
16S pipeline and EMIRGE results

Based on the large abundance of 16S sequence, we treated
the data as a 16S microbiome data set and compared results
with the IMG/M-ER abundance estimates. After removing
OTUs that were likely not 16S (OTUs that had < 99%
confidence at the domain level), 34% of sequences (385
OTUs) remained and were assigned taxonomy at the genus
level (see cDNA 16S Results table, Supplementary
Table S2). At the phylum level, 99.9% of all hits were
Firmicutes, with only a small number attributed to
Proteobacteria (0.004%, 92/2,200,065 reads in the OTU
table). A total of 21 genera in 11 families were identified.
It should be noted, however, that genus-level identifica-
tions in the Carnobacteriacaeae and Enterococcaceae
families were mostly low confidence, with < 80% confi-
dence at the family level of taxonomy (Supplementary
Data File 1, OTU table). We hypothesized that there may
be a related species or genus in the family that has not been
identified previously. Supporting this data was the output

from EMIRGE, an open-source software that attempts to
assemble full-length 16S sequences from next-generation
sequencing reads. Results of EMIRGE (Supplementary
Table S3) generated as the top abundance sequence, a
16S sequence that is most closely related to the
Carnobacteriaceae family, with a 94% identity at the ge-
nus level to the most similar genus, Marinilactibacillus.
This sequence was found by nucleotide BLAST to be
99% identical to uncultured bacterium clone ncd537f06c1
(GenBank HM277344.1), a clone isolated from the popli-
teal fossa (kneepit) of a human. This appears to be the most
dominant bacterium in the product as indicated by the
highest abundance in the metatranscriptome (> 60% nor-
malized relative abundance). As the Marinilactibacillus
genus is fairly poorly characterized in IMG/M-ER, current-
ly, with only three annotated genomes as of our submission
date, many of the gene hits belonging this particular organ-
ism may not be assigned at genus or species level of tax-
onomy, and only assigned to family Carnobacteriaceae.

Genetic content

Genetic areas of interest were explored using annotations for
COGs (Clusters of Orthologous Groups). Figure 3 and
Supplementary Table S4 display the metagenome and
metatranscriptome abundance of various categories of gene
function, represented by annotated genes in COGS. Several
functional categories of interest are broken down in Fig. 4a–d.
COGs for nitrogen metabolism (Fig. 4a), antimicrobial resis-
tance (Fig. 4b), horizontal gene transfer (Fig. 4c), and phylo-
genetic markers (Fig. 4d) were investigated in both
metagenome andmetatranscriptome. Because we did not have
ideal coverage of the transcriptome, it is likely that much of
the lower expression transcript was missed. There was still
enough coverage to be able to draw some conclusions from
the data, however. A few classes of antimicrobial resistance–
related genes were fairly abundant in the metagenome, but
less were found in the metatranscriptome, and with some of
the classes found in the metagenome almost or completely
absent in the transcriptome (COG2274, COG3559,
COG4767). Nitrogen metabolism genes (nitrate reductases,
in particular) were identified in some abundance in the
metagenome, but not in the metatranscriptome, except for a
few ABC transport systems that are often promiscuous for
other substrates or may have other functions. Antimicrobial
resistance genes in these products were identified by COGS in
IMG/M-ER and presented in the heatmap in Fig. 4b. Because
many of these genes may represent normal nonresistant ver-
sions of structural molecules that can be resistant, little weight
should be put on this data. Instead, a more detailed investiga-
tion using read mapping to a reference database (the Complete
Antibiotic Resistance Database, CARD) for antimicrobial re-
sistance genes was performed (Jia et al. 2017).
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Table 1 Abundance by domain and phylum (IMG/M-ER). Kingdom-
and phylum-level abundance table using data from IMG/M-ER. This
table uses output of sequences with at least 30% identity. Numbers

represent relative abundances based on estimated gene copies, using av-
erage fold coverage per scaffold

Domain Phylum MG est. gene copies MG % MT est. gene copies MT %

Archaea Crenarchaeota 3 0.00 0 0.00

Archaea Euryarchaeota 1587 0.03 21 0.02

Archaea Thaumarchaeota 11 0.00 2 0.00

Bacteria Acidobacteria 588 0.01 1 0.00

Bacteria Actinobacteria 13227 0.27 1180 1.13

Bacteria Aquificae 0 0.00 35 0.03

Bacteria Atribacteria 1 0.00 0 0.00

Bacteria Bacteroidetes 7791 0.16 671 0.64

Bacteria Balneolaeota 0 0.00 5 0.00

Bacteria Candidatus Saccharibacteria 4 0.00 0 0.00

Bacteria Chlamydiae 281 0.01 16 0.02

Bacteria Chloroflexi 265 0.01 2 0.00

Bacteria Cyanobacteria 921 0.02 76 0.07

Bacteria Deinococcus-Thermus 0 0.00 3 0.00

Bacteria Fibrobacteres 0 0.00 2 0.00

Bacteria Firmicutes 4766283 98.1 78811 75.6

Bacteria Fusobacteria 5312 0.11 25 0.02

Bacteria Lentisphaerae 0 0.00 2 0.00

Bacteria Marinimicrobia 0 0.00 1 0.00

Bacteria Nitrospirae 4 0.00 7 0.01

Bacteria Parcubacteria 0 0.00 1 0.00

Bacteria Planctomycetes 0 0.00 2 0.00

Bacteria Proteobacteria 12548 0.26 3087 2.96

Bacteria Spirochaetes 2165 0.04 16 0.02

Bacteria Synergistetes 1414 0.03 3 0.00

Bacteria Tenericutes 3207 0.07 182 0.17

Bacteria Thermodesulfobacteria 0 0.00 2 0.00

Bacteria Thermotogae 867 0.02 19 0.02

Bacteria Verrucomicrobia 1 0.00 2 0.00

Bacteria Unclassified 0 0.00 3 0.00

Bacteria 4816480 99.2 84177 80.7

Eukaryota (Fungi) Ascomycota 1543 0.00 39 0.04

Eukaryota (Fungi) Basidiomycota 76 0.00 4 0.00

Eukaryota (Fungi) Blastocladiomycota 1 0.00 0 0.00

Eukaryota (Fungi) Chytridiomycota 7 0.00 119 0.11

Eukaryota (Fungi) 1627 0.034 162 0.16

Eukaryota Annelida 36 0.00 0 0.00

Eukaryota Apicomplexa 20 0.00 4 0.00

Eukaryota Arthropoda 66 0.00 3 0.00

Eukaryota Chlorophyta 27 0.00 0 0.00

Eukaryota Chordata 166 0.00 0 0.00

Eukaryota Cnidaria 7 0.00 0 0.00

Eukaryota Nematoda 1 0.00 0 0.00

Eukaryota Phaeophyceae 1 0.00 0 0.00

Eukaryota Porifera 16 0.00 0 0.00

Eukaryota Streptophyta 24978 0.51 355 0.34

Eukaryota Unclassified 22 0.00 2 0.00
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Read mapping analysis: read mapping
to metagenome and metatranscriptome

Specific targets of interest were investigated using read map-
ping. Reference sequences were obtained from NCBI (ncbi.
nlm.nih.gov). In contrast to previously published tobacco
metagenomes, tobacco vein clearing virus (TVCV) was not
identified in high abundance in the DNA metagenome of this
particular product (662/12626111 reads, 0.005%, Table 3,
gene mapping: Metagenome) (Rivera et al., in submission).

IMG/M-ER’s results suggested an abundance of plant RNA
virus in the metatranscriptome, which we investigated using read
mapping against a few plant viral genomes. Plant RNA viruses
were detected at high levels in this product’s transcriptome,main-
ly TMV. TMVwas identified in significant numbers in raw reads

of the transcriptome and accounted for 0.2% of total reads
(47809/2341452, Table 2), giving a 1528-fold average fold cov-
erage of the TMV genome.

Reads from the cDNA library were mapped to the
metagenome assembly. 99.2% of the metatranscriptome reads
were mapped to the metagenome assembly using BBMAP’s
default settings (76%minimum nucleotide identity). Mapping
coverage and top results are listed in Table 4. Most of the
contigs with the highest fold coverage in mapping contained
at least a portion of a 16S or 23S gene.

Read mapping to other databases (CARD, ICEBERG)

IMG/M-ER annotation suggests presence of numerous virulence
factors including mobile genetic elements and antimicrobial

Fig. 1 Cladogram representing
taxonomic groups and relative
abundance in the a metagenome
and b the metatranscriptome of
selected smokeless tobacco
product. Raw counts were output
from IMG/M system using Radial
Tree. Data was processed by
adjusting all abundances relative
to a maximum relative abundance
of 1, and then taking the square
root of that number, to better il-
lustrate lower abundance taxons.
Twenty of the most abundant
families are highlighted. Low-
abundance phylogeny in either
the metagenome or
metatranscriptome was excluded
and grouped into a category la-
beled “Others.” The “D.” in the
center represents the domain level
of taxonomy. GraPhlAn was used
to create the cladogram (Asnicar
et al. 2015)

Table 1 (continued)

Domain Phylum MG est. gene copies MG % MT est. gene copies MT %

Non-fungi Eukaryota 25340 0.52 364 0.35

Viruses Retro-transcribing viruses 323 0.01 0 0.00

Viruses dsDNA viruses, no RNA stage 12701 0.26 177 0.17

Viruses dsRNA viruses 0 0.00 20 0.02

Viruses ssDNA viruses 3 0.00 0 0.00

Viruses ssRNA viruses 0 0.00 19379 18.58

Viruses 13027 0.27 19576 18.8

Totals 4856474 104279
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resistance genes in the metagenome of this product. To obtain a
more thorough knowledge of the presence of such genes, we
conducted a read mapping analysis to known genes of interest
using the CARD (v1_1_0, ref) and the Integrative and
Conjugative Elements (ICEBERG, version 1) databases. Top
results are displayed in Supplementary Table S5. No significant
coverages were found for the metatranscriptome from these two

databases. The most significant hit found in the metagenome to
the CARD database was to the dfrE gene (for a dihydrofolate
reductase) of Enterococcus faecalis (48-fold coverage of 92% of
gene). Another gene was mapped at ~ 10-fold average coverage,
identified as cat86 of Bacillus pumilus. FosB of Staphylococcus
aureus and Erm34 of Bacillus clausii (Bozdogan et al. 2004)
were represented at 1-fold coverage; however, over only 66

Table 2 Family-level
identification of taxonomic
groups found in the
metatranscriptome of a leading
brand smokeless tobacco product
by identification in IMG/M-ER
with at least 30% identity. The
number represents the relative
abundance based on estimated
gene copies, which uses average
fold coverage per scaffold. MG,
metagenome; MT,
metatranscriptome

Taxonomic description Relative abundances (%)

Phylogeny (family) MG MT

Bacteria, Firmicutes, Lactobacillales, Enterococcaceae 56 8.3

Bacteria, Firmicutes, Lactobacillales, Carnobacteriaceae 29 28

Bacteria, Firmicutes, Bacillales, Bacillaceae 3.4 9.4

Others 3.2 6.8

Bacteria, Firmicutes, Lactobacillales, Aerococcaceae 2.3 1.6

Bacteria, Firmicutes, Bacillales, Staphylococcaceae 1.4 3.8

Bacteria, Firmicutes, Lactobacillales, Lactobacillaceae 1.1 6.2

Bacteria, Firmicutes, Lactobacillales, Streptococcaceae 1.1 3.4

Bacteria, Firmicutes, Clostridiales, Clostridiaceae 0.6 1.3

Bacteria, Firmicutes, Clostridiales, Lachnospiraceae 0.5 3.4

Bacteria, Firmicutes, Bacillales, Paenibacillaceae 0.3 2.3

Bacteria, Firmicutes, Bacillales, Listeriaceae 0.3 1.8

Bacteria, Firmicutes, Tissierellales, Peptoniphilaceae 0.3 0.7

Bacteria, Firmicutes, Bacillales, Planococcaceae 0.2 0.5

Bacteria, Firmicutes, Lactobacillales, Leuconostocaceae 0.2 1.6

Bacteria, Firmicutes, Erysipelotrichales, Erysipelotrichaceae 0.2 0.6

Bacteria, Firmicutes, Clostridiales, Ruminococcaceae 0.1 0.6

Bacteria, Proteobacteria, Pseudomonadales, Moraxellaceae 0.0 0.9

Bacteria, Actinobacteria, Actinomycetales, Actinomycetaceae 0.0 0.8

Viruses, SsRNA_viruses, Virgaviridae (tobacco mosaic virus) 0.0 18

Fig. 2 Distribution of the Firmicutes phylum families, highlighting the
differences between metagenome and metatranscriptome. Using the data
from the IMG/M-ER system (“Radial Tree” function), we constructed

graphs highlighting the change in abundances between the metagenome
and metatranscriptome for families present in the Firmicutes phylum
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Fig. 3 Graph of Functional Gene Content (as COGS) of metagenome vs
metatranscriptome. Metagenome (orange bars) and metatranscriptome
(blue bars) gene hits with COG functional annotation. These tables

were combined from individual table outputs using the “with COG”
link from “Metagenome Statistics” portion of the Genome Overview in
IMG/M-ER. Relative percentages were from the “% of Total” column

Fig. 4 Targeted Categorical Gene Content heatmaps. Number of
estimated gene copies of various COGS representing markers of a
nitrogen cycle genes, b antimicrobial resistance genes, c gene transfer,

and d phylogenetic marker COGS (as reference). Generated using
“Functional Profile” tool in IMG/M-ER
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and 67% of nucleotides of these genes were mapped, respective-
ly. Also, most hits to the ICEBERG database should be consid-
ered “low confidence” because the “covered percentages” of all
the top results failed to reach even 20%. With this in mind, read
mapping of sequences to the ICEBERG database identified parts
of two mobile elements which were highly represented in the
metagenome with over 100-fold average coverage, to at least
10% of the whole ICEBERG sequences (which included multi-
ple genes). The first element identified was a Tn916-like
conjugative transposon, Tn6079, which carries multiple drug re-
sistances, and the second element present was ICESsuSC84, an
integrative conjugative element first identified in Streptococcus
suis (Holden et al. 2009). Further analysis of the reads that
mapped to Tn6079 indicated that these reads were nearly exclu-
sively mapping to a sequence identified by BLAST as an inser-
tion sequence (IS1216E), corresponding to a penicillin-resistant
penicillin-binding protein gene (D-alanyl-D-alanine carboxypep-
tidase, vanY) found in Enterococcus faecium and E. faecalis.
This element was identified as a transposon, Tn1546 (example
sequence: GenBank KR047792.1). Reads that mapped to a por-
tion of ICESsuSC84 were found to be mapping mainly to a small
section that encoded a transposase, identified as ISSsu5, in S. suis
and E. faecalis (example sequence: GenBank KX156278.1).

Discussion

The present study used shotgun metatranscriptomic approach
to confirm the presence of living or recently living microor-
ganisms in ST products and confirmed previous reports that
viable microbes are abundant in products (Smyth et al. 2017).
We also found that techniques presented here, using an RNA
expression profile (RNA-seq), are useful for observing the
metabolic activities of microbes in smokeless tobacco prod-
ucts. Because these products yield only small quantities of
extractable RNA, we were unable to use ribosomal RNA
(rRNA) depletion on the present sample; therefore, we had
only a limited amount of mRNA sequence to work with
(roughly 400,000 reads, ~ 3% of all sequences). Fortunately,
wewere able to analyze this amount of mRNA efficiently with

the IMG/M-ER system that gave indications of the processes
occurring in the product microbiota. Further refinement of the
extraction methods including the use of larger amount of the
products in the isolation procedure may allow for a more suit-
able amount of RNA to be isolated to use in an rRNA deple-
tion strategy, allowing further analysis of the transcriptome.
We suggest further research into this to be well justified, as it
would allow a better understanding of metabolic processes
underway in smokeless tobacco products. These methods
would also be quite useful in characterizing the processing
steps including aging and fermentation, where presumably
most nitrate is reduced and most nitrosamines are formed.

T h e c omb i n e d s h o t g u n me t a g e n om i c s a n d
metatranscriptomic approach provided us a unique view of the
microbial community that included all domains of life, allowing
us, for example, to now see RNAviruses that were not revealed
in previous studies of the tobacco product metagenomes. This
turned out to be especially important in tobacco samples, because
most viruses found in this niche are likely to be RNAviruses (as
are most plant viruses), and these can only be identified through
an RNA to cDNA sequencing approach, at present. Although
using a ribosomal RNA depletion on the RNA pool first would
be essential for a dedicated functional study, this approach may
be less effective in the ability to identify and classify reads attrib-
uted to plant viruses.

We found the use of a 16S pipeline for creating a commu-
nity profile to be quite revealing as well, even with the phy-
logenetic resolution not ideal for differentiation to the genus
and species levels due to the small average read size of the
transcriptome library. While we would not suggest to rely on
this data by itself to fully describe the microbial community,
we did find that it was confirmatory to the metagenome data,
and to what IMG/M-ER reported the abundances to be.
Furthermore, using our approach provided for all V-regions
having sequencing coverage, instead of just one or two
regions being covered, which can also lead to bias
(Klindworth et al. 2013). This method is further likely to in-
troduce less bias than a typical marker gene analysis, as there
is little or no amplification as compared with a traditional
marker gene (such as 16S) study.

Table 3 Results of read mapping of specific reference genes to metagenome. Specific genes were chosen to confirm presence and abundance of these
genes in the raw sequence data

Species and strain Gene symbol Average fold coverage % Reference bases covered COG min_align_ID %

Bacillus pumilus B4133 narK 7.86 100 COG2223 0.76

Bacillus pumilus B4133 nirB 8.33 98.5 COG1251 0.76

Bacillus pumilus B4133 recG 14.7 100 COG1200 0.76

Tetragenococcus halophilus DSM20339 recG 420 100 COG1200 0.76

Tobacco_vein_clearing_virus TVCV 21. 7 100 N/A 0.76

Nicotiana tabacum 18S SILVA 18S 35.5 100 N/A 0.97

Solanum tuberosum 18S SILVA 18S 41.1 99.6 N/A 0.97
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The Firmicutes, represented by the Class Bacilli, were found
to be, by far, the most abundant class of bacteria, or any microbe,
in this product. At the order level of classification, we find both
Lactobacillales and Bacillales well represented in both the
metagenome and metatranscriptome. The Carnobacteriaceae,
followed by the Enterococcaceae and then the Bacillaceaewere
the most abundant families, withCarnobacteriaceae being more
abundant, relatively, in the metatranscriptome than the
metagenome and theEnterococcaceae appearing higher in abun-
dance in the metagenome than in the metatranscriptome.
Because the Carnobacteriaceae appeared to stay at similar rela-
tive abundances in both the metagenome andmetatranscriptome,
the decrease in abundance of the Enterococcacaeae in the
metatranscriptome appeared to potentially be responsible for
the increased relative abundances of all others in the
metatranscriptome. A comparison of this product with products
analyzed in previous marker gene studies indicates some simi-
larities and some differences. Previous studies have identified the
most abundant families in moist snuff to be Bacillaceae,
Staphylococcaceae, Aerococcaceae, Paenibacillaceae,
Enterococcaceae, and Carnobacteriacae (Al-Hebshi et al.
2017; Smyth et al. 2017; Tyx et al. 2016). The most abundant
of these families in this particular product was not the highest
abundance in any previous studies. This could be for a number of

reasons; it could reflect the particular manufacturing of this prod-
uct, microbes added during fermentation, or even a different
starting population due to tobacco differences prior to processing.

Another interesting finding was a lack of Fungi in the
metatranscriptome, but not in the metagenome. This may be
reflecting the findings of Di Giacomo et al. (2007) who found
that Fungi played a role earlier on in the tobacco fermentation
process in Toscano cigars, but not in latter periods of the
fermentation cycle.

Presence of plant RNA virus in this smokeless tobacco
product is unsurprising, but warrants concern, nonethe-
less. Plant RNA viruses have been found to be abundant
in human feces, and indeed, animals have been found to
propagate some plant viruses, including TMV (Balique
et al. 2013; Zhang et al. 2006). Tobacco users often have
increased levels of anti-TMV antibodies, although
nonusers were also found to be positive for anti-TMV
antibodies (Liu et al. 2013). Because this product is used
in a specific location of the mouth repeatedly, it is likely
that the presence of TMV is contributing to chronic oral
inflammation. Because chronic inflammation often plays a
role in oncogenesis (Grivennikov et al. 2010), reduction
of these viral particles could make products somewhat
less harmful.

Table 4 Read mapping of
metatranscriptome to
metagenome assembly, coverage
of the 20 most abundant contigs,
and presence of ribosomal or
other genes of each particular
contig

Contig no. Average fold coverage Contig length (b.p.) Ribosomal-encoding or other feature

1794 199103 1114 23S

2333 98728 593 16S

3083 92077 297 16S

2393 46073 558 23S

3079 22112 299 16S

2502 19665 512 23S

2542 19497 502 16S

2590 151189 494 16S

1330 20659 2483 23S

757 19392 5969 16S

429 20183 10569 Contains gene(s) encoding cadmium/
mercuric resistance

1630 121196 1460 Contains gene encoding type I
restriction enzyme

650 24586 7163 Contains gene encoding type I
restriction enzyme

1306 163311 2546 Contains gene encoding
histidine kinase

794 46544 5696 23S

1150 107510 3299 Contains gene encoding transposase

1108 29666 3516 Contains gene encoding
phage-related protein

949 43028 4537 Contains 6 annotated genes

710 52966 6418 Contains 8 annotated genes

402 20171 11122 Contains gene encoding RepA and
contains 15 total annotated genes
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The genetic content of the metagenome of this product
largely reflected what is present in the predominant species,
of the genera Marinilactibacillus, Atopostipes, and
Tetragenococcus. These genera have a similar capability (or
lack thereof) to metabolize nitrate; annotated species of these
genera all lack dissimilatory nitrate reductases and do not
contain nitrate/nitrite antiporters (i.e., ABC transporters with
similarity to the product of narK of Escherichia coli). Nitrate
reductase genes identified in the metagenome scaffolds came
from lower abundance genera, including Corynebacterium,
Siccibacter, and Staphylococcus. The lack of nitrate reduction
capabili t ies in the predominant organisms in the
metatranscriptome suggest that the microbes found to be still
viable in this particular product are likely not responsible for
generating nitrite and thus leading to nitrosamine formation.
As community diversity varies with brand, analyzing other
products or brands that have microbes with respiratory
nitrate-reducing capacities (Smyth et al. 2017; Tyx et al.
2016) would be beneficial to discover if they are actively
utilizing these genes in at least some on the shelf products.

An abundance of horizontal gene transfer mechanisms and
antimicrobial resistance genes has been suggested previously
in imputed metagenome data, so these gene categories were
explored in detail in this product. A few transposon and
transposase genes were identified (using the ICEBERG data-
base) and found to be highly covered in the metagenome.
Antimicrobial resistance genes in this product were identified,
mainly those found in Enterococcus and Bacillus genera. This
was not surprising, given the niche these microbes occupy,
where competition with fungi may be considerable. Overall,
there were few hits to both integrative and conjugative genetic
element (CARD), and antimicrobial resistance (ICEBERG)
databases. A lack of relevant hits in the metatranscriptome
suggests that while horizontal gene transfer of antimicrobial
resistance genes could happen in the earlier stages of produc-
tion, it is not likely active in the final product, at least for this
particular product.

In conclusion, we found this combined approach to be
powerful for producing a detailed analysis of tobacco product
microbiome activity. We found evidence for potentially path-
ogenic bacteria, antimicrobial resistance genes, horizontal
gene transfer pathways, and an unexpected abundance of viral
nucleic acids. The approach presented here could be most
effectively used to characterize the communities and expres-
sion of nitrate-reducing bacteria and fungi in an approach
targeting the steps in ST processing where the most nitrate is
being reduced, likely during the curing, aging, and fermenta-
tion steps. Organisms identified as living (by presence of
RNA, transcribed to cDNA and sequenced) in this particularly
finished, commercial product lacked the canonical capabilities
to convert nitrate to nitrite efficiently. A study looking at the
communities early in the processing of these products could
have a large regulatory impact in that it would reveal species

directly responsible for reducing nitrate and generating nitrite
that results in nitrosamine formation. This information could
help inform regulatory authorities as to potential changes in
manufacturing that could be taken as preventative measures.

The presence of active microbes in tobacco products has
long been known by the tobacco industry. However, presence
of bacterial components and viral particles known to be anti-
genic or immunomodulatory is a cause for concern and jus-
tifies the need for more research to support approaches for
making tobacco products less harmful.
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