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Abstract
Chronic infections caused byPseudomonas aeruginosa have been a major concern as their spread andmortality continue to be on
the rise. These infections are majorly attributed to biofilm formation via sequential steps where motility plays an essential role in
initial attachment of bacterial cells onto biotic and abiotic surfaces, thereby contributing to multi-drug resistance among patho-
gens. Therefore, attenuating motility properties can be considered as highly potential for controlling P. aeruginosa biofilm
formation. This strategy has employed the use of various natural and chemically synthesized compounds. The present review
article explained the importance and regulation of different types of motilities properties. Furthermore, it also covered several
important alternative approaches using anti-motility agents which could be helpful for controlling P. aeruginosa biofilm-
associated infections. Further studies are required for in-depth understandings about the mechanisms of motilities controlling
of these molecules at molecular levels.
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Introduction

Pseudomonas aeruginosa is a Gram-negative opportunistic
pathogen which has been known as a common cause of hu-
man infections ranging from acute pneumonia in immuno-
compromised patients to chronic bronchiectasis and ciliary
dyskinesia in cystic fibrosis patients (Stover et al. 2000).
Such variations in infectious levels are given by the bacterial
existence in two different lifestyles—planktonic and surface-
associating (sessile) (Furukawa et al. 2006). The acute infec-
tions which occur in the host within hours or days are caused
by planktonic population, whereas the chronic infections
which prolong for months or years are caused by sessile

population (Turner et al. 2014). Such long-term infectious
effect of sessile population is primarily due to the bacterial
formation of biofilm upon attaching on a surface which is
either biotic (e.g., damaged tissues and wounds) or abiotic
(e.g., medical devices and processing equipment) (Maurice
et al. 2018; Mulcahy et al. 2014). Biofilm formation is in fact
one of the consequential resistant mechanisms intrinsically
emerged by P. aeruginosa due to the overuse and misuse of
conventional antibiotics as treatments against this bacterium
(Hoiby et al. 2010; Mah and O'Toole 2001). Due to the ex-
treme complications in physiology, behaviors, and metabo-
lism, the biofilm population requires either potentiation of
conventional antibiotics or innovative strategies which em-
ploy non-antibiotic novel antimicrobial agents (in individual
form or in combination) and new different targets (e.g., bio-
film extracellular matrix, biofilm cell-to-cell communication,
or different virulence properties produced simultaneously
with biofilm formation) (Roy et al. 2018; Valentini et al.
2018; Wu et al. 2015a).

Studies have shown that planktonic and sessile lifestyles of
P. aeruginosa can be flexibly switched in response to the
environment where the bacteria colonize, thereby forming a
survival cycle in which planktonic state is exhibited at surface
sensing, translocation, initially reversible attachment to the
surface, and dispersal stages, whereas sessile state is exhibited
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at irreversible surface attachment, biofilm formation, and bio-
film maturation stages (Ha and O'Toole 2015). This switch
from planktonic to sessile lifestyles and vice-versa is the con-
sequence of complicated signaling networks mainly driven by
(1) the Gac/Rsm cascade, (2) the bis-(3′-5′)-cyclic dimeric
guanosine monophosphate (c-di-GMP) global second mes-
senger, and (3) the near-surface motility modes performed
by flagella and type IV pili (T4P) (Gellatly and Hancock
2013). The binding of small RNAs (sRNAs) with their repres-
sors in the Gac/Rsm cascade would modulate the level of c-di-
GMP, which at high level would up-regulate the biofilm com-
ponents such as Pel, Psl, and alginate exopolysaccharides and
down-regulate the assembly and function of flagellar and T4P
(Valentini and Filloux 2016). The flagella and T4P themselves
also have a machinery which operates during planktonic life-
style in accordance with environmental conditions; particular-
ly, flagella perform swimming in liquid media, T4P perform
twitching on solid media, and both flagella and T4P coopera-
tively perform swarming on semi-solid media (Maier and
Wong 2015; Nirody et al. 2017). Studies have confirmed that
the sequential cooperation between these two appendages
launches proper attachment of micro-colonies onto the sur-
face, thereby activating biofilm formation as well as numerous
different pathways which contribute to bacterial pathogenesis
and virulence (Conrad et al. 2011).

For the reasons mentioned above, the near-surface move-
ments of P. aeruginosa (e.g., swimming, swarming, and
twitching) have been regarded as a virulence property, along
with formation of biofilm and synthesis of numerous other
virulence compounds (Deziel et al. 2003). In the current situ-
ation when virulence properties have become a preferable
target in order to reduce selective pressure for the bacterial
resistant strains, extensive research for an effective anti-
motility agent have been conducted among the naturally de-
rived compounds, the chemically synthesized compounds and
their combinations (Masak et al. 2014). Due to the complica-
tions in motility regulation and their interactions with other
physiochemical and functional properties, the inhibition activ-
ities of most compounds were found varied towards swim-
ming, swarming, and twitching modes (de la Fuente-Núñez
et al. 2012). Furthermore, the molecular studies of these ac-
tivities were mostly not yet reported. However, these findings
have introduced the possibility of P. aeruginosa surface-
associated motilities as a new target for the future of control-
ling P. aeruginosa biofilm formation as well as its related
infections.

The importance and their regulation
of different P. aeruginosa motilities

P. aeruginosa population living in planktonic state causes
acute infections to their host through rapid release of toxins

and effectors, while the sessile state causes chronic infections
through production of biofilm as well as numerous different
extracellular virulence factors (Gellatly and Hancock 2013).
Furthermore, the presence of biofilm structure also provides
the enclosed bacterial community with a thousand-time pro-
tection from antibiotics pressure (Kostakioti et al. 2013).
Opting for such significant adaptation and survival over a
long-term, the bacterium has developed the flexibility in
switching between the planktonic and surface-associated life-
styles and utilized the surface motilities (e.g., swimming,
swarming and twitching) for their presence in different envi-
ronmental reservoirs, resistance against the extreme condi-
tions, and neutralization the immunological responses of the
host (D'Argenio and Miller 2004; Kolter and Greenberg
2006).

P. aeruginosa pathogenesis firstly requires the search for an
infection site using swimming motion augmented by a single
polar flagellum (Conrad et al. 2011). Under hydrodynamic
force and chemotaxis navigation, swimming enables the bac-
teria to sense and directionally translocate in low-agar envi-
ronment (0.3–0.4% agar) despite the surface repulsion to
reach and attach reversibly to the desirable surface (Yeung
et al. 2009). A transition from reversible to irreversible attach-
ment is then proceeded with swarming and twitching motions.
Swarming is performed in more viscous or semi-solid envi-
ronment (0.5–0.7% agar), thus in comparison to swimming,
swarming requires multiple flagella, T4P, rhamnolipid
biosurfactants, specific bacterial cell density, and nutrient
availability (e.g., iron, copper, nitrogen and carbon sources)
(Deziel et al. 2003; Patriquin et al. 2008; Shrout et al. 2006).
Importantly, swarming was confirmed as the major motility
performed during the early stage of biofilm establishment
(Shrout et al. 2006). Overall, swimming and swarming motil-
ities reflect the multi-roles of flagella in surface sensing, sur-
face attachment, biofilm formation, effectors production, and
defense against host immune response. On the other hand, in
the absence of flagella or on the solid media (1% agar) where
swimming and swarming are unfavorable, twitching is per-
formed instead (Burrows 2012). This motility is based on
the extension and retraction of a pili group known as T4P,
which is a polar filament with approximately 6 nm in diameter
(Petrov et al. 2013). T4P consists of a large number of major
pilins (PilA) and a small number of minor pilins and non-pilin
protein (PilY1) (Marko et al. 2018). The contact with a solid
surface induces a signal which is then transduced from the
contact point between the major pilin (PilA) of T4P and the
PilJ methyl-accepting chemotaxis protein to the
chemosensory signal transduction system ChpA (Jansari
et al. 2016). On one hand, ChpA induces CyaB (an adenylate
cyclase) and cyclic-AMP (c-AMP) production, resulting in (1)
virulence factor regulator (Vfr) expression which would acti-
vate the virulence factors production by quorum sensing (QS)
type II and III secretion system, and (2) pilY1 expression
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which would activate SadC (a diguanylate cyclase) to produce
c-di-GMP (Fulcher et al. 2010; Luo et al. 2015). The c-di-
GMP not only regulates the T4P-mediated motility, and it is
also involved in controlling the swarming and swimming
types of motility either directly or individually by other sig-
naling pathways. Apart from controlling these types of motil-
ity, c-di-GMP exhibits pleotropic functions, where it regulates
several other functional properties such as virulence proper-
ties, cell cycle, and biofilm formation in P. aeruginosa (Lin
Chua et al. 2017; Valentini and Filloux 2016). Hence, c-di-
GMP plays an important role in the transition from the plank-
tonic to biofilm stage of the P. aeruginosa. In addition, surface
contact could also induce stress to bacterial periplasm and cell
wall; thus, a recovery pathway carried out by sigma factor is
activated, which negatively regulates the cAMP-Vfr pathway
by producing exopolysaccharide (alginate) (Boucher et al.
2000).

Overall, in P. aeruginosa, it can be seen that swimming,
swarming, and twitching are essentially involved in (1) sens-
ing or searching for a desirable surface, (2) translocating the
bacterial cells towards the surface, (3) allowing the bacterial
cell-surface contact, (4) transitioning from planktonic into ses-
sile lifestyle, and (5) attaching properly to the surface or
transitioning from reversible to irreversible attachment so that
biofilm formation can take place. Furthermore, throughout the
stages of biofilm formation and development, swimming,
swarming, and twitching continue to interact as well as regu-
late numerous determinants of the bacterial pathogenesis, thus
having been categorized as virulence properties of the bacteria
(Glessner et al. 1999). Playing such an important role in bac-
terial physiology and phenotypes, swimming, swarming, and
twitching are regulated by the level of c-di-GMP global sec-
ond messenger. Although in P. aeruginosa, numerous pairs of
diguanylate cyclases (DGCs) and c-di-GMP phosphodiester-
ases (PDEs) are involved in synthesizing and degrading c-di-
GMPs, respectively, four main regulatory pathways have been
previously reported, one involves two components Gac and
Rsm, one involves the Chp chemotaxis system (described
above), one is designated as Wsp chemosensory pathway,
and the remaining is designated as HptB pathway, which all
intersect with each other to determine the lifestyle of
P. aeruginosa (Francis et al. 2017; Hickman and Harwood
2008; Römling et al. 2013). In the Gac/Rsm regulatory sys-
tem, the level of c-di-GMP is determined by a sRNA repressor
named RsmA, which upon binding with two sRNAs
(RsmY/RsmZ) would no longer suppress the diguanylate cy-
clase SadC to synthesize c-di-GMP. As a result, the c-di-GMP
level is elevated, which favors the biofilm-forming lifestyle. In
contrast, if RsmA is free from binding with RsmY/RsmZ,
RsmAwould suppress c-di-GMP synthesis of SadC, causing
the bacteria to exist in planktonic lifestyle (Chang 2017). The
c-di-GMP increases due to SadC activation that is also carried
out by ChpA regulatory system which has been described in

detail earlier (Fulcher et al. 2010; Luo et al. 2015). In the Wsp
chemosensory pathway, the level of c-di-GMP is mediated by
a pair of activator and anti-activator of flagellar gene expres-
sion known as FleQ and FleN, respectively. The binding of c-
di-GMP to FleQ prevents its binding the pelA promoter,
which terminates the extracellular polymeric substances
(EPS)-encoded gene transcription, hence suppressing the bio-
synthesis of EPS (Hickman and Harwood 2008). The remain-
ing c-di-GMP regulatory system is known as HptB pathway.
Basically, this pathway employs a diguanylate cyclase named
as HsbD to monitor the synthesis of c-di-GMP, flagella, and
pili and influence chemotaxis, thereby regulating the bacterial
swimming, swarming, and twitching motilities (Valentini and
Filloux 2016). c-di-GMP is also involved in regulating the
assembly and functions of appendages performing swimming,
swarming, and twitching, which are flagella and T4P.
Particularly, c-di-GMP is produced for flagellar assembly
and then is decreased by its binding to FleQ and YcgR regu-
lators for surface attachment (Ha and O'Toole 2015; Wolfe
and Visick 2008). Similarly, c-di-GMP production also initi-
ates T4P assembly and retraction to perform twitching trans-
location and adhesion (Leighton et al. 2015). The details of
signaling pathways which involve in the regulation of differ-
ent types of motility and formation of biofilm in P. aeruginosa
have been demonstrated in Fig. 1. In addition, studies have
found that the production of Psl exopolysaccharides from
P. aeruginosa also plays a crucial role in initial attachment
(e.g., crawling and walking) and regulates surface movements
(Gibiansky et al. 2010; Zhao et al. 2013). The knowledge of
regulatory network combining with the actions of
P. aeruginosa surface-associated motilities throughout the
bacterial lifestyle transition and biofilm formation provides a
fundamental platform to develop an alternative therapeutic
strategy to prevent the bacterial biofilm establishment as well
as its related infections.

Attenuation of motility properties
in P. aeruginosa

The pathogenesis and virulence of P. aeruginosa to the host
cells are primarily dependent on the initial contact to the cell
surfaces by the help of surface-specific phenotypes and ap-
pendages. Current therapies against P. aeruginosa biofilm for-
mation have shifted to suppressing the virulence properties
produced alongside with biofilm development, as such ap-
proaches seem to effectively reduce the resistance selection
pressure. Due to their essential roles in initial attachment stage
of biofilm formation, attenuating motions is proposed as a
potential approach for biofilm inhibition, beside inhibition of
virulence properties, quenching of the QS signaling circuit,
and disruption of mature biofilm (Caiazza et al. 2007; de la
Fuente-Núñez et al. 2012; Kearns 2010; Khan et al. 2019a).
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Though, QS interference poses as a strategy for biofilm inhi-
bition by allowing the bacteria tomodify their gene expression
pattern in response to changes in the cell density and species
composition of the microbial community and controls the ac-
tivation of defense mechanisms (virulence factors) and bio-
film formation (Oloketuyi and Khan 2017; Zhao et al. 2015).
P. aeruginosa QS is regulated by three main cell-to-cell sig-
naling systems—las, rhl, and PQS, which contain transcrip-
tional regulators (LasR, RhlR, and PqsABCD), and cognate
AHL synthases (LasI and RhlI) (Liu et al. 2019).

However, QS controls the cellular motility (swarming) in
P. aeruginosa, mainly mediated by RhlR which activates ex-
pression of the rhlAB genes thereby contributing to biofilm
formation (Shrout et al. 2006; Turkina and Vikstrom 2019;
Wilhelm et al. 2007) and reported the role of las and rhl QS
systems in twitching motility regulation and production of
functional type IV pili in P. aeruginosa PAO1. Similarly,
Blus-Kadosh et al. (2013) discussed the up-regulation of Rhl
quorum sensing system in P. aeruginosa leading to hyper
production of rhamnolipids thereby inducing swarming mo-
tility mediated by phosphate-specific transport system-PhoB.

Different molecules have been found to disrupt QS
pathway/steps in P. aeruginosa by inhibiting or agonizing
transcription factor/acyl homoserine lactones (AHLs) biosyn-
thesis pathway, suppressing gene expression (las, rhl, and

PQS), blocking of the LasR receptor and signal molecule deg-
radation as discussed in several excellent articles (Fong et al.
2018; Khan et al. 2019b; Scoffone et al. 2019).

Despite the extreme complications in terms of activation,
regulation, and interaction of motility-encoded genes as
broadly discussed in the previous section, a wide range of
effective anti-motility agents have been isolated from natural
sources (e.g., plants, bacteria, and animals) or synthesized
from chemical methods (O'May et al. 2012; Ulrey et al.
2014; Vadekeetil et al. 2016). Furthermore, these agents have
been combined into conjugates with each other or with bio-
compatible nanomaterials to enhance the anti-motility effect,
which shall be discussed in the following sections.

Naturally derived products

A significant number of compounds inhibiting P. aeruginosa
motilities have been discovered from natural resources
(Table 1). The availability and abundance of these sources
are the advantages for research and development of anti-
motility strategies. For instance, sub-minimum inhibitory con-
centration (sub-MIC) of cinnamaldehyde present abundantly
in cinnamon oil targeted the bacterial c-di-GMP level. As
aforementioned, c-di-GMP plays an important role in assem-
bling flagella—the swarming appendage. As a result, a

Fig. 1 Signaling pathways involved in the regulation of biofilm formation and different types of motility in Pseudomonas aeruginosa. The information
obtained from the literature (Chang 2017; Valentini and Filloux 2016; Valentini et al. 2016)
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Table 1 Naturally derived compounds inhibiting the motility of P. aeruginosa
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Table 1 (continued)
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reduction in swarming motion was observed (Topa et al.
2018). Similar anti-swarming effect was also obtained from
terrein compound isolated from Aspergillus terreus, in which
the compound caused an elevation in c-di-GMP level to mod-
ulate the flagellar stator function (Kim et al. 2018).

On the other hand, 7-hydroxyindole produced by
Escherichia coli suppressed the P. aeruginosa swarming by
targeting the bacterial growth environment, including (1) car-
bon and nitrogen availability and (2) production of
rhamnolipid biosurfactant (Lee et al. 2009). Numerous studies
have confirmed the essentiality of these environmental factors
to swarming motility, in which the sufficient carbon and ni-
trogen sources determine the synthesis of T4P that cooperates
with flagella to perform swarming, while the presence of
rhamnolipid conditions the surface tension, thus promoting
migration of swarmer cells (Caiazza et al. 2005; Deziel et al.
2003). Targeting the rhamnolipid production at gene expres-
sion level in order to confer the bacterial swarming was also
the mechanism employed by hordenine and baicalin extracted
from sprouting barley and Scutellaria baicalensis, respective-
ly (Luo et al. 2017; Zhou et al. 2018). As in P. aeruginosa,
rhamnolipid is produced and regulated by QS system, and
disrupting QS or quorum quenching also results in swarming
inhibition. Plant phenolic compounds such as methyl gallate
and tea polyphenols which played the quorum quenching role
in P. aeruginosa were also found to suppress the swarming
motility of this bacteria (Hossain et al. 2017; Yin et al. 2015).
Likewise, diallyl disulfide isolated from garlic oil repressed all
three QS systems in the bacteria, thereby down-regulating
flagellar synthesis and flagellar-mediated motility, which are

swimming and swarming (Li et al. 2018). Likewise, swim-
ming and swarming of P. aeruginosa were also inhibited by
the natural alkaloid (R)-norbgugaine from Arisarum vulgare,
along with flagellar function, biofilm formation, and
rhamnolipid synthesis (Majik et al. 2013). Recently, a wide
range of secondary metabolites produced from non-
pathogenic bacteria have been found to also exhibit anti-
biofilm and quorum quenching activities to P. aeruginosa
(Gutierrez-Barranquero et al. 2019; Zhao et al. 2019).
Although their anti-motility performance was not noticed,
disrupting the regulatory role of QS is expected to also result
in an inhibitory effect in the bacterial motilities. Despite nu-
merous evidences demonstrating for the major effects of QS
inhibitors onP. aeruginosa swarming, such effect as well as its
mechanism on the bacterial twitching motility remained lim-
itedly known. What is more, the previous study conducted by
Glessner et al. (1999) claimed that the two auto-inducers of las
QS system—PAI-1 and PAI-2—were able to regulate
twitching motility by involving in T4P assembly and
retraction/extension function (Glessner et al. 1999). This find-
ing was in contrast to another study conducted later on by
Beatson et al. (2002) where the QS system only indirectly
affected twitching motility by regulating alginate and viru-
lence properties production, as well as biofilm formation. As
twitching is also one of the motilities that performs initial
attachment in biofilm formation process, such indirect link
between twitching and QS could explain why twitching can
be inhibited by several anti-biofilm or quorum-quenching
agents (Bahari et al. 2017; Kiymaci et al. 2018; Luo et al.
2017) . Also target ing the twi tching mot i l i ty of

Table 1 (continued)

NA not available
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P. aeruginosa, a phage protein named D3112 protein gp05
(Tip) has recently been found to be able to repress the expres-
sion of pilB which essentially involves in T4P synthesis and
extension. This application of phage therapy has helped ex-
tending the variations in targets and treatments in controlling
P. aeruginosa biofilm formation. Several other naturally de-
rived products which have been identified as a drug for atten-
uating the different motility properties of P. aeruginosa are
summarized in the Table 1.

Chemically synthesized products

Several chemically-synthesized compounds have also exhib-
ited high anti-motility activity against P. aeruginosa. Due to
the currently high demand of treatments for the bacteria, the
chemical-based synthesis of potent drugs might be helpful as
an alternative approach. The advances in chemical methods
also allow purposely, direct, and vast production of numerous
molecules and compounds with competitive anti-motility
function without performing complex extraction and charac-
terization processes as seen for the natural compounds.
Furthermore, the compounds which are chemically synthe-
sized possess significant improvements in the bacterial motil-
ity inhibition and many other related phenotypes (Khan et al.
2019c). Table 2 represents several chemically synthesized
compounds known to inhibit the swimming, swarming, and
twitching motilities of P. aeruginosa.

Various chemically synthesized compounds have been re-
ported to inhibit P. aeruginosamotilities by targeting the bac-
ter ia l QS signaling system. For example, (z)-5-
octylidenethiazolidine-2,4-dione and lipoic acid also signifi-
cantly inhibited P. aeruginosa swarming (Cevik and Ulusoy
2015; Lidor et al. 2015). Another chemical named phenylala-
nine arginyl β-naphthylamide also targeted QS, swimming,
and twitching, yet its role was previously known as an efflux
inhibitor to P. aeruginosa (El-Shaer et al. 2016). Attenuating
the flagellar functions, along with production of
exopolysaccharides, rhamnolipid, and lipopolysaccharides,
was the mechanism used by anteiso-C15:0—a branched-
chain fatty acid to completely inhibit P. aeruginosa swarming
motility, while it only partially affected swimming and
twitching (Inoue et al. 2008). Anti-swarming activity of doxy-
cycline antibiotic was by reducing rhamnolipid production
(Husain and Ahmad 2013). However, the molecular basis of
these anti-motility effects has yet to be elucidated. In contrast,
in the case of the 2,5-piperazinedione compound, the com-
pound was found to suppress the bacterial LasR system by
competing with 3-oxo-C12-HSL ligand to bind to the
glutamic acid receptor, thus causing down-regulation of all
QS-related phenotypes, including swimming motility
(Musthafa et al. 2012). In another study, de la Fuente-Núñez
et al. (2014) have synthesized that the Peptide 1037 cationic
peptide and its anti-biofilm activities were screened using

microarray method. Results have shown that the peptide was
able to directly down-regulate the expression of flagella-, QS-,
and rhamnolipid-encoded genes, leading to significant reduc-
tion in both swarming and swimming motility. However, the
positive correlation between rhamnolipid level and swarming
motility may not always take place, as in a study by Oura et al.
(2015), the inhibitory activity of 1-naphthol chemical against
P. aeruginosa swarming was found dependent on expression
of the flagella and pili-encoded genes instead of rhamnolipid
(Oura et al. 2015). Overall, due to the advantages of time- and
cost-saving, chemical methods should also be more extensive-
ly exploited in both phenotypic and molecular studies to add
in the variation of anti-motility agents against P. aeruginosa.

Combinatorial approaches

In recent years, with the attempt to potentiate the conventional
antibiotics in terms of anti-motility activity, controlled release
and stability at a lowered concentration over a long period of
time, several combinations of the antibiotics with different
antibiotic(s) or with non-antibiotic compound(s)/structure
were applied to inhibit P. aeruginosa biofilm formation (Das
et al. 2016b; Ferrer-Espada et al. 2019; Gupta et al. 2017).
When forming a combination with non-antibiotics com-
pound(s)/structure, the antibiotics can be loaded externally (a
coating layer) or internally (encapsulation). Otherwise, com-
binations can also be constructed from natural compounds and
chemically synthesized compounds, diversifying the inhibito-
ry effect against P. aeruginosa motilities as well as numerous
different virulence phenotypes (Tyers and Wright 2019). In
general, the significances of combination approaches include
(1) improving the performance of each individual compound
and (2) actively reducing the potentials of resistance emer-
gence in P. aeruginosa. For example, the clarithromycin anti-
biotic which was encapsulated into a lipid nanocarrier named
liposome showed enhanced stability, and the most significant
inhibitory activity against various types of P. aeruginosa mo-
tility was obtained from positively charged liposome
(Alhajlan et al. 2013). Chitosan is a biopolymer that when
combined with polypyrrole into nanocomposites has shown
an increase in inhibitory action against P. aeruginosa swim-
ming and swarming (Khan et al. 2019c). Similar effect was
obtained in P. aeruginosa swarming, swimming, and
twitching when treated with fucoidan-capped gold nanoparti-
cles (Khan et al. 2019a). Recently, a report showed that newly
synthesized chitosan oligosaccharide capped-gold nanoparti-
cle attenuates the swimming and twitching motility properties
of P. aeruginosa (Khan et al. 2019d).

Anti-swarming action of natural compound named vitexin
was also significantly improved by conjugating with conven-
tional antibiotics (azithromycin and gentamicin) (Das et al.
2016b). However, the number of available anti-motility con-
jugates as well as the knowledge about underlyingmechanism
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Table 2 Chemically synthesized compounds inhibiting the motility of P. aeruginosa
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against the bacterial motility of these combinations has
remained lacking.

Overall, a wide variety of natural compounds have been
able to inhibit P. aeruginosa motilities by different motility-
regulating pathways. As motilities play a major role at ini-
tial stage of the bacterial biofilm formation, their suppres-
sion can be taken as a highly potential approach towards
biofilm inhibition. The nanomaterials which are ranged

from metallic to polymeric forms have been used for con-
jugating the motility inhibiting drugs which works either
synergistically or act as a carrier for the drugs (Dos
Santos Ramos et al. 2018). The anti-motility agents current-
ly being used to attenuate P. aeruginosa motilities would
provide an important insight and propose surface motility
attenuation as a potential approach against P. aeruginosa
biofilm formation.

Table 2 (Continued)

NA not available
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Concluding Remarks and Future Perspectives

In the current urge to combat biofilm-related infections
caused by P. aeruginosa and prevent the risks of new
resistance emergence, the virulence properties produced
during biofilm formation and development have become
attractive. The bacterial surface motility consisting of
swimming, swarming, and twitching are the virulence
properties which are essential for a multitude of functions:
surface sensing and translocation, lifestyle switching, bio-
film formation, biofilm maturation, and biofilm dispersal.
Therefore, combating the bacterial motility can be consid-
ered as a promising strategy to prevent biofilm formation.
The essential roles of P. aeruginosa motility were firstly
described in the present review paper, followed by their
performing machineries (e.g., flagella and pili) and regu-
lation carried out by chemotaxis, QS as well as several
signal transducing pathways. The focus of the present
review includes (1) to highlight the importance of
P. aeruginosa motilities and (2) to summarize the up-to-
date compounds derived from natural resources or synthe-
sized chemically, in individual form or in combination
that have been used to attenuate the bacterial motilities.
The targets of these anti-motility agents were highly var-
ied from the flagella or pili assembly, QS, wetting agent
(i.e., rhamnolipid) to the signaling molecules (e.g., c-di-
GMP) and regulatory genes expression. Due to the com-
plications in the motility induction and regulation, further
studies are required to explore the molecular insight of
these motility inhibitors, as well as their actions to
motility-related phenotypes, thereby developing a power-
ful agent which can effectively suppress multiple targets
for controlling P. aeruginosa biofilm formation.

Similar to many other anti-virulence approaches, full
understandings about the potentials of anti-motility ap-
proach have remained in research. A number of compounds
exhibiting inhibition activity towards P. aeruginosa motilities
have not been elucidated for detailed mechanism.
Furthermore, each type of motility may require different con-
ditions to be suppressed. For example, inhibiting swarming
motility is more complex than swimming motility, as beside
flagellar assembly and functions, c-di-GMP level and QS, the
targets are extended to (1) the unique differentiation and gene
expression between the flagella tip and the central population
(Tremblay and Deziel 2010); (2) the bacterial synthesis of
biosurfactant (i.e., rhamnolipid) to reduce the surface tension;
(3) the bacterial swarming disability by modifications in cul-
turemedia using agar, salt, water, viscous agents, or sugar; and
(4) nutrient source such as iron. For being regulated by a
different machinery which is T4P, twitching motility, on the
other hand, is known to be suppressed by different mecha-
nisms, including reducing c-AMP production, interfering ma-
jor pilin-encoded gene expression and availability of inorganic

polyphosphate and iron. In addition, due to the well-known
advantages of stability and longevity in combinatory ap-
proaches, more research on combining anti-motility-agent
with other compounds or carriers is strongly recommended.
Several positive outcomes discussed in the previous section
are worth more attention. Furthermore, the anti-motility effect
of these conjugates also has not been clarified to whether
result from synergism between the two individuals or from
only one individual. In case it is synergism that causes biofilm
inhibition in P. aeruginosa, distribution and targets of each
compound would require further studies. Finally, the natural
resources of the motility inhibitors should be diverse and the
new chemical compounds should continue being developed in
order to maintain the availability of anti-motility agents over a
long period of time.

Outstanding questions

1. With the significant benefits of adopting combinatory ap-
proaches, can more anti-motility agents be incorporated/
encapsulated into other compounds/carriers? Can their ef-
fects be studied at molecular level?

2. Is it possible that the inhibition to P. aeruginosa motility
by using combinatory approaches is derived from syner-
gism between compounds? If so, what is the mechanisms
of such effects?

3. How do the individual compounds perform anti-motility
action in P. aeruginosa differently when in combination
with other compounds? Can this effect be studied at mo-
lecular and genetic level?

4. By conjugating nanocarriers with anti-motility agent(s),
will there be any unexpected effects to other motilities
caused by the nanocarriers? As a number of anti-motility
agents were able to suppress only one/two motilities per
application time.

5. How the c-di-GMP receptor/effector protein functions
and how their presence benefits other related pathways?

6. How can P. aeruginosa differentiate which the surfaces
they prefer attaching?What is the mechanism of chemical
interaction between the biofilm components and other
surface components?

7. How do the motility machineries behave differently on
different surfaces?

8. How does T4P involve in regulating swarming motility?
Does T4P presence play a crucial role in the bacterial
swarming performance?
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