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Abstract
The worldwide prevalence of type 2 diabetes mellitus (T2DM) is constantly increasing, and it has become a major concern, with
several implications for public health, economy, and social well-being. It is well-known that several factors such as lifestyle,
increased intake of fat and sugar-rich foods, and host genetics can lead to T2DM. Some recent studies have suggested that the
composition of the intestinal microbiota can trigger T2DM. Since then, considerable effort has been made to understand the link
between the composition of intestinal microbiota and T2DM, as well as the role of probiotics in modulation of intestinal
microbiota. This mini-review summarizes the major findings and discusses the close relationship between intestinal microbiota,
probiotics, and T2DM.
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Introduction

Diabetes is a chronic disease caused by inherited or acquired
deficiency in the production of insulin by the pancreas or the
inability of the body to make adequate use of the insulin pro-
duced (WHO 2016). Diabetes is a chronic condition, and af-
fected individuals must routinely manage their lifestyle (ADA
2009; Ahola et al. 2017).

Diabetes affects more than 420 million people worldwide
and this number may continue to increase in the future (WHO
2016). It is predicted that about 630 million people will be
affected by the illness worldwide by the year 2045 (IDF
2017). In this context, diabetes is a global concern which
strongly impacts public healthcare expenditures with an esti-
mated cost of $827 billion worldwide (Seuring et al. 2015).

The three main types of diabetes are type 1, type 2, and
gestational diabetes; however, there are some other types of
diabetes such as autoimmune latent in adults (LADA), for

example. Type 1 diabetes (also called insulin-dependent,
juvenile, or childhood onset) is characterized by low insulin
production and requires daily administration of this hormone.
The cause of type 1 diabetes is still unknown and cannot be
prevented with current knowledge (WHO 2016). Diabetes
LADA is a special subtype of type 1 diabetes and it is charac-
terized by slow β cell damage in the islets (Xiang et al. 2015).
Therefore, patients with LADA usually show early signs that
mimic type 2 diabetes, resulting in a non-negligible diagnostic
rate. In fact, it has been estimated that the incidence of LADAs
is about 6% among newly diagnosed patients with type 2
diabetes (Martinell et al. 2016).

Maturity-onset diabetes of the young (MODY) is a subtype of
diabetes, characterized by early onset (usually under 25 years of
age) and autosomal dominant transmission (determined in at least
three generations). It corresponds to a primary defect in insulin
secretion associated with pancreatic β cell dysfunction (Nyunt
et al. 2009). Another type of diabetes, the gestational diabetes, is
characterized by hyperglycemia (increased blood sugar) that ap-
pears during pregnancy and reaches values that, although higher
than normal, are lower than those established for the diagnosis of
diabetes. Women with gestational diabetes have a higher risk of
complications during pregnancy and delivery. In addition, they
and their children are at greater risk of developing type 2 diabetes
in the future (WHO 2016).

The T2DM is a metabolic disorder characterized by high
blood glucose that results from a combination of insufficient
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insulin secretion and insulin resistance (Asemi et al. 2013).
Although T2DM is most commonly diagnosed in older adults,
the incidence of this pathology has been increasingly observed
in children, adolescents, and young adults due to increasing
levels of obesity, physical inactivity, and poor diet (IDF 2017).
The factors and mechanisms that trigger T2DM have been
intensely discussed, and the major risk factors are genetic
factors, high caloric intake, and physical inactivity
(Lyssenko et al. 2008).

Obesity is one of the most important triggers for T2DM
diabetes development. Obesity is a complex condition that is
explained by risk factors, such as total energy expenditure,
level of physical activity, food intake, genetics, socioeconom-
ic status, or level of education, in addition to an unconvention-
al but highly studied factor, which is the intestinal microbiota,
which has been related to obesity (Dugas et al. 2018). There
are differences between the composition of the intestinal mi-
crobiota of thin and obese individuals, so a correlation be-
tween obesity and the composition of the microbiota was ob-
served and suggested (Peters et al. 2018). The majority of
studies have found a higher proportion of Firmicutes phylum
and a lower amount of Bacteroidetes in obese microbiota
when compared to the lean (Schwiertz et al. 2010; Bervoets
et al. 2013). However, according to recent revision about obe-
sity and microbiota, the Firmicutes/Bacteroidetes ratio can
change depending on the obese population under study, and
therefore, a more detailed study of the intestinal microbiome,
covering bacterial families, genera, and species, is required for
a better understanding of the relationship between obesity and
the gut microbiota (Bianchi et al. 2018).

Therefore, exercise is often prescribed for weight loss and
maintenance. Some evidence suggests that chronic exercise
usually causes partial, but incomplete, compensation for ener-
gy intake, and this is likely to be due to beneficial changes in
appetite-regulating hormones (Stensel 2010). It is worth not-
ing that the type of physical activity has a different impact on
the intestinal microbiota, it has been reported that some mod-
erate intensity exercises reduce intestinal transit (time) and
increase the diversity of the microbiota (Evans et al. 2014;
Campbell et al. 2016), while strenuous (prolonged) exercises
may increase bowel permeability resulting in bacterial trans-
location of the colon, diarrhea, and gastrointestinal bleeding
(Martin 2011). According to Matsumoto et al. (2008), he
showed that voluntary physical exercise can stimulate species
of butyrate-producing bacteria and, consequently, the produc-
tion of AGCC (n-butyrate).

The intestinal microbiota profile may be associated with
specific dietary patterns and responds to diet (David et al.
2014). Thus, beneficial microbes, such as probiotics and their
metabolites, modify the microbiota profile and consequently
influence metabolic parameters, such as the improvement of
insulin sensitivity (Asemi et al. 2013). Probiotics are living
microorganisms that, when administered in adequate

amounts, confer benefits to an individual’s health (Hill et al.
2014). Two of the main probiotic strains that are advantageous
to health include Lactobacillus and Bifidobacterium.
However, others microorganisms, such as yeast, can be used
as probiotic. The good example is S. cerevisiae also known as
S. cerevisiae var. boulardii (Edwards-Ingram et al. 2007;
Bernaola et al. 2010).

In this context, the impact of probiotic microorganisms on
T2DM acquires special interest, since strategies aimed at the
use of probiotics can alter the microbial balance in favor of the
host. Thus, the goal of this review is to discuss the use of
probiotics and their impact on the microbiota and on major
biomarkers as a strategy for the prevention of T2DM as well
as to prescribe probiotic use for the amelioration of illness
progression.

Relationship of intestinal microbiota
with T2DM

The intestinal microbiota, often referred to as a hidden organ
harboring trillions of microorganisms, are arguably as important
to the metabolic health of the host as the organs that sustain them
(Patterson et al. 2016). The adult intestine has approximately
500–1000 different bacterial species and may have 1012–1014

microorganisms with a mass weight of about 1–2 kg (Blaut
and Clavel 2007). Metagenomic studies have revealed that ap-
proximately 90% of the bacterial species present in the adult
intestine belong to the phyla of Bacteroidetes and Firmicutes.
In addition, other phyla such as Actinobacteria, Proteobacteria,
and Verrucomicrobia are found in low abundance (HUMAN
MICROBIOME PROJECT C 2012a, 2012b; Kalinkovich and
Livshits 2019). Depending on the anatomy, abiotic environment,
and diverse functions of different parts of the intestine, the mi-
crobial composition may vary (Blaut and Clavel 2007). The gut
microbiota is characterized by a significant interpersonal variabil-
ity and depends on differences attributed to genetics, diet, life-
style, health status, and hygiene (Kalinkovich andLivshits 2019).

A healthy gut commensal microbiota is beneficial to the
host, and it is linked with vital activities, such as digestion,
harvesting energy from food components, xenobiotic degra-
dation, production of water-soluble vitamins, and production
of metabolites. These vital activities can promote intestinal
barrier integrity, support the functional capacity of the gut
epithelium, and provide protection from pathogens (van de
Wiele et al. 2016).

On the other hand, dysbiosis is a disruption of the host-
microbiota equilibrium due to gut inflammation, use of anti-
biotics, stress, menopause, toxin, and others triggers (Hegde
et al. 2018). In addition, dysbiosis has been linked with a
range of disorders such as cardiovascular (Battson et al.
2018) and autoimmune disorders (Opazo et al. 2018), autism
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(Sgritta et al. 2019), obesity (Bianchi et al. 2018), and T2DM
(Karlsson et al. 2013), among others.

T2DM may be linked to the composition of the intestinal
microbiota and is directly responsible for the induction of low-
grade inflammation. Further, the composition of the intestinal
microbiota plays a significant role in the development of pre-
diabetic conditions, such as insulin resistance (Roager et al.
2017). In this context, studies on the characterization of the
intestinal microbiota of individuals with T2DM as well as the
evaluation of possible correlations between the abundance of
certain microorganisms and metabolic aspects are fundamen-
tal to clarify and strengthen the role of the microbiota in this
clinical condition (Sabatino et al. 2017).

According to Sabatino et al. (2017), the main characteris-
tics of the microbiota of T2DM patients are reduced butyrate-
producing bacteria (especially Roseburia intestinalis and
Faecalibacterium prausnitzii); moderate dysbiosis; pro-
inflammatory environment with increased expression of mi-
crobial genes involved in oxidative stress, reduced expression
of genes involved in vitamin synthesis, and increased serum
LPS concentration; and increased intestinal permeability.

In addition, the major alterations in the intestinal microbi-
ota that are associated with T2DM include a significantly low-
er prevalence of Firmicutes and an enrichment of
Bacteroidetes and Proteobacteria (Roager et al. 2017). In
terms of marker species in the microbiota of T2DM patients,
some studies have observed a high number of opportunistic
pathogens, such as Clostridium clostridioforme, Bacteroides
caccae, Clostridium hathewayi, Clostridium ramosum,
Clostridium symbiosum, Eggerthella sp., and Escherichia coli
(Larsen et al. 2010; Karlsson et al. 2013). Larsen et al. (2010)
showed thatBetaproteobacteria family was highly enriched in
T2DM patients compared to non-diabetic individuals.

Dysbiosis in T2DM patients, caused by the interaction of the
intestinal microbiota with environmental and genetic factors,
leads to increased intestinal permeability and altered mucosal
immune response, whichmay result in the development or wors-
ening of T2DM (Razmpoosh et al. 2018). It is important to
highlight the interactions between the microbiota and the im-
mune system since factors hampering these interactions can lead
to metabolic disturbances. The lipopolysaccharide (LPS) of
Gram-negative bacteria can stimulate the inactive immune sys-
tem by activating toll-like receptors and inducing the release of
inflammatory cytokines. Further, LPS promotes the activation of
the nuclear factor kappa-B and c-Jun N-terminal kinase path-
ways, both of which are linked to the development of insulin
resistance and the deficiency of insulin signaling in the muscle,
adipose tissue, liver, and hypothalamus (White 2002; Caricilli
and Saad 2013; Newsholme et al. 2016).

It is important to highlight that the gut microbiota is also
responsible to produce and contribute to energy by short chain
fat acids (SCFA) production, which involves the anaerobic
breakdown of dietary fiber, protein, and peptides. The most

produced by colonic bacteria are acetate, propionate, and bu-
tyrate (Baxter et al. 2019). Acetate and propionate are mostly
produced by Bacteroidetes phylum, while butyrate is pro-
duced by the Firmicutes phylum. When the gut microbiota is
in dysbiosis is directly related with alteration of SCFA pro-
duction (Alexander et al. 2019). According to Gao et al.
(2009), SCFA, particularly butyrate, improves insulin sensi-
tivity and secretion by stimulating the secretion of peptide 1
like glucagon (GLP-1) and reducing the inflammation of ad-
ipocytes (Ríos-Covián et al. 2016; Tolhurst et al. 2012; Wang
et al. 2015). Further, Qin et al. (2012) showed that Chinese
patients with T2DM demonstrated a decrease in SCFA-
producing bacteria, mainly butyrate-producing bacteria
(Clostridiales sp. SS3/4, Eubacterium rectale, F. prausnitzii,
and R. intestinalis, among others). These studies suggest that
factors that are able to increase levels of SCFA, especially
butyrate, are important for relieving T2DM symptoms. In ad-
ditional, dietary butyrate supplementation has been associated
with decrease of weight gain in animals fed high-fat diets
(HFD). Although numerous bacterial strains have been ana-
lyzed for their butyrate-producing capacities, such as
Faecalibacterium prausnitzii (a member of Clostridium
cluster IV) and Eubacterium rectale/Roseburia (Clostridium
cluster XIVa) (Lu et al. 2016).

Besides insulin resistance/sensitivity, the intestinal micro-
biota and its metabolites can affect other factors involved in
T2DM, such as body weight, pro-inflammatory status, and the
modulation of intestinal hormones. In this sense, the modula-
tion of intestinal microbiota composition and metabolites
using beneficial microorganisms, such as probiotics, can have
advantageous effects on glucose metabolism and insulin resis-
tance. The physiological functions of probiotics might lead to
modulation of intestinal microbiota and can affect appetite,
food intake, body weight, and metabolic functions of the body
by means of gastrointestinal pathways (Rad et al. 2017;
Kobyliak et al. 2016).

The use of probiotics for the management
of T2DM

Probiotics were recognized for conferring health benefits;
however, based on a large number of well-designed clinical
trials, it was agreed that certain health beneficial effects of
various strains of various well-studied microbial species can
be attributed to probiotics as a general class (Hill et al. 2014;
Fijan 2014). Several species of the genera Bifidobacterium
and Lactobacillus claim to have a major benefit in healthy
intestinal microbiota, creating a favorable intestinal environ-
ment. In addition, strain-specific probiotics support positive
health outcomes, including the maintenance of a healthy im-
mune system (Hill et al. 2014; McFarland et al. 2018).
Probiotics are considered as complementary and alternative
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medicine, along with vitamins, minerals, and other food sup-
plements (April et al. 2012).

In this context, some studies have suggested that probiotics, as
good intervention options in metabolic diseases, can positively
alter intestinal microbiota safely and effectively and as a conse-
quence a positive response in diseases (Reyes et al. 2016; Dahiya
et al. 2017; Bianchi et al. 2018). In general, probiotics have
shown beneficial effects, and various mechanisms have been
proposed for T2DM therapy (Panwar et al. 2013). The possible
relationship between probiotics, gut microbiota composition, and
reduction of T2DMsymptoms is shown in Fig. 1. After ingestion
of probiotics, an improvement in T2DM symptoms is usually
observed, such as improved intestinal integrity, decreased sys-
temic LPS levels, decreased endoplasmic reticulum stress, and
improved peripheral insulin sensitivity (Park et al. 2015;
Balakumar et al. 2018; Lim et al. 2016).

The levels of LPS are closely related to intestinal integrity.
Thus, it is known that the translocation of LPS from the intes-
tinal lumen to the circulatory system is prevented by the in-
testinal barrier during homeostasis (Vera et al. 2018). This
barrier possesses an intestinal permeability that is usually reg-
ulated by tight junction proteins and adhesion between the

epithelial cells of the intestine, which create a barrier that
prevents bacteria, toxins, and intestinal lumen products from
reaching circulation (Vancamelbeke and Vermeire 2018). The
translocation of LPS into circulation due to disruption of the
intestinal barrier might trigger inflammation, leading to the
development of various diseases, such as obesity (von
Scholten et al. 2013), atherosclerosis (Wiesner et al. 2010),
and diabetes (Creely et al. 2007). One hypothesis is that the
T2DM can be improved by decreasing the concentration of
LPS in the blood (Trøseid et al. 2013). Amar et al. (2011)
showed, using an animal model for insulin resistance and
T2DM, that treatment with the probiotic Bifidobacterium
animalis subsp. lactis 420 for 6 weeks can reduce metabolic
endotoxemia, inflammation, and translocation of LPS and im-
prove the overall metabolism.

Different probiotic strains showed a beneficial impact on
T2DM both for clinical models and for animal models
(Table 1 and Table 2) such as reduction in plasma lipids and
pro-inflammatory genes (TNF-α, IL-6, IL-β) and increase
production of short chain fatty acids (SCFA). In addition,
some studies have shown that a mixture of different probiotic
strains has a better and broader impact on human health when

Fig. 1 Intestinal microbiota in
homeostasis and dysbiosis
promoted by type 2 diabetes and
consequent impact on the
development or prevention of
T2DM. Intake of probiotics can
positively modulate the intestinal
microbiota, resulting in increased
production of saccharolytic
fermentation, short chain fatty
acids (SCFA), and improved
function of the intestinal barrier.
Increased SCFAs are implicated
in the release of glucagonal
peptide-1 (GLP-1), which have an
important impact on satiety, hun-
ger, insulin sensitivity, and also
improve intestinal barrier func-
tion. Consequently, increased
bowel barrier function may re-
duce translocation of bacteria and
liposaccharide (LPS), and thus
reduce pro-inflammatory markers
(interleukin-6 (IL-6), tumor ne-
crosis factor (TNF)), and increase
anti-inflammatory markers (inter-
leukin-10 (IL-10)), as well as in-
crease glycosylated hemoglobin
A1c (HbA1c)
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used individually (Kobyliak et al. 2018; Razmpoosh et al.
2018; Ejtahed et al. 2012; Bagarolli et al. 2017).

According to Bagarolli et al. (2017), the treatment
with the probiotics L. rhamnosus, L. acidophilus, and
B. bifidum in animal model increase of Bacteroidetes
and decrease of Firmicutes abundance. In addition, the
authors showed that a high-calorie diet promotes chang-
es in gut microbiota that are reflected in increased in-
testinal permeability, translocation of the SPL, and low-
grade systemic inflammation, resulting in decreased glu-
cose tolerance. In addition, according to Firouzi et al.
(2016) and O’Connor et al. (2017), probiotics may mod-
ulate intestinal microbiota, which, through cascading
metabolic processes, may result in improved lipid pro-
files (decreased LDL, CT normalization, increased
HDL), reduced fasting glucose levels, hemoglobin A1c,
fasting insulin levels, and levels of C-reactive protein
(CRP).

In addition, the elegant study realized by Brandão et al.
(2018) showed for first the time that administration of
Saccharomyces Boulardii is strongly associated with glyce-
mic control, cardiovascular protection, and improvement of
inflammatory profile in animal model.

The strengths and distinctions of this review include
the inclusion of the specific medium (animal or clinical)
dose and duration of each probiotic intervention, provid-
ing insight into the probiotic that may be clinically rel-
evant and beneficial for blood glucose. However, the
specific relationship between microbiota-probiotic-
T2DM has not been clarified. There are few experimen-
tal studies on microbiota modulation by probiotic and
DM2 ingestion and we found many studies (clinical or
animal) on probiotic ingestion and biochemical parame-
ters. Finally, further studies are needed to identify which
specific microorganisms and mechanisms of action are
involved in preventing DM2 and probiotic ingestion.

Table 1 Effects of different probiotic strains on diabetes mellitus type 2 parameters (clinical trial)

Probiotic/probiotic candidate Subject Dose/duration Main findings after treatment
with probiotic candidate,
probiotic group compared
with placebo group:

Authors

Lactobacillus casei 20 people with
diabetes 2 type

1 × 108 CFU for 8 weeks. ↓FBG
↓IC
↓IR

Khalili et al.
(2019)

Multiprobiotic “Symbiter”
(concentrated biomass of
14 probiotic bacteria
genera: Bifidobacterium,
Lactobacillus,
Lactococcus,
Propionibacterium)

53 people with
diabetes 2 type

Lactobacillus + Lactococcus (6 × 1010

CFU g−1)
Bifidobacterium (1 × 1010 CFU g−1)
Propionibacterium (3 × 1010 CFU g−1)
Acetobacter (1 × 106 CFU g−1)
For 8 weeks.

↓TNF-α
↓IL-1β
↓IL-6
↓HOMA-IR
↓HbA1c

Kobyliak et al.
(2018)

Lactobacillus reuteri DSM
17938

46 people with
diabetes 2 type

L. reuteriDSM 17938 1010 CFU g−1 for 12
weeks.

↑ISI
↑DCA in subgroup with

higher microbial diversity
at baseline.

Mobini et al.
(2017)

7 viable strains of
Lactobacillus,
Bifidobacterium and
Streptococcus.

30 people with
diabetes 2 type

Lactobacillus acidophilus (2 × 109 CFU)
Lactobacillus casei (7 × 109 CFU)
Lactobacillus rhamnosus (1.5 × 109 CFU)
Lactobacillus bulgaricus (2 × 108 CFU)
Bifidobacterium breve (3 × 1010 CFU)
Bifidobacterium longum (7 × 109 CFU)
Streptococcus thermophilus (1.5 × 109

CFU)
For 6 weeks.

↑HDL-C
↓FPG

Razmpoosh et al.
(2019)

Lactobacillus casei 68 people with
diabetes 2 type

Lactobacillus casei (4 × 1010

CFU)-fermented milk for 16 weeks.
Partially improved bowel

disbiosis in type 2 diabetes.
Sato et al. (2017)

Lactobacillus acidophilus La
5

Bifidobacterium lactis Bb-12

64 people with
diabetes 2 type

Lactobacillus acidophilus La5 (7 × 106

CFU/day)
Bifidobacterium lactis Bb-12 (6 × 106

CFU/day)
For 6 weeks

↑Erythrocyte SOD
↑GPx
↑TAC
↓FBG
↓HbA1c

Ejtahed et al.
(2012)

Note: ↓decrease, ↑increase, FBG fasting blood glucose, IC insulin concentration, IR insulin resistant, TNF-α tumor necrosis factor-α, IL-1β interleukin-
1β, IL-6 interleukin-6, HOMA-IR homeostasis model assessment-estimated insulin resistance, HbA1c glycosylated hemoglobin A1c, ISI sensitivity
index, DCA serum levels deoxycholic acid, HDL-C high density of lipoprotein cholesterol, FPG fasting plasma glucose, SOD superoxide dismutase,
GPx glutathione peroxidase, TAC total antioxidant capacity, FBG fasting blood glucose
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Table 2 Effects of different probiotic strains on diabetes mellitus type 2 parameters (anima model)

Probiotic/probiotic
candidate

Subject Dose/duration Main findings after treatment
with probiotic candidate,
probiotic group compared with
placebo group:

Authors

Lactobacillus casei
CCFM419

32 male mice (C57BL/6J) divided into
four groups:

-mice receiving normal diet;
-Diabetic control group;
-Pioglitazone group;
-L. casei CCFM419 group.

8 × 1010 CFU mL−1. For 12 weeks. ↓FBG
↓PBG
↓HbA1C
↓Leptin levels
↓HOMA-IR
↓Serum insulin level
↑Glucose tolerance
↑SCFAs
Improvement of the compromised

pancreas.
Adjustment for normal HDL-C

and LDL-C levels

Li et al.
(2017)

Lactobacillus plantarum
Ln4

Male C57BL/6J mice, divided into three
groups (5–7 mice per group): fed nor-
mal chow diet, high-fat diet (HFD) and
group Ln4.

5 × 108 CFU. For 5 weeks daily. ↑insulin resistance
↓FPG
↓Total TG

Lee et al.
(2018)

Lactobacillus rhamnosus
Lactobacillus acidophilus
Bifidobacterium bifidum

Animals [male Swiss mice (n = 6 per
group)] composed of two groups:

- one group on chow diet;
- second group on an HFD (high-fat diet)

6 × 108 CFU of each strain, final
concentration of 1.8 × 109 CFU of
bacteria, for 5 weeks daily.

↓TNF-α
↓IL-6
↓plasma LPS
↓TLR4
↓JNK
↓IRS-1
↓IL-1β

Bagarolli
et al.
(2017)

Lactobacillus casei
CCFM419

48 three-week-old male C57BL/6J mice:
- 8 mice were fed a normal diet and the

others were given a high-fat diet.

1010 CFU mL−1, 109 CFU mL−1, 108

CFU mL−1, once daily from
weeks 1 to 12.

↑IL-6
↑TNF-α
↑GLP-1
↑Bacteroidetes

Wang et al.
(2017)

Probiotic/probiotic
candidate

Subject Dose/duration Main findings after treatment with
probiotic candidate, probiotic
group compared with placebo
group:

Authors

Lactobacillus paracasei
TD062

n = 8 per group:
-diabetes mellitus group: rats with

diabetes and treated with saline;
-high dose group: rats with diabetes and

treated with 109 CFU mL−1

-myd dose group: rats with diabetes and
treated with 108 CFU mL−1

-low dose group: mice with diabetes and
treated with 107 CFU mL−1

109 CFU mL−1 (high dose)
108 CFU mL−1 (medium dose)
107 CFU mL−1 (low dose).
All doses for 8 weeks.

↓ Insulin levels
↓HbA1C
↑glucose tolerance
↑HDL-C
Normalized of TC, LDL-C and

TG

Dang et al.
(2018)

Saccharomyces boulardii n = 6–12 per group:
-control;
- diabetes;
-control + S. boulardii;
-diabetes + S. boulardii.

0.5 × 108 CFU/day, for 8 weeks. ↓ Control glycem
↓ TG
No effect on cholesterol
↓ IL-6
↑ IL-10

Brandão
et al.
(2018)

Lactobacillus plantarum
MTCC5690

Lactobacillus fermentum
MTCC5689

Lactobacillus rhamnosus
(LGG)

Animals [male C57BL/6J mice (n = 6 per
group)], composed of seven groups
comprising feeding on:

-Normal Pellet diet (NPD);
-High-fat diet (HFD);
-HFD with LGG;
-HFD with MTCC5690;
-HFD with MTCC5689;
-HFD with metformin;
-HFD with vildagliptin .

1,5 × 109 colonies/mouse/day. For a
period of 6 months.

Lactobacillus
plantarum
MTCC5690

↑GLP-1
↓gut

perme-
ability

Balakumar
et al.
(2018)

Lactobacillus
fermentum
MTCC5689

↓IR
↓

develop-
ment

of diabetes
Lactobacillus

rhamnosus
(LGG)

↓HbA1c
↑glucose

tolerance

Note: ↓decrease, ↑increase, FBG fasting blood glucose, PBG postprandial blood glucose,HbA1c glycosylated hemoglobin A1c,HOMA-IR homeostasis
model assessment-estimated insulin resistance, SCFAs short-chain fatty acids,HDL-C high density of lipoprotein cholesterol, LDL-C density lipoprotein
cholesterol, FPG fasting plasma glucose, TG triglyceride, TNF-α tumor necrosis factor-α, IL-6 interleukin-6, LPS lipopolysaccharide, TLR4 toll-like
receptors 4, JNK jun N-terminal kinases, IRS-1 insulin receptor substrate 1, IL-1β interleukin-1β, IL-10 interleukin-10, GLP-1 glucagon like peptide 1,
IR insulin resistance, TC total cholesterol, CFU colony forming unit
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Conclusions and future prospects

T2DM is an important and widespread chronic disease. This
mini-review shows that gut microbiota composition is essen-
tial for understanding the mechanisms involved in the pathol-
ogy of T2DM. Compared to various other means of control-
ling T2DM, the consumption of probiotics is a promising
strategy with a beneficial impact on the intestinal microbiota.
Several different probiotic strains, especially those belonging
to Lactobacillus and Bifidobacterium spp., have demonstrated
the ability to improve parameters related to T2DM, highlight-
ing the importance of studying probiotics for diabetes preven-
tion, progression, and symptom amelioration. With the emer-
gence of molecular biology and the Bomic^ era, a better un-
derstanding of the mechanisms involving T2DM and gut mi-
crobiota is expected, making it possible to advance our knowl-
edge of the relationship between microbiota composition and
diabetes with more determination and detail. Finally, the in-
testinal microbiota can be key to the management of this
chronic disease.
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