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Abstract
D-Mannose is an epimer of glucose at the C-2 position and exists in nature as a component of mannan. It has 60 and 86%
sweetness than that of sucrose and D-glucose, respectively. Because of its low-calorie and nontoxic features, D-mannose is used
widely in food, medicine, cosmetic, and food-additive industries. Besides, it exhibits many physiologic benefits on health:
immune system, diabetes mellitus, intestinal diseases, and urinary tract infections. It is used as a starting material to synthesize
immunostimulatory agents, anti-tumor agents, vitamins, and D-mannitol. However, D-mannose production using chemical
synthesis and plant extraction cannot meet the requirements of the industry. This article presents recent research on the biological
production of D-mannose. The physiologic benefits and applications of D-mannose are summarized. Besides, different D-
mannose-producing enzymes from various sources are discussed in detail with regard to their biochemical characteristics,
catalytic efficiency, and reaction kinetics for D-mannose production. Furthermore, attempts to use enzymatic conversion to
produce D-mannose are reviewed.
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Introduction

Recently, the incidence of several chronic diseases, such as
diabetes mellitus, hyperlipidemia, and hypertension, has in-
creased rapidly worldwide. The occurrence of these diseases
is closely related to the overconsumption of high-sugar and
high-fat foods (Zhang et al. 2017b). Therefore, it is necessary
to pay close attention to the effects of diet on human health.

Functional sugars have received considerable attention due
to their excellent physiologic properties, such as low calories
and low sweetness, and they have broad applications in the
food, medicinal, and beverage industries (Huang et al. 2018a).
For example, D-tagatose has numerous health benefits, in-
cluding few calories, anti-biofilm effects, promotion of weight
loss, and no glycemic effect (Oh 2007). D-Tagatose is widely
used as a low-calorie functional sweetener. D-Allose pos-
sesses anti-tumor, anti-inflammatory, and anti-hypertensive

properties (Chen et al. 2018b). D-Mannose shows several
health benefits, too, such as being a prebiotic (Korneeva
et al. 2012), promoting insulin secretion (Machicao et al.
1990) , and aiding treatment for a def ic iency in
phosphomannose isomerase (Lonlay and Seta 2009). This
monosaccharide can also be used as a starting material for
the production of vitamins (Chen et al. 2007), anti-tumor
agents (El-Nakkady et al. 2012), and immunostimulatory
agents (Etchison and Freeze 1997). Because of its valuable
properties and wide applications, D-mannose has gained
much attention and interest.

D-Mannose is mostly found in nature as a component of
mannan, hemicellulose, and cellulose in dietary fiber (Hu et al.
2016a). The structure of D-mannose is extremely similar to
that of D-glucose and D-fructose. In detail, D-mannose is an
epimer of D-glucose at the C-2 position and the aldose isomer
of D-fructose. The content of D-mannose varies in different
plants. It has been reported that the contents of D-mannose
were 0.04 to 0.08% and 0 to 0.03% in the fresh apple flesh
(Gheyas et al. 1997) and mango (Yashoda et al. 2007), respec-
tively. The content of D-mannose reaches up to 21.2% in spent
coffee grounds (Mussatto et al. 2011). Therefore, these D-
mannose-containing plants are important raw materials for
the preparation of D-mannose. The current top-selling brands
of D-mannose including NOW Foods, Source Naturals, and
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Vibrant Health are derived from plant sources and most of
them are made into capsules or powdered form (Hu et al.
2016a). The extraction of D-mannose from plants is mainly
carried out by extraction. In addition, D-mannose could also
be synthesized by chemical methods. Due to the poor speci-
ficity of the inorganic catalyst on substrate, the chemical reac-
tions are often accompanied by the formation of many
byproducts, which are not suitable for industrial production
of D-mannose. With the development of microbiotechnology,
the enzymatic production of D-mannose has gradually
attracted considerable interest. At present, four types of mi-
crobial enzymes are reported to have the potential applications
for the production of D-mannose, including D-lyxose isomer-
ase (LIase, EC 5.3.1.15), D-mannose isomerase (MIase, EC
5.3.1.7), cellobiose 2-epimerase (CEase, EC 5.1.3.11), and D-
mannose 2-epimerase (MEase, EC 5.1.3.-). The four enzymes
could produce D-mannose directly based on D-glucose or D-
fructose as substrate through the isomerization or
epimerization reactions.

Here, we have summarized recent studies on the biological
production of D-mannose. The physiologic benefits and ap-
plications of D-mannose have also been discussed in detail.
Besides, different D-mannose-producing enzymes, such as
MEase, LIase, CEase, and MEase, from various sources, are
compared with regard to their biochemical characteristics, cat-
alytic efficiency, and reaction kinetics for D-mannose produc-
tion. Furthermore, some attempts to use enzymatic conversion
to produce D-mannose have been reviewed.

Beneficial effects and applications
of D-mannose

D-Mannose is a white crystal or crystalline powder. It has
sweetness of 60 and 86% compared with that of sucrose and
D-glucose, respectively (Hu et al. 2016a). It is easy to dissolve
in water but slightly soluble in ethanol; at 17 °C, 248 g of D-
mannose can be dissolved in 100 g water to give a 71-wt%
solution (Hu et al. 2016a). Upon heating of D-mannose, the
Maillard reaction occurs (Yaylayan and Forage 1992). The
caloric value of D-mannose is 3.75 kcal/g, which is lower than
that of many types of sugars (Pohl et al. 2012). D-Mannose is
transported and absorbed in the human body through free
diffusion, and its transportation rate is one tenth to that of
glucose in the small intestine. D-Mannose in the human body
is not converted readily into glycogen, and 95 to 98% of it is
catalyzed to D-fructose-6-phosphate by phosphomannose
isomerase, and only ~ 2% of D-mannose is used for N-
glycosylation (Sharma et al. 2014).

As an important hexose, scientists are interested in the
function of D-mannose. Several studies have found that D-
mannose has many functions in the human body. Iwasaki
and Medzhitov (2015) showed that D-mannose plays an

important part in the human immune system. D-Mannose-
binding lectin is an important component of the innate im-
mune system. It can recognize D-mannose on the surface of
pathogens and is the first line of defense in human immunity
(Turner 2003). Deletion or genetic mutation of D-mannose-
binding lectin leads to the susceptibility and severity of dis-
eases (Müller et al. 2010; Sharma et al. 2012). In addition, D-
mannose receptors can recognize the specific molecules or
pathogens on the surface of hepatocytes and maintain the in-
ternal environment by participating in receptor-mediated en-
docytosis and phagocytosis (Ohnishi et al. 2012).

D-Mannose can be used as a raw material to synthesize
high-value products, such as immunostimulants (Ranta et al.
2012), vitamins (Chen et al. 2007), anti-tumor-related drugs
(Kamel et al. 2010), anti-human immunodeficiency-related
drugs (Botos et al. 2002), and D-mannitol (Mishra and
Hwang 2013). These products can be used in disease treat-
ment and nutrient metabolism. For example, D-mannitol is
widely used in food and pharmaceutical products because of
its low-caloric and cariogenic properties (Dai et al. 2017).
Besides, it is chemically inert and is used commonly in the
pharmaceutical formulation of chewable tablets and granulat-
ed powders (Saha and Racine 2011).

Also, D-mannose has been used widely in food, medicine,
cosmetic, and food-additive industries. As mentioned above,
D-mannose is a low-calorie monosaccharide and has 60% of
the sweetness of sucrose, making it a potential alternative
sweetener for use in food processing. The general public is
paying increasing attention to health issues, and the demand
for low-calorie and low-sweet sugars is increasing (Zhang
et al. 2017b). The biochemical property of D-mannose as a
food component is very stable (Montero et al. 2004). D-
Mannose is added to ice cream as a stabilizer (Sutton and
Wilcox 2010). Besides, the combination of a certain ratio of
D-galactose and D-mannose exhibits recrystallization behav-
ior to locust bean gum. As a reducing monosaccharide, D-
mannose can take part in the Maillard reaction, which can
increase the melting point and improve the color, flavor, and
taste of food (Yaylayan and Forage 1992). Elghaouth et al.
(1995) declared that D-mannose can slow down the decay rate
of apples and peaches.

Many antibiotics are added to the fodder used for the
growth of livestock and poultry, but excessive use of antibi-
otics can cause environmental pollution and/or drug resistance
(van Immerseel et al. 2002). Therefore, finding an alternative
method to replace antibiotics has become very important.
Researchers have demonstrated that D-mannose can inhibit
the infection by Salmonella typhi in chickens and that D-
mannose has no side effects, indicating the potential of replac-
ing the antibiotics used against S. typhi (van Immerseel et al.
2002). In addition, D-mannose has been found to inhibit the
colonization and abscission of pathogens in the intestinal tract
(Berge and Wierup 2012).
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Aloe vera plays an important part in the chemical industry
as a moisturizer, whitening agent, and skin sunscreen (Chen
and Dong 2008). Its physiologic functions are closely related
to the presence of Aloe polysaccharides, which are rich in
mannan and glucomannan (Eshun and He 2004). D-
Mannose can make the skin more moisturized, softer, and
smoother after washing (Schmidt et al. 1991). Wivell and
Deckner (1995) invented a skincare product containing D-
glucose, D-mannose, and D-glucuronic acid, which can
cleanse and moisturize the skin. In addition to the aforemen-
tioned physiologic benefits, D-mannose can be used as an
antibiotic screening agent in research on transgenic plants
(Joersbo 2001). D-Mannose can also provide energy for trans-
genic maize plants from protoplasts (Wang et al. 2000).

D-Mannose production

Plant extraction

D-Mannose is extracted mainly from fruits, herbs, and palm
(Hu et al. 2016a). Currently, the main extraction methods in-
cluded acid hydrolysis, thermal hydrolysis, and enzymatic
hydrolysis. Zhang et al. (2009) presented a route for the puri-
fication of D-mannose from palm kernel. First, the palm ker-
nel was hydrolyzed by sulfuric acid at the temperature of 100
°C and then the hydrolysis solution was further treated by
endo-β-mannanase. Subsequently, the solution was filtered
through a silica gel column and subjected to desalting treat-
ment with an ion exchange resin. Finally, the D-mannose
crystals were obtained after purified by ethanol with a yield
of 48.4% (Zhang et al. 2009). Fan et al. (2014) used
microwave-assisted coupled with sulfuric acid treatment
method to extract D-mannose from deproteinized palm ker-
nels. After optimizing the extraction condition by response
surface methodology, D-mannose yield of 92.11% was
achieved at 148 °C for 10 min 31 s at a substrate-to-solvent
ratio (w/v) of 1:49.69. However, this method requires the con-
sumption of a large amount of organic reagents, e.g., sulfuric
acid, and is not friendly to the environment.

Chemical synthesis

D-Mannose can also be produced from D-glucose by chemi-
cal methods, which are catalyzed mostly through molybdate
catalysts (Hu et al. 2016a). Using ammonium molybdate as a
catalyst, 32.6% yield of D-mannose was obtained after reac-
tion about 150 min at 98 °C, pH 2.0, and 55% glucose con-
centration (Zhang et al. 2017a). Using a mixed catalyst of
ammonium molybdate and calcium oxide, 44.8% yield of D-
mannose was achieved after reaction for 80min at 150 ° C, pH
3.0 (Xu et al. 2014). However, this method also has disadvan-
tages. For example, the chemical reaction must be carried out

at a high-temperature and low-acid environment, which in-
creases the production costs. Furthermore, many byproducts
produced in the reaction system are difficult to isolate in sub-
sequent downstream processes.

Biological production using microbial
enzymes

As a dietary supplement, D-mannose has many physiologic
functions and is used widely in food, pharmaceutical, and
cosmetic industries. However, the content of free D-
mannose in nature is low and far below the demands of indus-
trial applications. The synthesis of D-mannose by a chemical
method requires strict control of temperature, pH, time, and
pressure in the reaction process. Moreover, due to the weak
specificity of the inorganic catalyst used in the reaction, many
byproducts or toxic products are usually produced, which is
unacceptable for consumers. An extraction method using acid
hydrolysis from D-mannose-containing plants also has disad-
vantages. Due to the high crystallinity of plant cell walls, the
hydrolysis of D-mannan requires a high temperature and high
concentrations of acid/alkali/organic reagents, which are also
not acceptable. Therefore, the biological production of D-
mannose using microbial enzymes has attracted attention con-
siderably because of the mild reaction conditions and few
byproducts. As mentioned above, LIase, MIase, CEase, and
MEase demonstrate the potential for the production of D-
mannose on a large scale. According to the Izumori strategy,
D-mannose can be converted from other hexoses by biological
enzymes (Izumori 2002; Mu et al. 2015). The enzyme pro-
duction of D-mannose is based mainly on D-fructose or D-
glucose as the rawmaterial, which is realized by isomerization
or epimerization of monosaccharide (Fig. 1).

MIase

MIase (EC 5.3.1.7) is another important isomerase for D-
mannose production. MIase reversibly catalyzes the isomeri-
zation of D-fructose and D-mannose. This enzyme has been
isolated and characterized from Pseudomonas saccharophila
(Palleroni and Doudoroff 1956), Xanthomonas rubrilineans
S-48 (Takasaki and Takano 1964), Streptomyces
aerocolorigenes (Takasaki 1967), Mycobacterium smegmatis
(Hey-Ferguson and Elbein 1970), Pseudomonas cepacia
(Allenza et al. 1990), Agrobacterium radiobacter M-1
(Hirose et al. 2001), Thermobifida fusca MBL10003
(Kasumi et al. 2014), and Marinomonas mediterranea
(Saburi et al. 2018) and is also found in Escherichia coli and
Salmonella enterica (Itoh et al. 2008).

The biochemical characteristics of these enzymes have also
been investigated. Temperature and pH affect enzyme activity
greatly. The optimal temperature and pH for the isomerase
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activity of these MIases ranged from 30 to 60 °C and 6.4 to
8.0, respectively (Table 1). Interestingly, maintenance of
isomerization activity does not require the participation of
metal ions in MIases. On the contrary, the addition of divalent
metal ions, such as Cu2+, Cd2+, or Ca2+, can inhibit their
activity significantly (Kasumi et al. 2014). If the isomerization
is started by MIase using D-mannose as a substrate, the con-
centration ratio of D-fructose:D-mannose is 75:25 to 65:35 at
reaction equilibrium (Hey-Ferguson and Elbein 1970; Hirose
et al. 2001; Kasumi et al. 2014; Takasaki 1967). These results
suggest a higher conversion rate from D-mannose to D-fruc-
tose. However, the low conversion ratio of D-mannose based
on D-fructose leads to a shortage for D-mannose production
by MIase on a large scale.

Hu et al. (2016b) reported that a recombinant MIase can
also achieve the same conversion rate and productivity under
the same concentration of substrate at pH 7.0 and 45 °C, in
contrast to LIase from P. stuartii (Table 2). Hirose and

colleagues tried to immobilize A. radiobacter cells containing
MIase to produce D-mannose from D-fructose (Hirose et al.
2003). They prepared the cells by adsorption on chitosan or
glutaraldehyde crosslinking in the presence of albumin.
Finally, 9 g D-mannose accumulated in the effluent (180
mL) at pH 8.0 and 55 °C for 14 days.

Reports focusing on the crystal structure of MIases have
been limited to MIase from M. mediterranea (PDB: 5X32)
and a hypothetical protein YihS (later characterized as
MIase) from S. enterica (PDB: 2AFA) (Itoh et al. 2008).
MIase (PDB: 5X32) from M. mediterranea is formed by an
(α/α)6-barrel, which is a typical characteristic structure in en-
zymes from the N-acylglucosamine 2-epimerase (AGE) su-
perfamily (Saburi et al. 2018). Research has revealed that
the residue amino acids responsible for catalysis and substrate
binding are similar to those enzymes from the AGE superfam-
ily, such as CEase and aldose–ketose isomerase. In the cata-
lytic domain of MIase (PDB: 5X32), α7/α8 and α11/α12

Table 1 Comparison of the properties of MIase and kinetic parameters toward D-mannose substrate

Enzyme source Optimal
temperature
(°C)

Optimal pH Km (mM) Kcat (s
−1) Kcat/Km (mM−1 s−1) Equilibrium

ratio mannose/
fructose

Reference

P. saccharophila 30 7.5 NR NR NR NR Palleroni and Doudoroff (1956)

X. rubrilineans 35 7.8 0.12 NR NR NR Takasaki and Takano (1964)

S. aerocolorigenes NR NR 1.4 NR NR 25:75 Takasaki (1967)

M. smegmatis 37 7.5 7 NR NR 35:65 Hey-Ferguson and Elbein (1970)

E. coli K12 NR NR 80 NR NR NR Stevens et al. (1981)

P. cepacia 50 6.4 NR NR NR NR Allenza et al. (1990)

A. radiobacter M-1 60 8.0 20 NR NR 25:75 Hirose et al. (2001)

T. fuscaMBL10003 60 8.0 115 ± 15 788 ± 40 6850 ± 200 25:75 Kasumi et al. (2014)

M. mediterranea 30 7.3 16.7 ± 1.8 329 ± 2.2 19.7 30.2:69.8 Saburi et al. (2018)

NR, not reported

Fig. 1 Production of D-mannose
from D-fructose and D-glucose
using different enzymes. MIase,
D-mannose isomerase; LIase,
D-lyxose isomerase; CEase, cel-
lobiose 2-epimerase; ME,
D-mannose 2-epimerase
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loops play an important part in the opening of the substrate-
binding site (Saburi et al. 2018). Elucidation of the crystal
structure of MIase provides molecular insights into under-
standing the reaction mechanism of enzymes and substrates.
However, insufficient information of the crystal structure of
MIase has seriously restricted development studies on molec-
ular modification of MIase and hampered attempts to increase
its catalytic efficiency on D-fructose through site-directed
mutagenesis.

LIase

LIase (EC 5.3.1.15) is an aldose–ketose isomerase that could
be used to produce D-mannose (Cho et al. 2007). It can cata-
lyze isomerization with various substrates. For example, it can
catalyze isomerization at the C-2 position of D-lyxose, D-
fructose, and L-ribose, thereby producing D-xylulose, D-man-
nose, and L-ribulose as products, respectively (Huang et al.
2018a). Isomerization of LIase has a critical role in microbial
metabolism because these ketopentoses (D-xylulose, L-
ribulose) can be phosphorylated further to form intermediates
(D-xylulose-5-phosphate, L-ribulose-5-phosphate) through
the action of kinases (Cho et al. 2007). These compounds
are the common intermediates of the pentose phosphate path-
way. Because of its broad spectrum of substrate specificity,
LIase has been applied for the production of many functional
sugars (Huang et al. 2018a). Several LIases have been pro-
duced by different microorganisms, including Cohnella
laevoribosii RI-39 (Cho et al. 2007), Providencia stuartii
(Kwon et al. 2010), Serratia proteamaculans (Park et al.
2010b), E. coli O157:H7 (van Staalduinen et al. 2010),
Bacillus licheniformis (Patel et al. 2011), Dictyoglomus
turgidum (Choi et al. 2012), and Thermosediminibacter
oceani (Yu et al. 2016).

Recently, Yu et al. (2016) characterized a LIase from a
hyperthermophile strain of T. oceani. The LIase exhibited po-
tential for D-mannose production. The authors showed that
101.6 g L−1 of D-mannose could be obtained from 400 g
L−1 of D-fructose in 9 h, with a conversion rate of 25.4%
and productivity of 11.28 g L−1 h−1 at pH 6.5 and 60 °C. By
using P. stuartii free LIase, 150 g L−1 of D-mannose could be
produced from 600 g L−1 of D-fructose in 2 h, at pH 7.5 and
35 °C, with a conversion rate of 25% and productivity of 75 g
L−1 h−1 (Park et al. 2010a). By immobilization of LIase from
P. stuartii using Duolite resin A568, 75 g L−1 of D-mannose is
obtained from 300 g L−1 of D-fructose with a conversion rate
of 25% and a productivity of 75 g L−1 h−1 after 23 cycles (Park
et al. 2010a). Additionally, to produce D-mannose from D-
glucose directly, a one-pot enzyme process of D-mannose
production from D-glucose has been constructed by co-
expression of the D-glucose isomerase (GIase, EC 5.3.1.5)
from Acidothermus cellulolyticus and LIase from T. oceani
in E. coli BL21(DE3) cells (Huang et al. 2018b). Using this
co-expression system, 60 g L−1 of D-mannose is obtained
from 400 g L−1 of D-glucose in 8 h at pH 6.5 and 65 °C,
suggesting the potential for industrial production of D-
mannose.

In general, a high temperature is beneficial for the industrial
production of functional sugars. A high temperature can ac-
celerate the conversion rate of enzymatic reactions, reduce the
risk of microbial contamination, and increase the solubility of
products and substrates (Huang et al. 2018a). However, if the
reaction temperature is high, the Maillard reaction occurs and
some unexpected byproducts are produced because of nonen-
zymatic browning effect (Chen et al. 2018b). Hence, temper-
ature control is very important in sugar processing. Besides, if
the effect of nonenzymatic browning is to be reduced, control
of the system pH in weak-acidic conditions is an effective

Table 2 Comparison of different sources of the microbial enzymes used for production of D-mannose

Source Immobilization/
free enzyme

Substrate
(g L−1)

Reaction condition D-Mannose
(g L−1)

Conversion
rate (%)

Productivity
(g L−1 h−1)

Reference

T. oceani Free LIase Fructose,
400

pH 6.5, 60 °C, 9 h 101.6 25.4 11.28 Yu et al. (2016)

P. stuartii Free LIase Fructose,
600

pH 7.5, 35 °C, 2 h 150 25 75 Park et al. (2010a)

T. dichotomicum Free LIase Fructose,
500

pH 7.5, 60 °C, 6 h 110.5 22.1 18.42 Zhang et al. (2019)

P. stuartii Immobilization
LIase

Fructose,
300

pH 7.5, 35 °C, 1 h 75 25 75 Park et al. (2010a)

C. saccharolyticus Free CEase Glucose, 500 pH 7.5, 75 °C, 3 h 75 15 25 Park et al. (2011)

A. radiobacter Immobilization
cells (MIase)

Fructose,
200

pH 8.0, 55 °C, 14 days 50 (9 g/180 mL) 25 0.15 Hirose et al. (2003)

E. coli Free MIase Fructose,
600

pH 7.0, 45 °C, 2 h 150 25 75 Hu et al. (2016b)

R. slithyformis Free MEase Glucose, 500 pH 8.0, 50 °C, 48 h 122 24.4 2.54 Saburi et al. (2019)
D. fermentans 114 22.8 2.38
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strategy because the byproducts produced in the carbonyl am-
monia reaction are hydrolyzed readily under acidic con-
ditions (Shen and Wu 2004). These LIases show differ-
ent biochemical properties with regard to temperature,
pH, and kinetic parameters (Km, Kcat, Kcat/Km). Table 1
shows that the optimal temperature and pH range are from 40
to 75 °C and 6.5 to 8.5, respectively. Except for the LIase from
C. laevoribosii (Cho et al. 2007) and T. oceani (Yu et al.
2016), the optimal pH of the other LIases have weak-
alkaline characteristics. Therefore, for the industrial produc-
tion of D-mannose, LIases with weak-acidic properties are
needed, and the realization of this goal is dependent upon

the molecular modification of LIase based on crystal structure
or screening novel LIase-producing strains from nature.
Different from MIase, LIase is a metal ion-dependent
isomerase. For most LIases, Mn2+ is the optimal metal
ion for the isomerase activity of LIase from C. laevoribosii
(Cho et al. 2007), P. stuartii (Kwon et al. 2010), and
S. proteamaculans (Park et al. 2010b), whereas Co2+ is the
optimal metal ion for LIase from D. turgidum (Choi et al.
2012) (Table 3). With D-mannose as the substrate,
D. turgidum shows the highest specific activity of 1668 ± 63
U/mg, whereas E. coli exhibits the lowest specific activity of
4.73 ± 0.05 U/mg.

Table 3 Comparison of the properties of LIase and kinetic parameters toward D-mannose substrate

Enzyme source Optimal
temperature
(°C)

Optimal pH Metal
ion

Vmax

(U mg−1)
Km

(mM)
Kcat (s

−1) Kcat/Km

(mM−1 s−1)
Specific
activity
(U mg−1)

Reference

C. laevoribosii 70 6.5 Mn2+ 131.8 ± 7.4 34 ± 1.1 46.1 ± 2.6 1.4 ± 0.1 13.4 Cho et al. (2007)
P. stuartii 45 7.5 Mn2+ NR 22 ± 0.1 2640 ± 41 116 ± 1.9 523 ± 9.8 Kwon et al. (2010)
S. proteamaculans 40 7.5 Mn2+ NR 32.2 ± 0.22 16,170 ± 148 502 ± 1.2 5.42 ± 0.075 Park et al. (2010b)
E. coli 50 7.5 Mn2+ 13.1 ± 0.02 19.8 ± 0.24 12.7 ± 0.02 640 ± 8.73 4.73 ± 0.05 van Staalduinen

et al. (2010)
B. licheniformis 40–45 7.5–8.5 Mn2+ 390 ± 1.2 26 ± 0.8 43 ± 0.1 1.6 41 ± 1.3 Patel et al. (2011)
D. turgidum 75 7.5 Co2+ NR 13 ± 1 178 ± 3 14 ± 1 1668 ± 63 Choi et al. (2012)
T. oceani 65 6.5 Mn2+ NR 32.8 ± 1.8 5686 ± 39 173 ± 5 5.3 ± 0.1 Yu et al. (2016)
T. dichotomicum 60 7.5 Mn2+ NR 80.8 ± 2.5 3141.6 ± 36.3 38.9 ± 1.3 7.6 ± 0.3 Zhang et al. (2019)

NR not reported

Fig. 2 Reaction of cellobiose
2-epimerase (CEase) with
mannobiose, cellobiose, and lac-
tose as substrate, and the produc-
tion of D-mannose from D-
glucose using CEase (schematic)
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CEase

CEase (EC 5.1.3.11) was isolated and identified first from the
culture broth of Ruminococcus albus, in which CEase was
found to catalyze cellobiose into glucosyl mannose through
epimerization (Fig. 2) (Tyler and Leatherwood 1967).
Subsequently, some studies revealed that CEase can convert
other β-1,4-linked disaccharides, such as mannobiose and lac-
tose, through epimerization at the C-2 position (Fig. 2).
Disaccharides, such as mannobiose, cellobiose, and lactose,
can be converted into mannosyl glucose, glucosyl mannose,
and galactosyl mannose using CEase, respectively. Besides,
CEase can catalyze the isomerization between keto-
disaccharides and aldo-disaccharides (Chen et al. 2018a). To
investigate the possibility of catalyzing monosaccharide sub-
strates through epimerization, Park et al. (2011) studied the
epimerization of CEase on different monosaccharides: D-glu-
cose, D-mannose, D-xylose, D-lyxose, L-allose, L-gulose, L-
arabinose, D-fructose, D-xylulose, L-psicose, L-sorbose, and
L-ribulose. Their experimental results provided the first evi-
dence that CEase from C. saccharolyticus can catalyze D-glu-
cose, D-mannose, D-xylose, D-lyxose, and D-fructose through
epimerization at the C-2 position. In particular, with D-glucose
as a substrate, the value of Kcat/Km is ~ 25% that of D-mannose
(Park et al. 2011). At 75 °C and pH 7.5, 75 g L−1 of D-mannose
and 47.5 g L−1 of D-fructose are produced from 500 g L−1 of D-
glucose after reaction for > 3 h by CEase. However, the reaction
formed D-fructose as a byproduct at equilibrium because CEase
can carry out isomerization and epimerization simultaneously.

MEase

Recently, Saburi et al. (2019) reported two novel MEases,
named Runse_4512 and Dfer_5652, from Runella
slithyformis and Dyadobacter fermentans, respectively, and
showed that they are new members of the AGE superfamily.
Similar to CEase, MEase also can convert D-glucose to D-
mannose directly (Fig. 1). Upon reaction for 48 h at 50 °C and
pH 8.0 with 500 g L−1 of D-glucose as substrate, 122 and
114 g L−1 of D-mannose are produced in the system using
Runse_4512 and Dfer_5652 with a conversion rate of 24.4
and 22.8%, respectively (Saburi et al. 2019).

Future perspectives

D-Mannose exhibits many physiologic benefits for human
health and is used widely in food, medicine, cosmetic, and
food-additive industries. However, the detailed research about
the action mechanism on human health is relatively scarce.
Many studies should be performed to increase people’s under-
standing for this functional sugar. In addition, among the afore-
mentioned four enzymes that were used for the production of

D-mannose, most of them display properties with weakly alka-
line optimal pH, and this property is not preferable for industrial
production. To meet the requirements of the industry, required
research is needed to improve the properties of such enzymes
through protein-engineering techniques, such as site-directed
mutagenesis or directed evolution. Besides, more MEases and
CEases should be screened from nature because the two en-
zymes are capable of converting D-glucose to D-mannose di-
rectly. Furthermore, considering safety issues, a food-grade
host, such as Bacillus subtilis, should be constructed for the
expression of these enzymes in the future.
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