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Abstract
Nanotechnology presents the new aspect of material as nanomaterials (NMs) with unique properties such as the large surface area
to the volume ratio compared to bulk types. Metal and polymer nanoparticles (NPs) are two major groups of NMs with various
medicinal and non-medicinal applications. The rise of antibiotic resistance in microorganisms in general, and bacteria in partic-
ular, has necessitated the use of these NMs as novel antibacterial agents. In this regard, medicinal usage of natural polymers
particularly cellulose, chitosan, and alginic acid are increasing due to their higher biocompatibility, biodegradability, and acces-
sibility than to other biopolymers or synthetic polymers. Antibacterial activities of these polysaccharides can be improved by
incorporation of silver NPs as nanocomposite (NC) forms. Therefore, in this review, recent advances related to nanoformulations
of silver NPs with three biopolymers having antibacterial and biocompatibility properties have been discussed.
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Introduction

The development of new mechanisms by microorganisms for
run away from efficient impacts of conventional antibiotics is
a challenging issue (Rai et al. 2014; Taran et al. 2017b). For
example, pathogenic bacteria such as methicillin-resistant
Staphylococcus aureus (MRSA) can apply foreign
penicillin-binding proteins (PBPs, PBP2a) to inactivate β-
lactam antibiotics (Haghighat et al. 2013). Figure 1 illustrates
other antibiotic resistance mechanisms in bacteria. These
Gram-positive bacteria as opportunistic pathogens are related
to surgical and chronic wound infections (Grigg et al. 2018).
Therefore, in recent years, search for new antibacterial agents
has been a main aim for many investigators. Antimicrobial
applications of silver metal were decreased by the discovery

of antibiotics. However, the emergence of silver nanoparticles
(AgNPs) in the medical field has demonstrated effective anti-
microbial effects (Alavi and Rai 2019; Kalwar and Shan
2018). These activities have resulted from unique properties
of nanoparticles such as the large surface area to volume ratio
and high aspect ratio of AgNPs compared to their bulk types
(Asadi et al. 2019; Taran et al. 2016b). Depending on types of
Gram-positive and Gram-negative bacteria, there are several
interactions of released Ag+ ions with the cell wall and mem-
brane components (Fig. 2). Also, these ions can bind to thiol
(R-SH) groups of membrane proteins and inhibit respiration
function of bacteria (Alavi and Karimi 2019b; Alavi et al.
2019b; Kalwar and Shan 2018).

The major disadvantage of AgNPs is their higher cytotox-
icity or low biocompatibility in physiological conditions. In
this way, various organic and inorganic materials were utilized
to reduce or remove these unsuitable effects (Alavi and Karimi
2018a; Alavi and Karimi 2019a). One alternative is applica-
tions of synthetic and natural polymers as supporting bioma-
terials to augment biocompatibility and biodegradability.
Polymers including polyvinyl chloride (PVC), polyvinyl alco-
ho l (PVA) , po lyv iny l py r ro l i done (PVP) , and
polycaprolactone are common synthetic polymers with vari-
ous biomedical applications (Dhote et al. 2019; Rolim et al.
2019; Tamayo et al. 2019). The high cost of preparation and
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also low biocompatibility were considered as disadvantages
for these types of polymers (Binder 2019). In contrast, natural
polymeric materials involving cellulose, chitosan, alginate so-
dium, polylactic acid (PLA), and collagen, with rich sources
in nature, illustrate suitable biocompatibility and biodegrad-
ability (Hu et al. 2019). Among these polymers, cellulose,
chitosan, and alginic acid polysaccharides have gained more

attention because of higher accessibility compared to other
natural polymers (Thomas et al. 2019). Plants and bacteria
are the two main sources of cellulose (Sheikhi 2019).
Chitosan was prepared by deacetylation of chitin material of
the cell walls of fungi and the exoskeleton of crustaceans
(Fazli Wan Nawawi et al. 2019). Moreover, alginic acid as
another common polysaccharide polymer can be extracted

Fig. 2 Differences of cell wall and membrane ingredients between Gram-positive and Gram-negative bacteria

Fig. 1 Various mechanisms for
antibiotic resistance in bacteria
(Gupta et al. 2019)
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from cell wall and biofilm parts related to brown algae and
Pseudomonas aeruginosa, respectively (Priyan Shanura
Fernando et al. 2019). Cellulose, chitosan, and alginic acid
have been used in several studies as complementary biomate-
rials in NC synthesis having silver NPs with antibacterial abil-
ities. Therefore, based on the above description, recent ad-
vances of AgNP complexes with cellulose and chitosan as
abundant organic polymers have been reviewed. It is worth
noting that there are several valuable investigations and re-
views about antibacterial properties of each of these polymers
as composites and nanocomposites forms (Jung et al. 2014;
Khattak et al. 2019; Moon et al. 2007). However, there is lack
of the comparative review about main aspects of antibacterial
effects resulted from the coupling of AgNPs with these natural
polysaccharides against pathogenic bacteria. In this way, this
mini-review can be helpful to select suitable antibacterial
agents based on nanoformulations of AgNPs with cellulose,
chitosan, and alginic acid.

AgNP/cellulose

Cellulose polymer (C6H10O5)n can be extracted from plant
components and specific bacteria biofilms by acetic treat-
ments (Fig. 3a). Different treatments of this linear polymer
lead to ether and ester derivatives of cellulose. From the aspect
of nanomaterials, there are two main nanoforms of cellulose
involving cellulose nanocrystals (CNCs) and nanofibers
(CNFs). Cellulose nanowhiskers (CNWs) are related to
CNC type with about 75% crystallinity. Spagnol and co-
workers used succinic anhydride for surface modification of
CNWs extracted from cotton fiber source. Then, AgNPs,
poly(N-isopropylacrylamide), and PVA were embedded on
modified CNWs by electrospinning and casting methods.
The results of disc diffusion test showed higher antibacterial
activities for prepared NCs by casting method with 11, 9, and

5 mm compared to electrospun NCs by 5, 7, and 4 mm for
S. aureus, P. aeruginosa, and Escherichia coli, respectively
(Spagnol et al. 2018).

As another functionalized nanoform of cellulose,
dialdehyde CNFs were modified by AgNPs (average diam-
eter size of 31.07 nm) in three steps by TEMPO (2,2,6,6-
tetramethylpiperidine 1-oxyl radical), NaIO4, and
[Ag(NH3)2]

+ materials (Li et al. 2018a). It is worth mention-
ing that significant antibacterial performance of these NCs
against E. coli and S. aureus has resulted from slow control
release of Ag+ ions within 32 days (approximately 10%).
Bacterial cellulose (BC) as another natural source of cellu-
lose was used as an agent with abilities to reduce and stabi-
lizing different concentrations of silver nitrate (0.01, 0.001,
and 0.0001 M) to synthesize AgNP/BC films. These NC
films illustrated inhibition zone diameters (IZDs) by 14 ±
2.11, 14 ± 0.61, 15 ± 1.58, and 15 ± 0.36 mm at higher
concentration of AgNPs (0.01 M) than to 12 ± 0.44, 11 ±
0.20, 15 ± 0.73, and 13 ± 0.44 mm at lower amount
(0.0001 M) for Pseudomonas aeruginosa , E. coli ,
S. aureus, and Klebsiella pneumoniae, respectively
(Volova et al. 2018). For improvement in mechanical prop-
erties of AgNP-cellulose NCs, silica NPs were coupled with
AgNPs as Ag-silica NCs in the matrix of cellulose fibers.
These types of biocompatible NCs illustrated strong bacte-
riostatic and bactericidal effects on S. aureus and E. coli
after 48 h (Smiechowicz et al. 2018). In another study, Ag-
magnetite (Fe3O4) NCs were synthesized on polydopamine-
decorated porous cellulose acetate microspheres as reduc-
ing and stabilizing materials. Antibacterial results of these
NMs illustrated striking growth inhibition of E. coli with
IZD of 10.3 mm compared with microspheres without
AgNPs (Peng et al. 2018). Furthermore, antibacterial effi-
cacy of Ag-TiO2-cellulose film against E. coli was higher
under UV radiation than to dark condition because of TiO2

NP incorporation into these NCs (Li et al. 2018b).

Fig. 3 Chemical structures of cellulose (a), chitosan (b), and alginic acid (c) (reproduced from PubChem)
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As mentioned above, one way to modify cellulose is the
use of TEMPO-mediated oxidation of hydroxyl groups on
cellulose surface (Fig. 4). By this method, Ag+ ions can be
reduced on the surface of cellulose fibers via ion-exchange
reaction. For this case, bacterial cellulose pellicles were coated
by AgNPs for preparation of wound dressing with 99.2% and
100% antibacterial effects on S. aureus and E. coli, respective-
ly (Wu et al. 2018). It is worth noting that the shape and size of
AgNPs can determine their properties specifically antibacteri-
al activities (Rad et al. 2018). For example, silver nanorods
(diameter size range of 80–135.3 nm) were produced by re-
ducing and stabilizing abilities of CNCs without any
functionalization approach. IZDs with 15.2 ± 0.5 mm for
Bacillus subtilis were more than S. aureus, E. coli, and
P. aeruginosa bacteria (Shaheen and Fouda 2018).

AgNP/chitosan

N-Acetyl-D-glucosamine of chitin polymer in exoskeletons of
arthropods is treated by alkaline materials to synthesize chito-
san polymer with a linear arrangement of D-glucosamine and
N-acetyl-D-glucosamine (Fig. 3b). In addition to acceptable
antibacterial activities, mechanical properties should also be
improved for wound dressing based on chitosan hydrogel. In
this regard, lithium hydroxide/potassium hydroxide/urea mix-
ture was used instead of glacial acetic acid for the preparation
of chitosan hydrogels followed by reduction of Ag+ ions (1, 2,
and 3 g/100 ml of an aqueous solution of AgNO3) in by
trisodium citrate to produce chitosan-AgNP hydrogels.
S. aureus and E. coli showed 99.94% and 99.86% inhibition
rates, respectively, under the treatment of these hydrogels after
24 h (Xie et al. 2018). Chitosan and PVA polymers were
utilized to reduce and stabilize 0.02 M of silver nitrate at three
volumes of 5, 1, and 0.1 ml. IZD values in the case of
S. aureus, Salmonella enterica, E. coli, Salmonella typhi,
and K. pneumoniae were 21 ± 1, 17 ± 1, 15 ± 0.5, 10 ± 0.1,
and 17 ± 0.4 mm, respectively, for the highest concentration of
sliver salt at chitosan-AgNCs with an average diameter of
about 190 nm (Hajji et al. 2019). In a similar study, reduction
of silver ions and stabilization of AgNPs in chitosan matrix

were improved by gelatin polymer. In this synthesis method,
tannic acid as a type of polyphenol substances had the cross-
linking role for increasing of hydrogel stability. In addition to
suitable Young’s modulus and tensile strength, antibacterial
results for this hydrogel against E. coli were more than
S. aureus. These properties were associated with accelerated
wound healing in experimental rabbits after 15 days compared
to Aquacel®Ag foam (Ye et al. 2019). Different amounts of
AgNO3 (0.1, 0.05, 0.02, and 0.01 M) were incubated with
acetic acid-treated chitosan solution on Petri dishes to synthe-
size NC films. FTIR results proved a prominent contribution
of amine groups of chitosan in interaction with AgNPs. These
NCs indicated both significant biodegradability, wound
healing, and antibacterial activities. The results of antibacterial
efficacies were meaningful for all the mentioned concentra-
tions of AgNO3 against planktonic forms of E. coli, S. aureus,
Staphylococcus epidermidis, and P. aeruginosa (Hernández-
Rangel et al. 2019). Suitable mechanical stability of hydrogel
composed of chitosan and AgNPs is an essential property in
physiological conditions. Due to improvement in this proper-
ty, several materials such as graphene were used as filler in a
hydrogel formulation. In this way, enhanced mechanical abil-
ity with antibacterial effects on E. coli and S. aureus were
observed for silver-PVA-chitosan-graphene hydrogel
(Nešović et al. 2018). In another investigation, AgNP-
chitosan-polymethyl methacrylate (PMMA) NCs were depos-
ited layer-by-layer on sulfur prevulcanized natural rubber
(SPNR) due to surface modification of SPNR having low
surface friction and high antibacterial activities. The results
of this work proved low cytotoxicity against fibroblast cells
and meaningful antibacterial effects on E. coli and S. aureus
for coated films by NCs compared to uncoated SPNR
(Suteewong et al. 2019). It is noteworthy to mention that these
films may be utilized in the production of gloves. Other ap-
plication of Ag-chitosan NCs is the improvement of the dental
barrier membrane as a remedy for periodontitis infection. The
membrane impregnated with AgNPs into chitosan-
polyurethane nanofibrous showed significant antibacterial ac-
tivities in the case of Porphyromonas gingivalisATCC 33277
with biocompatibility in a lower concentration of AgNPs for
standard fibroblast cell line (Lee et al. 2018). Moreover, in

Fig. 4 Mechanism of TEMPO-
mediated oxidation of cellulose
surface
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order to increase antibacterial potential of dental implant
based on titanium, catechol-containing chitosan was loaded
by AgNPs. In spite of significant antibacterial activities
against S. aureus and E. coli, lower cytotoxicity was observed
for fibroblast cells (Cheng et al. 2019). In a similar study,
electrospun nanofibrous membrane of chitosan with fiber di-
ameter of 200 nm was loaded with AgNPs. Antibacterial ac-
tivity against S. aureus was observed after 4 days of incuba-
tion for higher concentration of incorporated AgNPs (60 mg
of AgNO3) in this membrane (Shao et al. 2019). In addition,
one-pot green synthesis of AgNPs through stabilizing/reducer
abilities of chitosan demonstrated both antibacterial potential
and biocompatibility. S. aureus and E. coli demonstrated
312.5 and 39.1 μg/ml of minimum bactericidal concentration
(MBC), respectively (Wongpreecha et al. 2018). The AgNPs
may be stabilized by using other biological macromolecules
such as amino acids. In this way, lysine as α-amino acid with
carboxylate group (COO−) was utilized as stabilizing agent
due to formation of AgNPs in chitosan-lysine-AgNP NCs
with hydrodynamic diameter of 275.5 nm. Antibacterial re-
sults of this study demonstrated sensitivity upon treatment of
NCs for P. aeruginosa, B. subtilis, and S. aureus compared
with E. coli (Vanitha Kumari et al. 2018).

AgNP/alginic acid

The chemical formula of alginic acid is (C6H8O6)n with two
components of β-D-mannuronate and α-L-guluronate (Fig.
3c). This linear polysaccharide can form alginate salts with
calcium and sodium as common medicinal forms (Yeung
and Kennedy 2019). There are several methods for reduction
and stabilization of Ag+ ions to form AgNPs. For synthesis
and modification of organic and inorganic NPs particularly
metal NPs, affordable and eco-friendly way is green synthesis
using natural sources such as residues of plants, fungi, algae,
and bacteria (Alavi and Karimi 2018b; Alavi et al. 2019a;
Taran et al. 2016a, 2017a; Wypij et al. 2019). Extracted sodi-
um alginate from Sargassum muticum with reducing and sta-
bilizing functions was applied to synthesize AgNPs with an
estimated size of 22 nm. These NCs demonstrated
antipathogenic impact on P. aeruginosa, Micrococcus luteus,
Bacillus cereus, and S. aureus (Belattmania et al. 2018).
Ascorbic acid and sodium alginate were applied as reducing
and stabilizing agents, respectively, to synthesize AgNPs. In
this regard, green synthesized AgNP/sodium alginate had an-
tibacterial effect on E. coli and S. aureus via formation of
pores in the bacterial membrane. It is worth mentioning that
this antibacterial mechanism with cell membrane clumping
and blebs was reported previously for AgNPs (Alavi and
Karimi 2018b). In contrast, NaBH4 was used as a reducer
for the preparation of AgNPs on collagen-alginate
biocomposites. Moreover, in this method, PVP was utilized

for stabilization of AgNPs. Significant cytotoxicity on mouse
embryonic fibroblasts (NIH3T3) and antibacterial activity
against E. coli and S. aureus were observed for these NCs as
dose-dependent behavior (Zhang et al. 2018). In another
study, silver-hydroxyapatite was loaded into gelatin-alginate-
PVA cryogels in order to form stable porous scaffold having
antibacterial abilities. E. coli and B. subtilis showed prominent
sensitivity under treatment of these scaffolds by IZDs of
24 mm and 22 mm, respectively (Kumar Saini et al. 2019).

AgNP/chitosan/cellulose

In some studies, chitosan and cellulose were applied as a bio-
compatible scaffold for tissue engineering having both phys-
icochemical properties of these biopolymers. In the case of
antiseptic scaffold preparation, AgNPs can be added to these
biocomposites. NCs of chitosan/carboxymethyl cellulose with
different percentages of loaded carboxylated CNW-AgNPs (1,
2, 5, 5, and 10%) were used as the scaffold for bone tissue
engineering having antibacterial activities. These NCs showed
100% removal of E. coliMTCC 1610 at 10% of carboxylated
CNW-AgNP (Hasan et al. 2018). For the synthesis of biofilms
with suitable antibacterial and mechanical strength, 3, 5, and
10% of Ag-dialdehyde CNC solution were decorated on chi-
tosan via solution casting method. Disc diffusion results for
the highest concentration of carboxylated CNW-AgNP dem-
onstrated maximum and minimum IZD values with 10.48 and
7.45 mm for Enterobacter cloacae clinical and P. aeruginosa
standard strains, respectively (Dong and Li 2018). Chitosan
and AgNPs were coated on filter paper as cellulose film due to
the preparation of wound dressing with significant antibacte-
rial activity against E. coli and S. aureus bacteria (Haider et al.
2018). Carboxy-CNCs (CCNCs) and chitooligosaccharide-
CCNCs were applied as stabilizer biocomposites for green
synthesis of silver NPs with antibacterial activity against
K. pneumoniae, E. coli, and S. aureus pathogens. In this con-
text, all three bacteria illustrated complete sensitivity to
0.003 μg/ml concentration of AgNP-chitooligosaccharide-
CCNCs and AgNP-CCNCs compared to amoxicillin antibiot-
ic (Ni et al. 2018).

Conclusions

The antibiotic resistance in bacteria is developing with fast
pace which is a matter of grave concern. In this context, sev-
eral antibacterial and wound healing nanoformulations of sil-
ver NCs, based on supporting biopolymers of chitosan, cellu-
lose, and alginic acid, have been developed by the researchers.
Recent investigations related to antibacterial and biocompati-
bility activities of AgNP-chitosan, AgNP-cellulose, AgNP-
sodium alginate, and AgNP-chitosan-cellulose NCs have
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proved that these activities may be influenced bymany factors
such as types of nanoformulation (films, foams, and
hydrogels) and concentration or volume ratio of each ingredi-
ent. Therefore, by controlling these parameters, suitable NCs
can be obtained for development of wound dressings and tis-
sue engineering scaffolds.
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