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Abstract
Syngas fermentation has been successfully implemented in commercial-scale plants and can enable the biochemical conversion
of the driest fractions of biomass through synthesis gas (H2, CO2, and CO). The process relies on optimized acetogenic strains
able to reach and maintain high productivity of ethanol and acetate. In parallel, microbial communities have shown to be the best
choice for the production of valuable medium-chain carboxylates through anaerobic fermentation of biomass, demanding low
technical complexity and being able to realize simultaneous hydrolysis of the substrate. Each of the two technologies benefits
from different strong points and has different challenges to overcome. This review discusses the rationales for merging these two
seemingly disparate technologies by analyzing previous studies and drawing opinions based on the lessons learned from such
studies. For keeping the technical demands of the resulting process low, a case is built for using microbial communities instead of
pure strains. For that to occur, a shift from conventional syngas-based to “syngas-aided” anaerobic fermentation is suggested.
Strategies for tackling the intricacies of working simultaneously with communities and syngas, such as competing pathways, and
thermodynamic aspects are discussed as well as the stoichiometry and economic feasibility of the concept. Overall, syngas-aided
anaerobic fermentation seems to be a promising concept for the biorefinery of the future. However, the effects of process
parameters on microbial interactions have to be understood in greater detail, in order to achieve and sustain feasible medium-
chain carboxylate and alcohol productivity.
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Introduction

Biorefineries based on waste biomass are appealing technolo-
gies that can support efforts of moving to a new bio-based,
circular economy through the production of platform chemicals
and fuels (de Jong et al. 2012). Among the many candidate
technologies, chain elongation (CE) and syngas fermentation
(SF) are two bioprocesses performed by anaerobic bacteria that
might have a place in the integrated biorefineries of the future
(Bengelsdorf and Dürre 2017; Chen et al. 2017; De Groof et al.

2019; Latif et al. 2014). Nevertheless, both CE and SF face their
own challenges to achieve feasibility as industrial-scale process-
es. For instance, although CE is able to produce high-value
medium-chain carboxylates (MCC) from waste biomass, in
most lab-scale experiments to date, refined ethanol or lactate
had to be co-fed to achieve extractable product concentrations
(Chen et al. 2017). While the first demonstration plants of SF
have started operating with CO-rich waste gas from steel mills,
their main products are mostly limited to commodities that can
also be produced by already existing biorefinery technologies,
in particular ethanol and acetate (Takors et al. 2018). Thus, since
2008, when Steinbusch et al. (2008) purposely co-fed H2 to a
microbial community to steer production to carboxylates and
alcohols, many studies have been trying to merge SF and CE as
a way of complementing the limitations of one technology with
the other’s advantages.

Recent reviews have covered anaerobic fermentation for
CE with microbial communities (Angenent et al. 2016; De
Groof et al. 2019) and production of chemicals through SF
(Bengelsdorf et al. 2018; Fernández-Naveira et al. 2016; Liew
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et al. 2016b; Molitor et al. 2017). This review is focusing on the
use of syngas with such communities (sometimes also referred to
as consortia, reactormicrobiota, mixed cultures, or open cultures)
to aid or to completely sustain production of medium-chain car-
boxylates and alcohols. Some studies with Clostridium
carboxidivorans and acidogenic-carboxydotrophic co-cultures
are also covered to establish a comparison ground with syngas-
aided anaerobic fermentation by microbial communities.

General overview of chain elongation

Through a pathway known as reverse β-oxidation (RBO),
short-chain monocarboxylates (SCC, e.g., acetate, propionate,
n-butyrate) are elongated by two carbons to MCC (e.g., n-
valerate, n-caproate) with the help of an electron donor (Fig.
1a). Once a broth is rich in MCC and electron donors are
available, it is possible to trigger bacterial solventogenesis
metabolism by changing reactor operating conditions to pro-
duce medium-chain alcohols (MCA, e.g., n-pentanol, n-
hexanol) from their MCC counterpart, thereby expanding
the product spectrum of CE (Ganigué et al. 2016).

Limitation by electron donors

Despite its potential to convert waste biomass into higher-
value MCC, CE is mainly limited by the electron donor.
Ethanol and—more recently—lactate have been mostly used
as electron donors (Angenent et al. 2016; Cavalcante et al.
2017; Zhu et al. 2015). As most industrial waste streams have
lower ethanol or lactate concentrations than ideally needed to
promote high yield CE, considerable amounts of these
chemicals have to be procured to the fermenter feed.

Ethanol and lactate supplementation to improve MCC has
consequences on the economics and sustainability of the process:

1. Large-scale streams of diluted ethanol and lactate, e.g.,
corn beer from bioethanol plants or acid whey from dairy
production lines can be concentrated to the commodity-
grade chemical by inexpensive, mature technologies (e.g.,
pressure swing adsorption for ethanol and evaporation/
crystallization for lactate) (Chahal and Starr 2006;
Kosaric et al. 2000). This means that the feasibility of
using ethanol or lactate for MCC production would be
restricted to niche waste streams—streams that for certain
reasons cannot be used for commodity ethanol or lactate
production. Some of these streams have been already
studied, such as wine lees with diluted ethanol (Kucek
et al. 2016c) or lactate from ensiled crop by-products
(Lambrecht et al. 2019; Scarborough et al. 2018b;
Sträuber et al. 2018).

2. Considering the environmental impact, ethanol use was
identified as the biggest accountable factor for the envi-
ronmental impact in terms of global warming potential,

acidification potential, and eutrophication potential dur-
ing n-caproate production from waste biomass (Chen
et al. 2017). The impact of supplemented lactate in the
MCC production life cycle remains to be assessed.
However, it can be anticipated that the environmental im-
pact of procured lactate is not too different from that of
ethanol since commercial lactate is also produced by sug-
ar fermentation or by chemical synthesis from fossil de-
rivatives (Chahal and Starr 2006; Endres and Siebert-
Raths 2009).

In order to improve process feasibility, it is highly desirable
to supplement the waste streams feed with more affordable
electron donors than ethanol and lactate. Novel strategies are
studied to diversify ethanol and lactate usage in CE. Among
them, the usage of strains that produce MCC from sugars or
methanol that could come from waste biomass (Chen et al.
2016; Jankowska et al . 2018; Jeon et al . 2016),
bioelectrochemical systems (Jourdin et al. 2018; Vassilev
et al. 2019), phototrophic organisms (Doud et al. 2017), or,
ultimately, approaches using the reductive power of H2 and
CO (Liew et al. 2016b; Steinbusch et al. 2011) have been
investigated.

Medium-chain carboxylates and alcohols of special
interest

MCC and MCA are potential platform chemicals and biofuels
that could meet many market needs that nowadays are met by
fossil resources. Among MCC, n-caproate (C6) and n--
caprylate (C8) have received special attention in CE research.

�Fig. 1 Most relevant metabolic arsenal of an anaerobicmicrobial community
for syngas-aided chain elongation forMCCandMCAproduction. aDifferent
metabolic routes can be realized by a single cell or by two or more species
with extracellular transfer of intermediates. i-Butyrate production is likely
from bio-isomerization of n-butyrate and is a coproduct receiving increasing
attention; i-caproate is another possible product (not shown) (de Leeuw et al.
2019; de Smit et al. 2019). Each arrow represents one reactional step realized
by an enzyme, phosphorylation steps are omitted for conciseness. The direc-
tion of the arrow suggests the most favorable direction of the reaction during
MCC andMCA production. Unidirectional arrows do not mean, necessarily,
irreversible reactions. Dashed lines illustrate simplified pathways. Lines con-
nected without an arrow indicate a summing reaction. For instance, one
acetyl-CoA and one butyryl-CoA are used to form caproyl-CoA. Use of
electron carriers and ATP coupling for n-valerate, n-caproate, n-heptanoate,
and n-caprylate occur analogously to n-butyrate formation. Different species
may use different electron carriers than those proposed here. bBoth theWLP
and RBO pathways are intimately connected to energy conservation, electron
cycling, and the ionic homeostasis of the cell. Some of the most relevant
soluble and membrane-bound enzymes for CE and SF are shown with ex-
emplary stoichiometry values. The arrow directions indicate the normal reac-
tion direction during autotrophic growth or carboxylate production. These
reactions are generally reversible under the physiological conditions of the
cell. Schemes elaborated based onAngenent et al. (2016); Buckel and Thauer
(2013); Liew et al. (2016a); Schuchmann and Müller (2014); Bengelsdorf
et al. (2018); Costa and Leigh (2014); Kremp et al. (2018); Spirito et al.
(2014); Weghoff et al. (2015); Weimer and Moen (2013)
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This is attributed, among other reasons, to higher C/O ratios,
higher energy density, and easiness to extract them fromwater
in comparison to n-butyrate.

Regarding alcohols, similar reasoning justifies research
focus on n-butanol and n-hexanol production among
MCA (Fernández-Naveira et al. 2017). The highly
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reduced and almost water-insoluble n-octanol would be
also a desired product from acidogenic-solventogenic fer-
menters, but its production in anaerobic fermentations has
been restricted to trace amounts up to now (Richter et al.
2016a).

Production of even-numbered MCC depends on the pres-
ence of an electron donor that generates acetyl-CoA (i.e., eth-
anol or lactate) and even-numbered SCC (e.g., acetate, n-bu-
tyrate), which are more commonly present in acidogenic re-
actors than the odd-numbered counterparts, i.e., n-propanol or
propionate, which are needed to form n-valerate and n--
heptanoate (Fig. 1a) (Bengelsdorf et al. 2018). Since
Clostridium kluyveri produces n-valerate when fed by
propanol and acetate (Kenealy and Waselefsky 1985), one
way to extend product selectivity to odd-numbered MCC is
to use n-propanol as an electron donor. The reason for it is
shown in the metabolic network in Fig. 1a where propionyl-
CoA, produced from n-propanol, condenses with acetyl-CoA
during CE forming the odd-numbered n-valerate through
pentanoyl-CoA (Kenealy and Waselefsky 1985; Marounek
et al. 1989). Since the RBO pathway can really be
intermediated by acetyl-CoA together with propionate (propi-
onyl-CoA), it is also possible to produce odd-numbered MCC
from lactate and acetate by a bacterium such asMegasphaera
elsdenii that possesses both the RBO and the acrylate path-
ways, the latter being a lactate-consuming pathway
intermediated by propionyl-CoA, as shown in Fig. 1a
(Weimer and Moen 2013). Methanol is another strategic elec-
tron donor for being a C1 compound able to be incorporated
into the MCC and MCA pool. Mostly even-numbered MCC
are produced frommethanol and acetate fed to a mixed culture
(Chen et al. 2016). Methanol could in principle be oxidized to
formaldehyde that enters the Wood-Ljungdahl pathway
(WLP) or have its methyl group transferred to THF to yield
methyl-THF. Downstream, methyl-THF is converted with car-
bon monoxide into acetyl-CoA by a microorganism able to
grow autotrophically, like Eubacterium limosum (de Smit
et al. 2019; Kremp et al. 2018; Pacaud et al. 1985).

Syngas as an alternative source of electron donors

With the capacity to convert the lignin fraction, biomass gasifi-
cation technologies may also have a place in the integrated
biorefinery of the future. Gasification products are considered
third-generation substrates; among them, syngas (i.e., H2, CO,
and CO2) and water-shifted gas (i.e., H2 and CO2) can be an
extra source of electrons and carbon for MCC production
(Cueto-Rojas et al. 2015; Liew et al. 2016b). Besides, H2 gas
from electrochemical processes could also be fed to the anaero-
bic fermenter as long as a carbon source is provided (Rabaey
and Rozendal 2010; Vassilev et al. 2018). For this review, water-
shifted gas and H2 gas are all referred as syngas for simplicity.

The gateway for incorporating syngas into the carboxylate
pool is the WLP (Fig. 1a). In the WLP of conventionally
known homoacetogens, H2, CO2, and CO are fixed into
acetyl-CoA with consumption of ATP. Downstream, acetyl-
CoA can either be converted to acetate, returning the ATP
investment, or to ethanol, oxidizing NAD(P). As shown in
Fig. 1b, the pathway depends on the interconversion of these
electron carriers through hydrogenases in the cytosol and cat-
ion export complexes such as the Rnf complex (e.g., in
Clostridium ljungdahlii and Acetobacterium woodii) or the
Ech complex (e.g., in Moorella thermoacetica and
Rhodospirillum rubrum) (Schuchmann and Müller 2014).
Net ATP gain in autotrophically grown homoacetogens is still
possible thanks to the ion-motive force maintained by these
ion export complexes (i.e., Rnf or Ech) and ion import made
by transmembrane ATP synthases (Fig. 1b). There is in-depth
literature covering current knowledge of SF by anaerobic bac-
teria (Bengelsdorf et al. 2018; Diender et al. 2015; Liew et al.
2016b; Schuchmann and Müller 2014).

Other, less common products of syngas-fermenting bacte-
ria are formate, 2,3-butanediol, n-butyrate, i-butyrate, n--
caproate, n-butanol, and n-hexanol (Bengelsdorf et al. 2018).
Up to date, C. carboxidivorans and E. limosum are the only
two strains reported to be able to form n-caproate from syngas,
and C. carboxidivorans is the only known strain able to form
n-hexanol from syngas (Lindley et al. 1987; Phillips et al.
2015).

When C. carboxidivorans was not found in syngas-fed
microbiota, it was assumed that n-caproate/n-caprylate pro-
duction occurred via a multi-species synergy with convention-
al CE intermediated by acetate (or n-butyrate) and ethanol
from the WLP (Ding et al. 2010; Ganigué et al. 2015).
Conversely, typical ethanol-based chain-elongating species,
such as C. kluyveri, have not always been found in studies
where n-caproate and n-caprylate were produced (Grimalt-
Alemany et al. 2018; Kucek et al. 2016b; Nzeteu et al. 2018).

Microbial communities and pure cultures

Syngas can be swiftly consumed by pure strains producing a
limited range of short-chain chemicals such as acetate and
ethanol (Molitor et al. 2017). C. carboxidivorans P7
(Phillips et al. 2015; Ramachandriya et al. 2013) is a remark-
able exception because, to date, no other pure culture has been
confirmed to produce the C6 carboxylate and alcohol when
fed only with syngas. Yet, even after media optimization for
strain P7, concentrations of C6 produced from syngas
remained one order of magnitude lower (i.e., ~ 1 g/L) than
those produced in conventional CE reactors (i.e., ~ 10 g/L of
n-caproate or about the solubility limit of n-caproate at the
working pH) (Fernández-Naveira et al. 2019; Grootscholten
et al. 2014; Ramió-Pujol et al. 2015; Reddy et al. 2018). Even
though there might be other strains producing MCC from
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syngas (e.g., the syngas-fermenting species E. limosum that
can also produce C6 from methanol), their product titers will
hardly increase by an order of magnitude (Bengelsdorf et al.
2018; Lindley et al. 1987; Wade 2015). Thus, without consid-
ering the use of genetic engineering, some studies have
adopted two-culture approaches with homoacetogenic and
acidogenic strains (Diender et al. 2016; Gildemyn et al.
2017; Richter et al. 2016a).

Microbial communities share the low C6 and C8 titers of
C. carboxidivorans when fed only by syngas (Molitor et al.
2017). Still, mixed cultures can have productivities and con-
centrations ofMCC comparable with pure cultures of chain-
elongating species in lactate- or ethanol-based acidogenic
reactors and in a broader range of pH (De Groof et al. 2019).
B e n c h m a r k i n g o p e n m i x e d c u l t u r e s w i t h
C. carboxidivorans and co-cultures (e.g., C. kluyveri/C.
ljungdahlii) for syngas-aided CE is limited since microbial
communities are the only option to directly convert com-
plex biomass (e.g., lignocellulose) to the MCC pool.
Therefore, a co-feeding strategy of syngas and degradable
types of biomass (in particular with feedstock proven suc-
cessful for CE) can make mixed cultures feasible for
syngas-fermenting reactors. In other words, open cultures
may excel in syngas-aided (and not in syngas-based) CE.

The use of open mixed cultures can further add simpli-
fications to the bioprocess of MCC and MCA production.
It is known from anaerobic digestion and fermentation re-
search that microbial communities can operate steadily in
unsterile reactors (Werner et al. 2011; Agler et al. 2014;
Sträuber et al. 2018), which can help lower process capital
and operating costs in comparison with monoseptic condi-
tions. Besides, it is expected that communities can better
handle the inhibitors and contaminants typically found in
syngas. Aromatics, tars, HCN, sulfur oxides, and many
other compounds - besides H2, CO, and CO2—can be
found in real syngas and some are known to negatively
affect performance of the best syngas fermenters (Oswald
et al. 2018; Sikarwar et al. 2016). Open mixed cultures
have shown robustness and resilience in hydrolysis and
fermentative reactor operation and are used to degrade bio-
mass of varying quality despite the presence of natural
inhibitors in the substrate, such as alkaloids (Popp et al.
2016) and phenolic compounds (Chapleur et al. 2016).
This characteristic resilience to substrate quality fluctua-
tions has been decisive for the success of technologies in
anaerobic digestion and wastewater treatment (Werner
et al. 2011). However, to the best of the authors’ knowl-
edge, no study has tested yet this assumed robustness of
microbial communities with real syngas.

The biggest hurdles for the application of open mixed
cultures may be instability of the community and lack of
knowledge of the microbial interactions in these systems
(Arslan et al. 2016; Werner et al. 2011). It is not trivial to

establish a common ground for comparing kinetics be-
tween pure and mixed cultures. However, it can be ob-
served that when operating with mixed cultures fed with
syngas, longer fermentation times (in the order of dozens
and hundreds of days) are generally needed to achieve
steady production rates in comparison with pure cultures,
the latter having more reproducible and definable kinetics.
The study done by Ganigué et al. (2015) can be taken as
an example, where batch tr ials with syngas-fed
C . c a r b o x i d i v o r a n s a n d w i t h a n e n r i c h e d
carboxydotrophic mixed culture were realized for 4 and
20 days with the pure culture and the microbial consor-
tium, respectively. Dynamics and fermentation time to
achieve stable conversion rates can also be in the order
of dozens of days for microbial communities degrading
solid substrates as shown by Sträuber et al. (2016), where
a 200-day pre-cultivated community was used to degrade
corn silage in semi-continuous reactors. Fortunately, stud-
ies on acidogenic bacterial communities do not have to
start from scratch because much of the knowledge devel-
oped with methanogenic communities in anaerobic di-
gesters is useful for MCC- and MCA-producing commu-
nities (Agler et al. 2014, 2012; Spirito et al. 2014). In the
next years, the remaining knowledge gaps on acidogenic
bacterial communities may be tackled with the advance-
ment of high-throughput omics approaches and increasing
accessibil i ty of cell- level analytical techniques.
Notwithstanding, deeper understanding in microbial ecol-
ogy will offer applied insights on what happens and what
does not within such fermentative communities.

Process rationales for syngas-aided
and syngas-based strategies

The concept of merging SF and CE in order to take profit from
its synergies has been a topic in several previous studies. Main
rationales together with example studies are stated in Table 1.
Figure 2 summarizes the process flow strategies adopted in the
studies that attempted to join CE and SF. Figure 2 a and d are
syngas-based strategies while Fig. 2 b, c, and e are syngas-
aided strategies.

The scheme depicted in Fig. 2a shows SF in the first
process step and a CE reactor receives the effluent from
the first reactor, preferably with a high ethanol:acetate
ratio. The first reactor depends on solventogenic
carboxydotrophic bacteria and the CE reactor needs,
therefore, bacteria able to realize ethanol-based CE. As
shown in Table 1, studies that adopted this strategy opted
out for a pure strain for the SF step and for C. kluyveri or
a mixed culture for the CE step.

Figure 2 b shows CE as the first step and SF in series
for reducing MCC to MCA. Richter et al. (2013) built
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Table 1 Rationales for merging syngas fermentation (SF) and chain elongation (CE) processes and study examples

Rationale Reference Strategy Comments

Syngas as a supplemental
electron donor

Steinbusch et al. (2011) Fig. 2e With the use of a non-enriched,
granular sludge inoculum to produce
MCC from ethanol, H2, and acetate in
mineral medium.

One of the first studies clearly showing increased
MCC production with co-fed H2. In batch
bottles at pH 7, H2 was fundamental to trigger
C8 formation and caused 50% increase in C6
production. In fed-batch reactors with
low-flow H2 bubbling and intermittent ethanol
feeding, up to ~ 8.2 g/L n-caproate and ~ 3.4
g/L n-caprylate were achieved after about 110
days of operation at neutral pH.

Vasudevan et al. (2014) Fig. 2a Using a mixed culture for the
second process step.

As a proof of concept, the authors fed a chain
elongating community with a SF broth from
C. ljungdahlii containing ethanol, carbonate,
and acetate. Finally, concentrations of 1 g/L
n-caproate and 20 g/L n-butyrate were
achieved.

Kucek et al. (2016b) Fig. 2a Similar concept as in Vasudevan
et al. (2014). However, adopting strate-
gies to steer production to C8.

An acidogenic reactor was operated with inline
product separation for 186 days fed by a
mimicked SF effluent mixture with diluted
ethanol and acetate. The authors highlighted
the high n-caprylate productivity of 0.33 g/(L
h) and proposed strategies to increase
selectivity to n-caprylate.

Nzeteu et al. (2018) Fig. 2e With a preceding hydrolysis step.
Leachate with residual lactate, ethanol,
and carboxylates from food waste was
fed together with H2 gas.

Batch tests with the leachate of a food waste
bioreactor comparing co-feeding with ethanol,
H2, and H2/ethanol. Bottles with added H2 and
H2/ethanol increased n-caproate formation
from 4.1 g/L to 10.4 g/L after 8 days in com-
parison with controls and ethanol-only fed
bottles. Information on H2 consumption could
not be found.

Syngas as the only
electron donor

Zhang et al. (2013) Fig. 2d Use of a non-enriched methano-
genic community in a hollow fiber
membrane biofilm reactor to overcome
H2 mass-transfer limitations.

The authors achieved concentrations of 0.98 g/L
n-caproate and 0.42 g/L of n-caprylate after 80
days by feeding the biofilm with H2 and CO2

at pH 6.0.

Phillips et al. (2015) Fig. 2d Single-step process using
C. carboxidivorans P7.

First study showing the strain’s ability to produce
n-hexanol in a defined medium from mixtures
of H2, CO, and CO2 in the bottle headspace.
By optimizing minimal medium composition
and other cultivation techniques to avoid
substrate inhibition by CO, roughly 1 g/L of
both n-hexanol and n-butanol were produced
after 15 days under the most favorable condi-
tions.

Ganigué et al. (2016) Fig. 2d Operation with a natural pH drop
towards the end of each batch to trigger
solventogenesis.

Using intermittently bubbled syngas (H2, CO,
and CO2, 32:32:8) in a fed-batch reactor, the
authors achieved not only an n-caproate con-
centration of 0.6 g/L after around 40 days, but
also subsequent solventogenesis, in which 1.1
g/L and 0.6 g/L of n-butanol and n-hexanol,
respectively, were produced after about 110
days.

Richter et al. (2016a) Fig. 2d Use of a co-culture of
C. ljungdahlii and C. kluyveri. The
continuous reactor was coupled with a
condenser for inline extraction of alco-
hols.

Using a syngas mixture with 60% CO and 35%
H2 productivities peaked at 0.725 g/(L d) and
0.539 g/(L d) of n-butanol and n-hexanol,
respectively, besides traces of n-octanol. Gas
and cell recirculation allowed for continuous
high bubbling of syngas and likely higher gas
transfer rates. However, the MCA recovery in
the inline condenser was suboptimal. Authors
proposed the study of a three-step process (SF,
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the case for lowering medium costs by assuming prices
for laboratory-grade, non-bulk nutrients. The authors ac-
knowledged that laboratory-grade nutrient prices are

higher than industrial-grade ones but sustained the point
that the estimate is still valid to prove the need for lower
nutrient costs. This nutrient cost overestimation is

Table 1 (continued)

Rationale Reference Strategy Comments

CE, and solventogenesis) in comparison with
the single-step approach tested.

Diender et al. (2016) Fig. 2d Use of a stable co-culture of
C. autoethanogenum and C. kluyveri in
culture bottles to convert syngas and CO
ultimately to MCC and MCA.

Using different mixtures of CO and H2 and
testing different parameters like shaking, pH,
and acetate co-feeding. n-caproate and
n-hexanol concentrations reached ~ 1.2 g/L
and ~ 0.41 mg/L, respectively, after 8 days
with excess CO, shaking, pH 6.0, and acetate
co-feeding. Apparently, the co-culture pro-
ductivity was limited by ethanol formation by
C. autoethanogenum.

He et al. (2018) Fig. 2d Use of a non-enriched methano-
genic community in an upflow column
reactor filled with sponge pads.

144 mg/L n-caprylate was produced after around
110 days by feeding with increasing pressure
of CO. However, high organic solids charge
from inoculum and yeast extract might have
blurred the real production of n-caprylate from
CO.

Inhibition of competitive
methanogenesis

Esquivel-Elizondo et al.
(2018)

Fig. 2e. Single-step, fed-batch operation
with serum bottles.

Higher CO partial pressures from 0 to 0.3 atm
steered the electron pool to MCC, increased
the fraction of Clostridia in the community
and partially inhibited methanogenesis. A
maximum concentration of 0.317 g/L n--
caproate was produced at 0.3 atm CO and
around 0.5 g/L ethanol after 36 days.

Reduction of medium costs Richter et al. (2013) Fig. 2b C. ljungdahlii fed with a model
mixture or real broth of a CE reactor.

Under optimal conditions, 830 mg/L of n-
-caproate originally present in a CE reactor
broth was consumed by C. ljungdahlii during
continuous bubbling of syngas (H2:CO:CO2

30:65:5) to produce around 450 mg/L of n-
-hexanol. Using prices of laboratory-grade
ingredients, the authors argued that without
the need for yeast extract, process costs of SF
fed by a CE broth could be lowered signifi-
cantly.

Gildemyn et al. (2017) Fig. 2a With a pure strain for the chain
elongation step.

C. kluyveri was used to produce MCC from a
filtered, ethanol-rich C. carboxidivorans P7
broth, removing the necessity of
supplementing the CE culture with yeast ex-
tract.

Syngas for solventogenesis Steinbusch et al. (2008) Fig. 2c Use of a mixed culture fed with
100% H2 (1.5 bar) together with acetate,
propionate, or n-butyrate in serum
bottles initially at pH 5.0

Production of 0.37 g/L and 0.22 g/L of n-
-propanol and n-butanol, respectively, after 25
days. The MCC production showed a rela-
tively high conversion efficiency of around
50%.

Liu et al. (2014) Similar to the strategy Fig. 2c, although the
first CE step is not present. Propionate
and n-butyrate were co-fed to a mixed
culture dominated by Alkalibaculum
bacchi CP15 and Clostridium
propionicum.

Production of up to 0.98 g/L n-propanol and
traces of n-butanol was achieved by feeding
the culture with artificial syngas (H2, CO, and
CO2 30:40:30). A high concentration of un-
defined corn steep liquor nutrient solution was
used and it might have blurred the real pro-
duction of alcohols from syngas. It is supposed
that both species worked synergistically to ul-
timately produce n-propanol and n-butanol.
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sometimes orders of magnitude higher than from
industrial-grade ingredients, thus raising a flag about
the claim that medium costs are indeed such a big hin-
drance for viability of SF and CE as bioprocesses.

The strategy depicted in Fig. 2c is the least frequently stud-
ied among the five strategies. Such strategy allows the incor-
poration of feedstock biomass to the substrate pool and can
work with two differently acclimatized microbial communi-
ties. It is a possible answer to the incompatibilities of process
conditions of CE, SF, and solventogenesis reported previously
(Ganigué et al. 2016; Richter et al. 2016a). The first stage
operates as a hydrolysis and CE reactor and the second stage
converts carboxylates to alcohols through syngas-based
solventogenesis. However, one caveat against this strategy is
that, in general, microbial communities have not excelled in
solvent production.

Figure 2 d represents the scheme for simultaneous SF and
CE to MCC and MCA. A strain like C. carboxidivorans P7
can produce MCC and MCA from syngas in a single process
step. Despite C. carboxidivorans has been reported to be able
to grow on cellulose, cellobiose, and pectin (Liou et al. 2005),
the authors did not find any reports about its performance in
mixotrophic growth with significant MCC and MCA produc-
tion. Therefore, it is assumed here that C. carboxidivorans is
not a viable culture for simultaneous degradation of real lig-
nocellulosic waste and SF. Without biomass hydrolysis, the
only way to use waste biomass in this process configuration is
by a preceding conversion to syngas (Fig. 2). When using
communities, MCC and MCA titers from using such config-
uration have remained low to date. Reactors that allow high

mass transfer such as hollow-fiber membrane biofilm reactors
have been used to successfully increase selectivity to n--
caproate and n-caprylate. However, the maximum concentra-
tion of n-caproate or n-hexanol of around 1 g/L seems to be a
hard cap for the optimization of such strategy (Ganigué et al.
2016; Shen et al. 2018; Zhang et al. 2013).

Anaerobic fermentation of syngas with a community for
MCC/MCA production works analogously to Fig. 2d, but with
the possibility of biomass co-feeding (Fig. 2e). Such “syngas-
aided anaerobic fermentation” uses biomass that is preferably
rich in an electron donor such as lactate or ethanol. Similarly to
conventional ensiling, lactic acid bacteria can convert fractions
of the lignocellulose to lactate in situ as electron donors that are
subsequently consumed during CE. In parallel, the reductive
power of H2 and CO could lower lactate or ethanol consump-
tion, lowering process costs or increasing total conversion to
MCC/MCA. Several studies that follow this strategy are listed
in Table 1. Interestingly, product concentrations are not limited
as in setups that follow Fig. 2d and studies with the adequate
controls indicate that the added syngas can increase concentra-
tion and selectivity to the more reduced chemicals, i.e., the
longer-chain carboxylates and alcohols. As one remarkable ex-
ample for the scheme in Fig. 2e for syngas-aided CE, batch test
results presented by Nzeteu et al. (2018) suggested that a
lac ta te -based CE communi ty had synergy wi th
hydrogenotrophic activity to produce about 130% more n--
caproate (totaling 10.4 g/L) in comparison with the H2-free
fermentation. A similar synergy was recently reported by Wu
et al. (2019), where 44%more n-caproate (totaling 5.5 g/L) was
obtained from a lactate-based CE reactor with H2 co-feeding.
Interestingly, such synergy was also found by Steinbusch et al.
(2011)—though to a lesser extent of about 10% increase of
n-caproate, to 8.2 g/L—when bubbling H2 to a mixed culture
that was performing ethanol-based CE.

Syngas-aided anaerobic fermentation
with microbial communities

Competing pathways in microbial communities

Together with the advantages brought by highly diversified
bacterial communities, it is likely that more competing path-
ways to those important for MCC and MCA production will
coexist in the reactor. Many of these pathways have been
studied and strategies to steer them towards the desired pro-
cess have been proposed. Table 2 sums up these generally
undesired pathways when producing MCC and MCA by
mixed cultures with the help of syngas. The effect of each
pathway is discussed and known strategies that are able to
inhibit partially or completely these pathways are also
presented.

Syngas

MCC

MCA

MCC and MCA

MCA

MCC and MCA

Gasification
Biomass, sugars, 
lactate, acetate, 

etc.

Hydrolysis and 
Fermentation
(mixed culture)

Biomass Biomass

Simultaneous syngas fermentation and 
chain elongation

(mixed culture, co-culture or C. carboxidivorans)
d Syngas

Chain elongation
(pure or mixed 

culture)

Syngas 
fermentation

(pure strain)

Ethanol + 
acetatea Syngas

Chain elongation
(mixed culture)

MCC

Syngas
c Biomass Solventogenesis

(mixed culture)

Simultaneous syngas fermentation and 
chain elongation

(mixed culture)
e

Biomass

Syngas

Chain elongation
(pure or mixed 

culture)

Solventogenesis
(pure strain)

Ethanol + 
acetateb

MCC

Syngas

Fig. 2 Process rationales for merging syngas fermentation (SF) and chain
elongation (CE). Ethanol can be substituted by lactate as an electron
donor for CE. Virtually all organic fractions of feedstock biomass can
be incorporated into SF by gasification, although not all biomass types are
feasible. Fractions of biomass can be incorporated to CE by microbial
hydrolysis and fermentation. MCC: medium-chain carboxylates; MCA:
medium-chain alcohols
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Partial pressures of H2 usually present in syngas are more
than enough to inhibit excessive oxidation of alcohols and
carboxylates. This feature has, indeed, motivated studies
about syngas-based and syngas–aided CE and some of these
studies are listed in Table 1. As a trade-off, the continuous
presence of H2 means that the sulfate-reducing and methano-
genic members of the community can also grow abundantly,
taking advantage of higher energy-yielding reactions than, for
instance, homoacetogenesis and CE.

Regarding the competing pathways that are not inhibited
by H2, the acrylate pathway (AP) has not been found to be of
concern for lactate consumption in most studies on lactate-
based CE (Cavalcante et al. 2017; Lambrecht et al. 2019),
and even when it occurred, it was overcome by adequately
managing pH values and lactate loading rates. Besides, AP is
not always considered a competing pathway. Due to propio-
nate formation, AP could be a desired pathway in the
acidogenic community, since it is a way to expand the product
spectrum to odd-numbered MCC and MCA (such as n-valer-
ate, n-heptanoate, and n-pentanol) in CE systems based on
lactate and acetate (Wu et al. 2018). The same cannot be said
about hydrogenotrophic methanogenesis (HM). Resilient HM
is arguably the most challenging pathway to be tackled in
syngas-aided MCA and MCC production with an open mixed
community (Zhang et al. 2018). Differently from acetoclastic
methanogenesis (AM), HM has been found to be persistent at
pH values as low as 5.2 (Savant et al. 2002) and the most
common way to selectively inhibit it in laboratory studies—
u s i n g r e l a t i v e l y h i g h c o n c e n t r a t i o n s o f 2 -
bromoethanosulfonate (50 mM)—would be too expensive
for a refinery-scale process. Additionally, no single proposed
action in Table 2 is able to completely counter HM alone
without also compromising MCC and MCA yields. Thus,
new cost-effective and selective ways to hinder HM still need
to be studied if syngas-based fermentation with microbial
communities is to become a biorefinery process. Despite the
fact that sulfate-reducing bacteria (SRB) are able to outcom-
pete even methanogens for consumption of H2 and acetate
(Plugge et al. 2011), competition from SRB can be avoided
in a relatively simply fashion by keeping sulfate concentra-
tions sufficiently low and using reduced sulfur supplements as
sulfur source (Hu et al. 2015).

Thermodynamic aspects

Amyriad of metabolic pathways are possible to be realized by
anaerobic communities in the ranges of pH 4.5 to 7.5 and
temperatures of 28 to 37 °C, ranges in which CE and SF are
also found to perform best (González-Cabaleiro et al. 2015).
When the community is not limited by the lack of a gene, its
expression or by kinetic phenomena, it is still ultimately lim-
ited by thermodynamics. It has been shown that such thermo-
dynamic limitation holds true for many metabolic routes in

anaerobes (Heimann et al. 2009; Kleerebezem and Stams
2000; Richter et al. 2016b). In the case of syngas-aided CE,
relevant catabolic reactions that are subject to thermodynamic
limitation are shown in Table 3. The Gibbs free energy of the
reactions was calculated for biochemical standard conditions
(T = 298 K; 100 kPa; pH 7.0; 1 M of each reactant and prod-
uct) as well as for conditions of temperature, pH, and chemical
concentrations closer to those of a bioreactor operating for
syngas-aided MCC and MCA production (pH = 5.5; T =
310 K; 100 mM acetate; PH2 = PCO2 = PCO = 30 kPa;
10 mM or 1 kPa for other reactants and products).

As shown in Table 3, some strategies are conceivable to
selectively favor MCC and MCA formation in a syngas-
fermenting community. As seen in reactions 8 and 13
(Table 3), high acetate concentrations in the reactor favor re-
actions that accumulate longer-chain carboxylates. In practice,
this was verified in various experiments with acidogenic reac-
tors, as reported by Arslan et al. (2016), and can give a selec-
tive advantage to acidogenic bacteria over methanogenic ar-
chaea at a defined pH (Zhang et al. 2018). As a trade-off, SCC
concentrations higher than 50 mM generally increase the lag-
phase of anaerobic cultures (Jaros et al. 2012).

It is generally assumed that MCC production from H2 and
CO2 by pure or mixed cultures does not occur by a specific
pathwaywith H2 as a direct electron donor. Instead, it has been
proposed that the n-butyrate, n-caproate, and n-caprylate titers
seen in syngas-based fermentations were intermediated by
ethanol and acetate (Ding et al. 2010; González-Cabaleiro
et al. 2015). According to González-Cabaleiro et al. (2013),
the unfeasibility of acetate reduction to n-butyrate with H2

(reaction 13 Table 3) may be due to a kinetic bottleneck during
the condensation of two acetyl-CoA into acetoacetyl-CoA,
which becomes more unfavorable the higher the H2 partial
pressure is, despite the exergonic character of the overall re-
action. This limitation imposes that ethanol (or lactate) needs
to be present for the formation of n-butyrate and longer chain
carboxylates from acetate to take place.

Ethanol can be formed by acetate reduction and can be
assisted with H2 consumption in the near-equilibrium reaction
5 or with CO consumption in the more exergonic reaction 6
(Table 3) being both reactions highly exothermic (with stan-
dard enthalpy of reactions of − 83 and − 88 kJ/reaction, re-
spectively). Biologically, however, autotrophic ethanol pro-
duction from H2/CO2 or CO seems to be less frequently ob-
served than autotrophic acetogenesis in microbial communi-
ties since not every acetogen is able to couple such ethanol
formation with net ATP gain (Molitor et al. 2017). As an
example, when A. woodii is fed by H2:CO2, ethanol formation
would lead to net ATP loss. In acetogens, such as
C. ljundgdahlii, the ATP yield of autotrophic ethanol forma-
tion depends on which of the two possible routes for ethanol
production from acetyl-CoA is active (Fig. 1a). Thanks to the
acetaldehyde:ferredoxin oxidoreductase (also known as
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AOR), acetaldehyde can be formed from acetate reduction. In
this case, and if reduced ferredoxin is not limiting, ethanol

formation has more favorable energetics since the ATP bal-
ance is zeroed in the WLP before solventogenesis starts. AOR

Table 3 Reactions in syngas-aided CE performed by an open mixed
culture and their thermodynamic feasibility. For conciseness, the most
essential reactions are shown and reactions that occur in practice can be
derived from them. For instance, in certain conditions of substrate con-
centration conventional CE with C. kluyveri occurs through five times

reaction No. 8 or No. 9 coupled with the reverse reaction of No. 5
(Angenent et al. 2016). Homoacetogenic sugar fermentation is reactions
No. 14 and No. 1 in series. MCC reduction to its respectiveMCAwith H2

and CO occurs according to reactions No. 5 and No. 6, respectively

No. Reaction (reverse reaction) ΔG
00
r kJ/

reaction
ΔG

0310K
r kJ/

reaction
ΔGReactor

r kJ/
reaction

Syngas
fermentation

1 Hydrogenotrophic acetogenesis (acetate oxidation)
4H2 + 2CO2→CH3COO

− +H+ + 2H2O
− 95.1 − 88.0 − 66.4

2 Carboxydotrophic acetogenesis
4CO + 2H2O→CH3COO

− +H+ + 2CO2

− 175 − 172 − 162

3 Hydrogenotrophic solventogenesis
6H2 + 2CO2→CH3CH2OH + 3H2O

− 105 − 94.5 − 81.5

4 Carboxydotrophic solventogenesis
6CO + 3H2O→CH3CH2OH + 4CO2

− 224 − 220 − 225

5 Acetate reduction to ethanol with H2 (excessive ethanol oxidation)
CH3COO

− +H+ + 2H2→CH3CH2OH +H2O
− 9.64 − 6.48 − 15.1

6 Acetate reduction to ethanol with CO
CH3COO

− +H+ + 2CO +H2O→CH3CH2OH + 2CO2

− 49.6 − 48.0 − 62.8

7 Carboxydotrophic hydrogenogenesis
CO +H2O→H2 +CO2

− 20.0 − 20.9 − 24.1

Chain
elongation

8 Ethanol-acetate elongation to n-butyrate
C2H5OH +CH3COO

−→CH3(CH2)2COO
− +H2O

− 38.6 − 38.3 − 32.3

9 Ethanol-butyrate elongation to n-caproate
C2H5OH +CH3(CH2)2COO

−→CH3(CH2)4COO
− +H2O

− 38.8 − 38.5 − 26.6

10 Ethanol-propionate elongation to n-valerate
C2H5OH +CH3CH2COO

−→CH3(CH2)3COO
− +H2O

− 38.6 − 38.3 − 26.4

11 Lactate-acetate elongation to n-butyrate
CH3CHOHCOO

− +CH3COO
− +H+→CH3(CH2)2COO

− +H2O +CO2

− 57.7 − 58.4 − 64.4

12 Lactate-butyrate elongation to n-caproate
CH3CHOHCOO

− +CH3(CH2)2COO
− +H+→CH3(CH2)4COO

− +H2O +CO2

− 57.9 − 58.6 − 49.8

13 Hydrogenotrophic acetate elongation to n-butyrate*
2H2 + 2 CH3COO

− +H+→CH3(CH2)2COO
− + 2 H2O

− 48.2 − 46.6 − 61.8

Biomass
conversion

14 Anaerobic hexose oxidation to acetate
C6H12O6 + 2H2O→ 2CH3COO

− + 2H+ + 4H2 + 2CO2

− 213 − 225 − 226

15 Anaerobic hexose oxidation to n-butyrate
C6H12O6→CH3(CH2)2COO

− +H+ + 2H2 + 2CO2

− 261 − 270 − 273

16 Hexose to propionate
C6H12O6 + 2H2→ 2 CH3CH2COO

− + 2H+ + 2H2O
− 357 − 358 − 345

17 Lactate fermentation from hexose
C6H12O6→ 2 CH3CHOHCOO

− + 2H+
− 194 − 198 − 192

18 Lactate conversion to ethanol*
CH3CHOHCOO

− +H+→CH3CH2OH +CO2

− 19.1 − 20.1 − 32.1

19 Cellulose hydrolysis
C6H10O5 +H2O→C6H12O6

− 6.27 − 6.60 − 6.60

Competing
pathways

20 Acrylate pathway
CH3CHOHCOO

− +H2→CH3CH2COO
− +H2O

− 81.2 − 80.1 − 77.0

21 Hydrogenotrophic methanogenesis
4H2 +CO2→CH4 + 2H2O

− 131 − 126 − 122

22 Acetotrophic methanogenesis
CH3COO

− +H+→CH4 +CO2

− 35.7 − 37.9 − 55.8

23 Lactate oxidation to acetate
CH3CHOHCOO

− +H2O→CH3COO
− + 2H2 +CO2

− 9.46 − 13.6 − 17.0

ΔG
00
r is the Gibbs free energy of reaction for biochemical standard conditions, i.e., T = 298.15 K, activities equal to 1 and pH = 7

ΔG
0310K
r is the Gibbs free energy of reaction for standard conditions, except T = 310.15 K

ΔGReactor
r is the Gibbs free energy for conditions assumed for a simultaneous SF/CE reactor: pH = 5.5; T = 310.15 K; 100 mM acetate; PH2 = PCO2 = PCO

= 30 kPa; 10 mM (or 1 kPa) for other reactants and products

Calculation of Gibbs free energy, correction for temperature, and chemical activity were done according to Kleerebezem and Van Loosdrecht (2010)

At pH 7.0 reactions can be more accurately described with bicarbonate instead of CO2 (g). In that case, consider the reaction:

CO2 +H2O→HCO3
− +H+ ΔG

00
r ¼ 4:7 kJ=reaction ΔG

0310K
r ¼ 5:4 kJ=reaction

*Hypothetical reaction
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is absent in organisms like A. woodii but present in
solventogenic strains like Clostridium autoethanogenum and
C. ljungdahlii. C. autoethanogenum is able to sustainably
produce ethanol from H2:CO2 regardless the way how acetal-
dehyde is formed (Köpke et al. 2010; Mock et al. 2015;
Steinbusch et al. 2008). The AOR enzyme uses reduced fer-
redoxin for the reduction of acetate to acetaldehyde and CO
oxidation generates just that (Fig. 1).

Put simply, CO removes kinetic hindrances of the WLP and
solventogenesis by preserving the ferredoxin pool reduced.
Thermodynamically, acetogenesis and solventogenesis from
CO are more favorable than the hydrogenotrophic reactions
(reactions 2, 4, and 6 Table 3). Nevertheless, the use of CO
from syngas in a community can be seen as a double-edged
sword. CO is a substrate that can increase autotrophic activity,
promote cell biomass formation, and sustain solventogenesis,
but it has nonselective inhibitory and toxic effects on microor-
ganisms. To add to the complexity, resistance to CO varies
among different microbial species and though it is possible to
acclimatize communities to it, high CO partial pressures limit
the microbial diversity (Esquivel-Elizondo et al. 2017; Guiot
et al. 2011). The toxicity mechanisms of CO in bacteria, though
still not completely clear, are assumed to be through irreversible
inhibition of metalloenzymes such as the ferredoxin-dependent
hydrogenases (Ragsdale 2004; Yasin et al. 2015). Since hydrog-
enases and other enzymes involved in the electron transport are
metalloenzymes in general, this mechanism can explain the
observed hindrance of H2 and CO2 consumption by autotrophs
in the presence of CO in some studies (Diender et al. 2015).
Whatsoever the predicted consequences of CO on communities
performing biomass degradation, SF, or CE are, studies that try
to understand these trade-offs could add much to this topic
(Bengelsdorf et al. 2018; Chakraborty et al. 2019; Diender
et al. 2015; Esquivel-Elizondo et al. 2018; Molitor et al. 2016;
Sipma et al. 2004).

H2 is a product of conventional ethanol-based CE (4 times
reaction 8 coupled with a reversed reaction 5, Table 3), formed
during n-butyrate production from sugars and in conventional
anaerobic fermentation of sugar to acetate (reactions 14 and
15, Table 3) (Arslan et al. 2012; Schoberth and Gottschalk
1969). Such clearly exergonic reactions are limited by kinetics
rather than by thermodynamic equilibrium and even high par-
tial pressures of H2 are not enough to cause a noticeable inhi-
bition effect on them (González-Cabaleiro et al. 2015). A
study done by Arslan et al. (2012) found that higher H2 partial
pressure actually favored conversion of carbohydrate-rich
waste and increased carboxylate yield by a microbial commu-
nity. The higher yields of acetate, n-butyrate, and n-caproate in
the reactors with added H2 could be explained by a combina-
tion of 1) homoacetogenic sugar fermentation, as described by
Schuchmann and Müller (2016), where 1 mol of glucose is
converted to 3 mol of acetate by acetogenic bacteria able to
grow mixotrophically (reactions 14 and 1 in series, Table 3);

and 2) H2:CO2-aided CE, as described before, possibly
intermediated by ethanol (reaction 5 in series with reactions
8 and 9, Table 3). Results of some studies suggest that similar
synergies with mixotrophs and parallel H2:CO2-aided CE
might exist although their exact mechanisms were not system-
atically tested yet (Arslan et al. 2012; Ding et al. 2010; Nzeteu
et al. 2018; Steinbusch et al. 2011).

The intermediation of lactate in mixed cultures producing
MCC from H2 and SCC is yet a poorly studied possibility
(Scarborough et al. 2018a). Small concentrations of lactate
can be found in anaerobic fermentation systems even in the
absence of organic substrates as a result of the natural pyruvate
concentrations in the active cells (Garvie 1980). As seen in
reactions 11 and 12 Table 3, CE of SCC with low lactate
concentrations is highly exergonic as long as high SCC con-
centrations are kept. Analogously to CE realized by
C. kluyveri, the recently isolated lactate-based MCC-produc-
ing strain Ruminococcaceae bacterium CPB6 also needs to
oxidize part of the lactate into SCC for ATP generation and
cell growth producing H2 as consequence (reaction 23
Table 3) (Wang et al. 2018; Zhu et al. 2017). The coupling
of reactions 11, 12, and 23 (Table 3) also happens in lactate-
based n-caproate production by mixed cultures (Zhu et al.
2015), producing 2 moles of H2 and 3 moles of CO2 per
produced mol of n-caproate from 3 moles of lactate. In prin-
ciple, if active hydrogenotrophs are present in the community,
the produced H2/CO2 can be reincorporated to the carboxylate
pool through the WLP (reaction 1 Table 3).

It is worth pointing that in MCC/MCA-producing systems,
the predictive power of such thermodynamic analysis is lim-
ited to the operation states where inhibitory effects of products
and substrates on the community are not significant. The lon-
ger the chain of the MCC (and MCA) the higher is the
inhibiting effect on a mass basis. MCC inhibition is especially
strong in acidic media, where more MCC is found undissoci-
ated. Such forms of MCC can jeopardize the pH homeostasis
of cells by passively crossing the cellular membrane or even
by dissolving it. Accordingly, MCA inhibition occurs due to
the solvent, hydrophobic behavior.

The thermodynamic effects of temperature also need to be
taken into consideration in syngas-aided CE. Besides the clear
effect of temperature on microbial kinetics, temperature
changes the solubility of gases in water and the Gibbs free
energy of possible reactions realized by the microbial commu-
nity. Figure 3 depicts these thermodynamic effects of temper-
ature in a range from 25 to 55 °C. Figure 3 a shows particular
strong effects of temperature on the solubility of CO2 and CO,
while solubility of H2 barely changes. Even under conditions
when CO2 and CO are not the limiting substrates, lowering the
temperature slightly to increase their solubility can be worth
considering, since experience has shown that increasing the
availability of these substrates significantly impacts the pro-
cess performance (Roghair et al. 2018a). It is worth noticing,
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however, that diffusion coefficients increase with temperature;
thus, such conclusions—i.e., lowering temperature for higher
gas solubility—should only be applicable to systems that are
not limited by gas-liquid mass-transfer (Diender et al. 2015).

In general, lower temperatures increase favorability of gas-
consuming reactions with a particularly strong effect on
solventogenesis and hydrogenotrophic methanogenesis (Fig.
3b). This might help explain better yields of n-caproate and n-
hexanol obtained by Ramió-Pujol et al. (2015) when growing
C. carboxidivorans on syngas at 25 °C in comparison with
cultivations at 37 °C. On the other hand, due to particularly
stronger effects on kinetics of some methanogens, lower tem-
peratures do not necessarily give a selective advantage to
hydrogenotrophic methanogenesis in practice. In fact, temper-
atures lower than 25 °C have been even proposed as a tool to
avoid methanogenic activity in acidogenic reactors (Liu et al.
2018). As a caveat, the fact that some industrial-scale anaero-
bic digesters can operate successfully at temperatures around
25 °C (Liebetrau et al. 2019) suggests that this strategy alone
(i.e., operating closer to psychrophilic temperatures) might not
be sufficient to outcompete methanogens.

Reactions able to generate ATP through substrate-level
phosphorylation, i.e., ethanol and lactate oxidation, are ther-
modynamically disfavored at lower temperature. However,
this might not have a prohibiting effect of the overall CE
reaction since most of the ATP is generated through the elec-
tron bifurcation-ATP synthase system (Angenent et al. 2016).
In any case, it must be carried in mind that temperature has
also strong effects on kinetic phenomena.

Adapting syngas fermentation reactors
to communities

Be it in a bubbled column, gas-lift, or in stirred reactors, SF
depends on high bubbling flow rates to overcome gas-liquid
mass transfer limitations. Intensive bubbling in stirred reactors
also offers the secondary advantage of lowering the power
input of stirring (Takors et al. 2018). At first glance, such high
gas flow rate seems to be incompatible with the typically low

consumption rates of syngas by mixed cultures when high H2

and CO conversion is desired (Molitor et al. 2017). Syngas
might be consumed at even lower rates when used as a co-
substrate with lactate or ethanol. Nevertheless, excess H2 and
CO in the broth is supposed to affect oxidative-reductive po-
tentials and ratios of reduced electron carriers in the cell, ulti-
mately affecting the metabolic pathways and steering product
pools (de Kok et al. 2013; Esquivel-Elizondo et al. 2018). In
that sense, recirculating gas—in contraposition to the one-pass
strategy—can fit well with mixed culture reactors (Fig. 4)
despite still few examples (such as in the setups used by
Richter et al. (2016a) and Guiot et al. (2011)) among recent
studies. This is partly due to the fact that SF reactor systems
have been usually developed for pure cultures, as seen in the
reactor schemes described by Asimakopoulos et al. (2018).

With a gas recirculation strategy as illustrated in Fig. 4b,
the syngas flow rate can, in principle, be kept high regard-
less of the community’s gas consumption rate. By this way,
nearly complete H2 and CO conversion can be achieved
without lowering the gas-liquid transfer coefficient, kla,
described in Eq. 2.

Operation with gas recirculation means that gas composi-
tion fluctuates naturally along time. Thus, possible accumula-
tion of inhibitors, inert gases, and methane, and the intermit-
tent feeding and purging cycles would need to be studied.
Also as a consequence, partial pressures of H2 and CO are
expected to decrease along each gas restocking cycle.

The first reason to avoid operating at too low H2 partial
pressures during gas recirculation is that it can selectively favor
HM considering that hydrogenotrophic methanogens are
known to have higher affinity to H2 (Heimann et al. 2009).
The other reason is that the amount of gaseous substrate in

the aqueous phase in the equilibrium, C*
g, depends directly on

the partial pressure of gas, pg, according to Henry’s law as seen
in Eq. 1. In the kinetic regime, the de facto available gaseous

substrate to microorganisms,Cg, also depends onC*
g according

to the rate Eq. 2, described for a 1st-order one-dimensional
diffusion. Consequently, a low pg of the substrate gas also
lowers mass transfer rates. Such transient characteristic of gas
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recirculation and its effect on the community metabolism
would also have to be taken into account (Yasin et al. 2015).

C*
g ¼ H pg ð1Þ

dCg

dt
¼ kla C*

g−Cg

� �
ð2Þ

For Eqs. 1 and 2:C*
g is the equilibrium concentration of gas

in the liquid, inM;H is the Henry coefficient for the gas, inM/
atm; pg is the partial pressure of the gas, in atm; kla is the
coefficient of gas-liquid transfer per area times the interfacial
gas-liquid area per volume, in 1/h; and Cg is the concentration
of gas in the liquid, in M. kla depends mainly on the gas flow
rate, on the strategy for liquid-gas contact in the reactor and on
the gas diffusivities.

CO2 is not commonly the limiting gaseous substrate; nev-
ertheless, the concentration of this gas can become limiting in
some cases in acidogenic systems (Vasudevan et al. 2014).
The solubility of CO2 is controlled mainly by chemical equi-
libria of the carbonate system. As a consequence, CO2 solu-
bility is highly dependent on the pH for values between 5.0
and 8.0 as seen in Fig. 5. Most acidogenic bioreactors work
within this pH range of greatest CO2 solubility changes. At pH
values lower than 5.0, CO2 solubility is lowest, though water
still harbors a significant fraction of CO2 (roughly 45%) in the
form of aqueous CO2.

Product downstream processing

Traditionally, anaerobic fermentation research has taken profit
from lessons learned in anaerobic digestion research (Agler
et al. 2014). Nevertheless, one specific challenge of anaerobic
fermentations is product downstream processing (DSP).
Unlike methane, the desired product in anaerobic digestion,
linear MCC and MCA are liquids under ambient conditions
and form aqueous solutions. Thus, the DSP technology clas-
sically adopted in the ethanol and acetate industry, distillation,

could be considered as an alternative for purification of their
longer-chain counterparts. However, high operational costs
could incur on distillation of MCC and MCA because their
concentrations in the broth are generally lower than 2% w/v
(i.e., 20 g/L) (Arslan et al. 2016), in comparison with the
typical concentrations in ethanol fermentation of at least 6%
w/v (de S Dias et al. 2015).

the solubility of MCC and MCA in water decreases the
longer the hydrophobic part of the carbon chain is. As a con-
sequence, in an industrial scale, n-caproate and n-caprylate
could have lower DSP costs due to their lower solubility at a
defined pH, in comparison with n-butyrate, which is miscible
in water along the entire pH range. This feature was explored
in previous studies where the bioreactor was coupled to a
pertraction (liquid-liquid extraction) technology (Agler et al.
2014; Ge et al. 2015). Differently to organic acids, solubility
of alcohols cannot be altered by changing pH and their DSP
would be restricted, essentially, to the techniques of traditional
solvent-water extraction, such as ‘salting out’. This factor
might be decisive to favor MCC production, while further
processing for production of MCA could adopt non-
biological conversion routes. The bigger ease of MCC purifi-
cation can be a central factor for choosing them as a chemical
platform for MCA and alkanes production (Pham et al. 2010).
Further processing of MCC is a promising topic and the case
for alkane production through Kolbe hydrolysis of MCC pro-
duced by CE, as shown by Urban et al. (2017), can be taken as
a good example.

Stoichiometry and economic feasibility of the process

The most fundamental limitation of feedstock biomass
conversion is imposed by the overall stoichiometry of the
process. The stoichiometry of the process depends on the
substrate, on the final product, and on the pathways used to
reach it. Neglecting the inorganic fraction of dry lignocel-
lulosic biomass and assuming the chemical formula of cel-
lulose (C6H10O5), Fig. 6 compares the maximum

Syngas 
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Biomass

Downstreaming

Intermittent 
replenishment

b
Downstreaming

Unconverted 
syngas to treatment

Nutrient 
medium

Syngas

a

Fig. 4 When adopting current
knowledge of SF (mostly
obtained with pure cultures) to
fermentation with microbial
communities, process strategies
have to be adapted: conversely to
the conventional single-pass gas
strategy in (a), gas recirculation
and substrate biomass co-feeding
(b) can be more compatible to the
typically lower gas consumption
rates of open communities
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stoichiometric yields for some carboxylates, alcohols, and
methane. Without considering the intricacies of the conver-
sion of recalcitrant fractions, both major processes for
making biomass bioavailable (i.e., hydrolysis and biomass
gasification) present equivalent theoretical stoichiometric
yields. Big differences in the maximum stoichiometric
conversion appear depending on the ability of the biocata-
lyst to realize autotrophy or not, as seen for acetate in Fig.
6. Cultures that grow only heterotrophically do not rein-
corporate H2 and CO2 produced in the fermentation of
biomass-derived sugar and have, therefore, lower maxi-
mum conversion to carboxylates (Schuchmann and
Müller 2016). For methane production, stoichiometric con-
version from biomass (cellulose) is inherently low regard-
less if i t is produced through hydrogenotrophic,
acetotrophic, or methylotrophic methanogenesis.

It is also evident from Fig. 6 that the potential for
carbon fixation and the maximum stoichiometric conver-
sion lowers with increasing chain length of the carboxyl-
ate or alcohol. Still, production of chemicals beyond ace-
tate and ethanol from syngas is a promising concept as a
bioprocess and its success as an industrial process de-
pends basically on ensuring a sufficient conversion of
syngas to chemicals in the bioreactor by using inherently
low-cost processes. Considering dry biomass as the raw
material (with the cellulose chemical formula) and the
same assumptions adopted for calculating the maximum
stoichiometric conversions, Fig. 7 presents the cost gaps
for each product of different bioprocess concepts, in com-
parison with other more mature processes.

Each kilogram of dry biomass, when converted to syngas,
has the highest margin for conversion loss and process costs if
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producing water-shifted syngas
(H2/CO2). The reactions for n-
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caprylate are for bioprocesses, in
which the produced H2 and CO2

during substrate biomass conver-
sion can be reincorporated into
the carboxylate pool, such as
syngas-aided CE
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used to produce n-caproate, 1.61 $/kg dry biomass, in comparison
with 0.40 $/kg dry biomass when used to produce ethanol. This is
due to the actual high market price of n-caproate of around 3.00
$/kg (Granda 2015). However, it is worth pointing out that
prices per kilogram for commodity-grade chemicals like etha-
nol are generally much lower than specialty chemicals like n--
caproate (de Medeiros et al. 2017). Despite many possible ap-
plications, its market is still small in comparison with acetate,
ethanol, and butanol. If a MCC, such as n-caproate, eventually
becomes a chemical platform, its price would also have to lower
to attend a broader range of applications.

Open questions and future perspectives

The mechanisms of syngas-based n-caproate and n-caprylate
production by single species like C. carboxidivorans or
E. limosum are still not completely clear. Although the com-
plete WLP was found in these species, their CE pathways and
how electrons can be shifted from H2 and CO to C6 and C8
compounds are still poorly understood (Bengelsdorf et al.
2018; Ganigué et al. 2016; Zhang et al. 2016). Such knowl-
edge could be useful, for instance, to manage these strains in
mixotrophic growth, steering carbon and electrons from mul-
tiple low-cost sources into the desired product.

The knowledge gaps regarding syngas-aided CE in micro-
bial communities are plenty. Undiscovered syngas-
fermenting, MCC-producing strains could explain some cases
where C6 and C8 compounds were produced in significant
amounts from syngas. Besides, interspecies ethanol transfer
remains the most popular assumption for the observed

phenomenon even though it was not yet systematically tested.
More detailed studies on the mechanisms underlying the re-
ported n-caproate and n-caprylate formation can reveal
overlooked metabolic shifts facilitated by co-fed H2 and CO.
Specifically, the ethanol-intermediated assumption is not
enough to explain the effect of syngas on mixed cultures spe-
cialized in lactate-based CE. Further studies about the effect of
syngas addition in lactate-based CE communities are needed
and the transcriptome analysis done by Scarborough et al.
(2018a) is a good example of that.

Formation of odd-numbered MCC also remains a topic that
deserves more study. More understanding on the necessary op-
erational parameters to incorporate propionate and propionyl-
CoA to the RBO pathway could extend the product spectrum of
MCC and MCA to their odd-numbered counterparts.

Overall, there are still few studies about syngas-aided CE
withmicrobial communities and even fewer studies considering
the use of real waste substrates or focusing on the process
optimization. Thismay be partially due to the inherent difficulty
to conciliate two types of substrate with very different con-
sumption kinetics in anaerobic communities (e.g., H2 opposed
to ethanol or lactate). Since syngas consumption rates by com-
munities are generally low, we propose here a simple reactor
operation strategy, with gas recycling, for coupling the two
types of substrate (liquid and syngas substrate) to simultaneous-
ly keep syngas conversion high while avoiding limitation by
gas-liquid mass transfer. Future technical studies should also
analyze how competing pathways (such as hydrogenotrophic
methanogenesis) could be managed in an up-scalable manner
when feeding the reactor with real waste biomass. Moreover,
testing process scalability—with and without in-line product
extraction—could contribute greatly to understand further chal-
lenges and synergies of combining the syngas and carboxylate
platforms with undefined mixed cultures.
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