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Abstract
In recent years, the accumulation of synthetic plastics has led to the development of a serious environmental problem. Nowadays,
biodegradable films and coatings have been identified as a new approach to solve this problem by preparing renewable, abundant, low-
cost materials. Gums are considered a large group of polysaccharides and polysaccharide derivatives that can easily form viscous
solutions at low concentrations. Gums are mainly soluble in water and are composed of sugars like glucose, fructose, and mannose.
These compounds are categorized into three groups: plant-origin gums, seaweed-based gums, andmicrobial gums.Microbial gums are
listed as generally recognized as safe (GRAS) by the Food and Drug Administration and have a broad range of physicochemical
properties suitable for various pharmacy, medicine, and food applications. In the food industry, they can be used as gelling, viscous,
stabilizing, and thickening agents. Among the various materials that can potentially improve the properties of biodegradable packaging
films, microbial gums such as gellan, xanthan, pullulan, bacterial cellulose, and curdlan have been the subject of numerous studies.
These gums can be extruded into films and coatings with considerable barrier properties against the transport of moisture and oxygen.
Microbial gums, due to their microbiological stability, adhesion, cohesion, wettability, solubility, transparency, and mechanical prop-
erties, can be used as edible films or coatings. Also, these gums can be applied in combination with bioactive compounds that induce
the shelf-life extension of highly perishable products. This review focuses on the properties of films and coatings consisting of xanthan,
curdlan, pullulan, gellan, and bacterial cellulose.
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Introduction

Despite the 25-fold boost in the global manufacturing of syn-
thetic plastics over the past decades, less than 5% of these

plastics are recycled. In recent years, packaging materials
derived from petroleum products have become widely used
in food packaging due to their low price, comfortable and
extensive access, and desirable characteristics such as bright-
ness, plasticity, and transparency. Nevertheless, the produc-
tion and accumulation of synthetic plastics related to food
packaging have caused many environmental problems since
they are resistant to degradation, incompatible with the envi-
ronment, and the possibility of migration of compounds from
packaging to product and the ultimate endangerment of prod-
uct safety and consumer health exist (Alizadeh-Sani et al.
2018; Espitia et al. 2014; Khalil et al. 2017; Muscat et al.
2012; Sutherland et al. 2015; Tavassoli-Kafrani et al. 2016).
Although bioplastics are produced from renewable resources,
they are not necessarily biodegradable. Currently, bioplastics
comprise approximately one percent of the roughly 320 mil-
lion tonnes of plastics produced annually. Global bioplastic
production capacity is set to increase from around 2.05 mil-
lion tonnes in 2017 to nearly 2.44 million tonnes in 2022
(Gontard et al. 2018).
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Nowadays, a large number of studies have focused on re-
placing common plastic packaging (food and non-food) with
biodegradable, edible, renewable, and low-cost films and
coatings (Alves et al. 2011; Espitia et al. 2014; Khezerlou
et al. 2018; Moghaddas Kia et al. 2018). Films and coatings
with the aforementioned characteristics can be utilized as sup-
plements or substitutes of conventional materials (Cao et al.
2007; Cazon et al. 2017). For this reason, recent investigations
have reported the use of edible films and coatings based on
proteins (Ramos et al. 2012), polysaccharides such as chitosan
(Dutta et al. 2009; Elsabee and Abdou 2013), hemicelluloses
(Hansen and Plackett 2008), starch (Jiménez et al. 2012), pec-
tin (Espitia et al. 2014), and lipids (Debeaufort and Voilley
2009). A biodegradable film can be defined as a packaging
material or thin layer of edible material placed on or between
food components (Espitia et al. 2014; Falguera et al. 2011),
while an edible coating (EC) is a thin layer of edible material
formed as a coating on a food product (Kang et al. 2013).
Edible films have a layer thickness of below 0.3 mm and are
wrapped around food products, whereas edible coatings are
applied by immersing the food products in liquid solutions of
the edible materials (Falguera et al. 2011). Furthermore, the
biopolymers that have been used for producing edible films
can feature suitable matrices for use as carriers that facilitate
the incorporation of additives) such as antimicrobials, antiox-
idants, nutrients, colors, nanoparticles, and spices). These
composite biopolymers are used to improve the properties of
the films and prolong the food shelf-life (Ehsani et al. 2017;
Espitia et al. 2014; Saha et al. 2016; Sallam 2007).

A group of biodegradable polymers have been referred to
as “natural polymers” as they are produced during the growth
of living organisms—especially bacteria, fungi, and yeasts.
These biopolymers have a wide range of applications in the
food and pharmaceutical industries (Freitas et al. 2014;
Vijayendra and Shamala 2014). The types of microbial gums
employed in various biomedical and pharmaceutical applica-
tions are summarized in Table 1. Since most biopolymers
derived from microorganisms are carbohydrates in nature,
films made of these biopolymers have hydrophilic structures
as polysaccharides usually react strongly with water. The
moisture content or sorption of water in the film is affected
directly by the moisture barrier properties and water vapor
permeability (Al-Hassan and Norziah 2012; Bertuzzi et al.
2007). Moreover, increasing the hydration causes an augment
in elongation properties but a decrease in mechanical proper-
ties (Cuq et al. 1997). In this way, hydrophilic films have good
barrier properties to oxygen, carbon dioxide, and lipids, but
have poor control of water vapor migration (Prommakool
et al. 2011). In regard to their barrier properties, they can act
as selective barriers to gases in order to generate modified
atmospheres (Dehghani et al. 2018; Ramos et al. 2012; Shit
and Shah 2014). Despite the fact that most functions of edible
films and coatings are similar to those of traditional

packaging, their mechanical properties vary, as do their water
and gas permeabilities (Galus and Kadzińska 2015).

In the related literature, a comprehensive review on micro-
bial gums for food packaging and pharmaceutical applications
is scarce. Thus, there is a need to provide an insight into this
matter using current trends and future projections. The aim of
this review is to comprehensively discuss the types and prop-
erties of microbial gums and their applications, with special
emphasis on pharmaceutical and food packaging applications.

Microbial gums for biodegradable films

Microbial polysaccharides are high-molecular-weight poly-
mers that are produced by the cell wall–anchored enzymes
of microorganisms such as bacteria, molds, and yeasts
(Morris 2006). Microbial gums are composed of sugar resi-
dues linked by glycosidic linkages, and may be linear or high-
ly branched (Fig. 1). Biopolymers produced by microorgan-
isms, including exopolysaccharides (EPSs), endo-polysaccha-
rides, and polyhydroxyalkanoates, are neutral or acidic in na-
ture and have a wide range of physico-mechanical character-
istics (Table 2). These microbial gums are composed primarily
of carbohydrate components (glucose, mannose, rhamnose),
non-carbohydrate components (acetate, pyruvate, succinate,
phosphate), and uronic acid. Microbial polysaccharides are
non-toxic compounds produced via batch submerged aerobic
fermentation in two forms: EPSs and capsular polysaccharides
(CPSs) (Sutherland 2001; Sutherland 2005; Vanhaverbeke
et al. 2003).

The advantage of microbial gums over other polymers or
synthetics is its potential for production on an industrial scale.
On the other hand, it requires high-technology equipment,
specific substrates, adequate power and water supplies, and
well-trained staff. Among the various types of microbial
gums, a number of them are utilized in the preparation of gels
(gellan and curdlan), thickening agents (pullulan, xanthan),
and film solutions (pullulan, cellulose, and gellan) that are
used as packaging materials. Table 3 summarizes the types
of microbial gum-based composites for various food packag-
ing and coating applications.

Xanthan

Xanthan gum is a heteropolysaccharide that is produced by
Xanthomonas campestris during fermentation (Fitzpatrick
et al. 2013). The compound was initially isolated by Kelco-
AIL (Keltrol) and, after various experiments, was recog-
nized as a food additive by the FDA in 1969. The molec-
ular structure of xanthan features a backbone like that of
cellulose, a linear chain of β-D-glucopyranose with (1 →
4) glycosidic bonds, and side chains having three sugars
(β-D-mannose (β → 1,4)-glucuronic acid (α → 1,2)-α-D-
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mannose) as well as non-carbohydrate substitutes (acetate
or pyruvate groups). Xanthan gum is an anionic, water-
soluble polymer, stable at a wide range of pH and temper-
ature values. It is commonly utilized in foods (e.g., dairy
products, baked products, and beverages), pharmaceuti-
cals, and cosmetics (Mohamed et al. 2013).

García-Betanzos et al. (2016) incorporated solid lipid
nanoparticles (SLN) into xanthan-based films and

assayed the effect of hot homogenization methods on
the properties of the prepared films. The researchers re-
ported improvements in the mechanical properties of
these films when 60–75-g/L SLN was incorporated at
4–25 °C under 60–90% relative humidity. The study re-
vealed water vapor permeability (WVP) values of 0.50–
0.70 gm−2h−1kPa−1 in xanthan gum–based films incorpo-
rated with SLN.

Table 1 Pharmaceutical and
biomedical applications of
microbial gums

Types of composites Pharmaceutical applications References

Gellan/pectin Intragastric drug delivery shuttles Bera et al. (2018)

Gellan/chitosan Nanocarrier for the delivery of
epigallocatechin gallate

Dahiya et al. (2017)

Gellan/pectin Controlled delivery of drugs Prezotti et al. (2014)

Xanthan/chitosan Oral tablet for delivery of quercetin Caddeo et al. (2014)

Xanthan/hydroxypropyl
methylcellulose

Control release gliclazide tablet Othman et al. (2017)

Xanthan/lignin hydrogel Carriers for controlled delivery
pf bisoprolol fumarate

Raschip et al. (2015)

Pullulan/alginate Bone tissue regeneration Popescu et al. (2018)

Pullulan/chitosan Nasal delivery of vaccines Cevher et al. (2015)

Bacterial cellulose/montmorillonite Wound dressing and tissue regeneration Ul-Islam et al. (2013)

Bacterial cellulose/TiO2 Tissue regeneration Khalid et al. (2017)

Bacterial cellulose/poly
(acrylic acid) hydrogels

Oral protein delivery Ahmad et al. (2014)

Curdlan/poly(D,L-lactide-co-glycolide) Drug delivery applications Tukulula et al. (2015)

Fig. 1 Classification of microbial exopolysaccharide
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Gellan

Gellan gum is the deacylated form of an EPS produced by
Pseudomonas elodea. β-D-Glucose, L-rhamnose, and D-glucu-
ronic acid are the units that form the gellan gum structure
(Banik and Santhiagu 2006). Gellan gum has the ability to form
3D gel networks with monovalent or divalent cations (such as
Na+ or Ca2+), and gel properties depend on ion-related factors
(presence of ions; cation type; ionic strength) and the degree of
acylation. Gellan gum is divided into the low-acetyl (brittle gel)
and non-deacylated (elastic gel) forms (Bertoni et al. 2006;
Fialho et al. 2008). Gellan gum is utilized as a gelling agent in
jellies, dairy products, and confectioneries. It is a suitable hydro-
colloid for edible film preparations. Initial experiments have
shown that gellan films are transparent and have good mechan-
ical properties (Yang and Paulson 2000a).

Composite films have been prepared by the incorporation
of gellan/gelatin and different levels of sodium chloride.
Results showed that the higher the sodium chloride content,
the higher the tensile strength (TS) of the gellan film. When
the sodium chloride concentration was 50 mM, the highest
tensile elongation (TE) was observed. Also, with increasing
gelatin amounts, the TS of the films decreased, while the TE
increased (Lee et al. 2004).

Pulsed light (PL) has attracted much interest in recent years
as a non-thermal method for the superficial decontamination
of fresh foods. In one study, the effect of PL in combination
with a gellan gum–based edible coating containing apple fiber
on the shelf-life of fresh-cut apples has been investigated.
Shelf-life was assessed by evaluating changes in color, firm-
ness, antioxidant capacity, microbial growth, and sensory at-
tributes of a fresh-cut apple stored for 14 days at 4 °C. The
combination treatment led to reduced microbiological deteri-
oration, enhanced preservation of antioxidant properties, and
reduced softening and browning of apple pieces during stor-
age. These results demonstrated the prebiotic potential and
shelf-life extension capabilities of gellan gum–based coatings
for fruits such as apples (Moreira et al. 2015).

Yang and Paulson (2000b) evaluated the mechanical prop-
erties and water vapor permeability (WVP) of gellan films.
Their results showed that increasing the ratio of glycerol to
gellan film entailed an increase in WVP and decreases in TS,
elastic modulus, and glass transition temperature. Yang and
Paulson (2000a) developed an edible gellan film by adding a
mixture of lipids (beeswax and stearic–palmitic acid) and
showed that adding lipids resulted in significantly improved
WVP and mechanical properties. Here, the effect of beeswax
on the mentioned properties was greater than that of stearic–
palmitic acid. Xiao et al. (2011) investigated the properties of
edible gellan membranes prepared under different conditions,
namely gellan gum powder concentrations of 0, 0.02, 0.04,
0.06, 0.08, and 0.10% and drying temperatures of 40, 50, 60,
70, and 80 °C. The study demonstrated that the incorporation

of 0.08% gellan at drying temperatures of 60–70 °C resulted
in significantly better TS and gas barrier and moisture resis-
tance compared with the other experimental conditions.

The mechanical, physical, and antimicrobial properties of a
starch/gellan-based film containing emulsified or lecithin-
encapsulated thyme (Thymus zygis) essential oil (EO) were
studied by Sapper et al. (2018). Their results showed that
lecithin improved the film’s water barrier properties and gloss,
while recuing film stiffness, resistance to break, and extensi-
bility. This means that incorporating lecithin to the starch–
gellan film improved its mechanical and physical properties.
The prepared films were also tested against Alternaria
alternata (AA) and Botryotinia fuckeliana (BF) to determine
their antifungal ability, which was found to be greater against
the latter species.

Xu et al. (2007) blended konjac glucomannan with gellan
gum and analyzed the mechanical properties of the resulting
blend films. The obtained data exhibited that as the konjac
glucomannan content in the blend film reached approximately
70%, the TS reached 17.5 MPa.

Ismail et al. (2018) investigated the effects of gellan gum
(GG), calcium chloride (CaCl2), and glycerol concentrations
on the physical appearance of blend films. Their results
showed that while the prepared film was not well dried at 40
°C, the films formed at 70 and 100 °C were easily ruptured
due to overheating (Fig. 2). At the highest amount of GG
content studied (1.50 g), the film could not be produced due
to the formation of a highly viscous and sticky suspension, as
observed visually (Fig. 3a) and demonstrated by mildly rub-
bing between two fingers (Fig. 3b). Under optimized condi-
tions (drying at 50 °C for 24 h), the films were successfully
produced with 1.00 g GG, 5 mMCaCl2 cross-linker, and 50%
w/w glycerol as the plasticizer.

Pullulan

Pullulan (Pu) is an extracellular polysaccharide that consists of
glucose and is produced by many Aureobasidium species, par-
ticularly Aureobasidium pullulans. Pu is composed of (1 → 4)
and (1→ 6) α-D-glucopyranose residues. In this compound, the
proportion of (1 → 4) to (1 → 6) linkages is about 1:2. The
polymer mostly contains maltotriose units interconnected with
each other by (1 → 6) bonds as well as scarce units of
maltotetraose. The presence of α (1 → 6) bonds in Pu results
in enhanced structural flexibility and increased water solubility
compared with other linear polysaccharides. The viscosity of Pu
solutions is good, but is unsuitable for gel formation. Non-toxic,
non-mutagenic, and non-carcinogenic properties have been re-
ported for Pu gum. In recent years, Pu has been surveyed in
pharmaceutical (e.g., drug delivery) and biomedical (e.g., smart
target delivery, surface modification, nanoparticle fabrication,
gene delivery, cancer therapy, and bioimaging) applications. In
addition, Pu has displayed dominant film-forming properties.

Appl Microbiol Biotechnol (2019) 103:6853–6866 6859



Recent studies have demonstrated that pure Pu films are color-
less, transparent, odorless, and highly water permeable, with mi-
nor oil and oxygen permeability.

Despite the many potential applications, the extensive us-
age of Pu has been limited by its high cost. Many researchers
have focused on blending Pu with other polysaccharides such
as alginate, chitosan, starch, and cellulose derivatives in order
to produce films with improved physicochemical and me-
chanical properties. The developed films are easily dissolved
in water, thus having the feature of melting in the mouth as
edible food coatings (Singh et al. 2008). Pu film is suitable for
the protection of oxidized fats and vitamins in foods due to its

resistance to oxygen permeation (Krochta and De Mulder-
Johnston 1997). Pu films can be utilized as the coating or
packaging material of dried foods including nuts, noodles,
confectionaries, vegetables, and meats, and can also replace
starch in low-calorie food formulations.

In one study, Pu was successively tested for its ability to
generate bionanocomposite films. In that work, montmoril-
lonite nanoparticle (MMT) was used for improving the phys-
icochemical and mechanical properties. The results showed
that the MMT improved the TS of the generated films, while
decreasing the elongation at break, WVP, moisture content,
moisture absorption, and water solubility. Atomic force

Fig. 2 Gellan gum samples after drying at a room temperature, b 40 °C, c 50 °C, d 70 °C, and e 100 °C for 24 h (With Courtesy to paper by Ismail et al
2018)

Fig. 3 a Highly viscous and b
sticky GG suspension produced
using 1.50 g GG (With Courtesy
to paper by Ismail et al 2018)

6860 Appl Microbiol Biotechnol (2019) 103:6853–6866



microscopy (AFM) observation of Pu–whey protein isolate
bionanocomposite films showed rough film surfaces. The uni-
form distribution of MMT into the polymer matrix was con-
firmed by SEM and X-ray measurements (Hassannia-Kolaee
et al. 2016b).

Kanmani and Lim (2013) blended probiotic bacteria and
various starches with Pu. It was observed that by increas-
ing the starch content, the relative cell viabilities and me-
chanical properties decreased, but adding probiotic bacte-
ria did not significantly affect the physical and mechanical
properties. The results exhibited that the Pu and Pu/potato
starch films were the most suitable carrier matrices, with
maximum relative cell viabilities of 70–80% after 2
months of storage at 4 °C. Wu et al. (2013) formulated
chitosan and carboxymethyl chitosan (CMCH) into Pu
films and observed that the added compounds improved
the TS of the prepared films when the CMCH to Pu and
chitosan to Pu ratios were 3:1 and 2:2, respectively. Hence,
increases in CMCH and chitosan contents resulted in in-
creased TS. The WVP of Pu films was increased by the
addition of CMCH and chitosan.

Another useful hydrocolloid mixture was proposed by
Tong et al. (2008). The authors blended Pu with alginate and
carboxymethyl cellulose (CMC). The results indicated that the
solubility of pure Pu films in water was greater compared with
that of alginate and CMC films, whereas the WVP and me-
chanical properties of samples containing Pu < alginate <
CMC were reduced in the blend films. Here, the addition of
glycerol resulted in enhanced elongation at break and solubi-
lization in water and reduced water barrier properties and TS.

In the study of Zhu et al. (2014), carboxymethyl gellan
(CMGe) and Pu films were described and physically charac-
terized. The results demonstrated that elongation at break and
barrier properties improved by adding Pu to CMGe, though
TS practically decreased.

Lipids have also been used to improve the barrier proper-
ties of Pu films, but negatively affect the mechanical proper-
ties. For example, the addition of rice wax (up to 46.4%) to Pu
film wax significantly decreased the WVP value. Brunauer–
Emmet–Teller (BET) and Guggenheim–Anderson–de Boer
(GAB) sorption models gave a good fit up to the water activity
(aw) of 0.55 for BETand a full range of aw (from 0.12 to 0.95)
for GAB (Shih et al. 2011).

Plasticizers are generally required for producing
polysaccharide- or protein-based edible films with appropriate
mechanical properties. Vuddanda et al. (2017) analyzed the ef-
fects of different plasticizers and their concentrations on the
physico-mechanical properties of Pu edible films. Films with
20% glycerol displayed the highest elongation. Pattanayaiying
et al. (2015a) proposed an optimum combination of lauric algi-
nate (LAE) and nisin Z in Pu film preparations in terms of me-
chanical properties. The authors reported that the two films with
the best mechanical properties were as follows: (i) Pu = 150 g/L,

glycerol = 2.5 g/L, LAE = 2 mg/mL, nisin Z = 320 AU/mL, and
no locust bean gum; (ii) Pu = 120 g/L, glycerol = 2.5 g/L, LAE =
2 mg/mL, nisin Z = 320 AU/mL, and 1-g/L locust bean gum.

Also, the influence of edible films made from Pu on
the physiological responses of coated fruit has been re-
ported in one study. Here, the results exhibited that the
use of Pu films effectively maintained the quality and
extended the shelf-life of strawberries. Pu films declined
the rate of weight loss and improved firmness and color
retention (Eroglu et al. 2014).

Curdlan

Curdlan (CL) is an extracellular polysaccharide produced
by non-pathogenic and non-toxicogenic bacteria, such as
Rhizobiaceae (Alcaligenes faecalis var.). CL has been rec-
ognized as a food additive by the FDA, and its linear struc-
ture is composed of (1–3) β-D-glycosidic linkages
(Grandpierre et al. 2008). This polysaccharide is soluble
in alkaline solutions, but cannot be solubilized in water,
alcohol, or acid solution. According to the degree of
heating and through thermo-reversible processes, CL
forms two types of gels, namely high-set gel (above 80
°C) or low-set gel (55 to 60 °C). CL gels are highly elastic
and, in contrast with agar gels, can be formed within a wide
pH range of 3.0 to 9.5. Due to its unique functions (e.g., its
gelling properties), CL cannot be used as a carrier for drug
delivery. CL also has bioactive features, such as antitumor
and anti-HIV properties. However, its application in food
is limited due to its poor mouth-feel effect (Phillips and
Williams 2009).

Ahmad et al. (2015) investigated the effects of different
ratios of fish gelatin/CL on the physico-mechanical and
thermal properties of blend films. The results showed that
the TS of gelatin/curdlan blend films was low, while the
elongation at break, WVP, and water solubility were high.
Moreover, contact angle and moisture content of blend
films improved with higher CL contents. Furthermore, in-
creased CL content in the fish gelatin/CL blend matrix led
to decreases in redness (a*) and transparency; however,
lightness (L*), yellowness (b*), and DE* values became
enhanced. Furthermore, the fish gelatin/CL (8:2) blend
film demonstrated more heat stability compared with the
other samples, which was demonstrated by its higher heat-
stable mass residues. Thus, CL can be used to develop a
water barrier capability and thermal stability of fish gelatin
films because of its water insoluble and thermo-gelable
properties. Wu et al. (2012) studied a composite film com-
posed of konjac glucomannan (KGM) and CL, which was
prepared by a solvent-casting method. The results demon-
strated that the WVP, tensile properties, and interaction of
the blend film improved when the konjac glucomannan
content in the composite was up to 70%.
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Bacterial cellulose

Cellulose is produced by bacteria as well as by plants and
other organisms. Cellulose has several unique properties, such
as its high TS and water content. Recently, studies have fo-
cused on its potential applications in different fields. Bacterial
cellulose (BC) can be produced in substantial amounts via the
microbial fermentation of glucose (as a carbon source) by
Gluconacetobacter xylinus strains and Gram-negative acetic
acid bacteria. BC is well recognized for its greater character-
istics compared with other celluloses (Iguchi et al. 2000), such
as its higher mechanical strength, crystallinity, hydrophilicity
(Rozenberga et al. 2016), purity, and water holding capacity,
thereby displaying a decent potential for a variety of applica-
tions. The main advantage of BC is that it can be easily proc-
essed into microfibrils, nanofibrils, and nanocrystals for use in
the production of edible nanocomposite films. In fact, BC has
been used in its native form in the preparation of packaging
materials (Shi et al. 2014). Recently, BC membranes have
been utilized as antimicrobials in active packaging. BC mem-
branes and films can be incorporated with antimicrobial
agents to create an active packaging system that maintains
antimicrobial activity during food storage. BC also has exten-
sive applications in cosmetics and medicine (Jagannath et al.
2010), acoustic diaphragms (Nishi et al. 1990), ion exchange
membranes (Choi et al. 2004), and electronic devices (Nogi
and Yano 2008).

Wan et al. (2016) investigated the water resistance proper-
ties of multilayer films based on BC–zein, in which the strong
BC film formed the outer layer and the electrospun zein fibers
formed the inner layer. They found that the incorporation of
electrospun zein fibers made multilayer films become rigid;
however, the zein interlayers did not have a significant impact
on the surface characteristics and thermal stability of the films.
Due to the hydrophobicity of the zein protein, the water
resistance properties improved. Jipa et al. (2012) prepared
mono- and multilayer films based on powdered BC (BCP)
and poly(vinyl) alcohol (PVA) containing sorbic acid (SA).
The results displayed that sensitivity to water, antimicrobial
ability, and release rate impressed with higher SA and BCP
concentrations. By adding SA and BCP, the swelling degree
increased, while the WVP and water solubility decreased.

Lately, several studies have focused on nanotechnological
methods for improving the barrier properties of films. For
example, the addition of nanoclays to the polymeric matrix
of polysaccharide based–films has been investigated (Chivrac
et al. 2009; Eroglu et al. 2014; Hassannia-Kolaee et al.
2016b). Gelatin nanocomposite films containing BC have
been studied by George (2012). The formation of networks
of cellulose nanocrystals within the gelatin matrix resulted in
improved mechanical properties of nanocomposites and
significantly reduced the WVP. In another study, Jebel and
Almasi (2016) investigated the combination of BC with

ZnONPs in the production of monolayer andmultilayer films.
The results showed that incorporating ZnO NPs improved the
mechanical properties but diminished the WVP and moisture
absorption of BC films.

Conclusion

The applications of edible films in food technology open new
opportunities for producing innovative biodegradable food
packaging as a good alternative for replacing synthetic plas-
tics. This can solve the problem of the accumulation of wastes
related to non-biodegradable petroleum-based plastics. Film-
forming microbial biopolymers such as gellan, bacterial cel-
lulose, xanthan, pullulan, and curdlan are non-toxic, biocom-
patible, and biodegradable. They are used in the food industry
as edible food films for coating and packing purposes. The
films prepared from these polymers are transparent and have
goodmechanical, moisture, and oxygen barrier properties, but
weak water barrier properties. The blending of microbial
gums with lipids, hydrocolloids, or reinforcement agents im-
proves the functional properties of edible films. Overall, an
interdisciplinary approach for exploring novel applications is
essential for preparing new composites of these microbial
polymers with other polymers and hydrocolloids.
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