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Abstract
Biodeposition of minerals is a widespread phenomenon in the biological world and is mediated by bacteria, fungi, protists, and
plants. Calcium carbonate is one of those minerals that naturally precipitate as a by-product of microbial metabolic activities.
Over recent years, microbially induced calcium carbonate precipitation (MICP) has been proposed as a potent solution to address
many environmental and engineering issues. However, for being a viable alternative to conventional techniques as well as being
financially and industrially competitive, various challenges need to be overcome. In this review, the detailed metabolic pathways,
including ammonification of amino acids, dissimilatory reduction of nitrate, and urea degradation (ureolysis), along with the
potent bacteria and the favorable conditions for precipitation of calcium carbonate, are explained. Moreover, this review high-
lights the potential environmental and engineering applications of MICP, including restoration of stones and concrete, improve-
ment of soil properties, sand consolidation, bioremediation of contaminants, and carbon dioxide sequestration. The key research
and development questions necessary for near future large-scale applications of this innovative technology are also discussed.
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Introduction

Biomineralization refers to a process by which living organ-
isms carry out reactions that promote mineral precipitation.
The biodeposition of minerals is a widespread phenomenon
in the biological world and is mediated by bacteria, fungi,
protists, and plants. Biominerals can be found everywhere,
from shells, bone, and teeth to limestone caves, and they offer
great solutions for many engineering and environmental
issues.

Bioprecipitation of minerals by prokaryotes can be
achieved through two fundamentally different pathways,
namely biologically controlled mineralization (BCM) and bi-
ologically induced mineralization (BIM). The degree of con-
trol on the biomineralization process is the main difference
between these two processes. In a BCM pathway, the organ-
ism greatly controls the biomineralization process and is re-
sponsible for nucleation and growth of the mineral particles.

This process is a highly regulated mechanism which produces
more uniform particles with consistent mineral morphologies
(Mann 2001), and the mineral precipitates are deposited on or
within the organic matrices or vesicles inside the cell
(Bazylinski and Frankel 2003; Bazylinski and Moskowitz
1997; Berenjian et al. 2013). Well-defined mineral structures,
such as bones, teeth, shells, and fish otoliths, are formed
through the BCM process.

On the other hand, BIM occurs in an open environment as
an uncontrolled consequence of microbial metabolic activity,
and its effectiveness highly depends on the concentration of
dissolved inorganic carbon, nucleation site, pH, temperature,
and Hartree energy (Eh) (Barton and Northup 2011; Hammes
and Verstraete 2002). Carbonate is one of those minerals that
can be induced through BIM, and it is widely precipitated in
nature. Microorganisms that induce precipitation of calcium
carbonate are able to alter the chemistry of microenviron-
ments. The diffusion of metabolic products, such as bicarbon-
ate generated by sulfate-reducing bacteria (SRB), or ions like
NH4

+ generated by metabolizing nitrogenated organic sub-
stances (Douglas and Beveridge 1998) into the environment,
can contribute to the formation of biominerals. In the produc-
tion of complex molecules such as calcium carbonate via liv-
ing microorganisms, biominerals are formed through the
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reaction of metabolites produced by a microorganism (CO3
2−)

and their surrounding environment enriched in Ca2+. Bacterial
surface, such as cell walls and polymeric materials discharged
by bacteria, provide favorable sites for adsorption of ions and
consequently mineral nucleation and crystal growth (Frankel
and Bazylinski 2003). Broad particle size distribution as well
as poorly crystalline or even amorphous calcium carbonate
(ACC) formation are the characteristics of the minerals in-
duced in the BIM process. Unlike the narrow size distribution
of generated crystals in BCM, the precipitated minerals in
BIM have a wide size distribution (Frankel and Bazylinski
2003). Goodwin et al. (2010) reported that ACC is usually
found in a monohydrate state (CaCO3·H2O) but can also be
synthesized in dihydrate form, and its structure consists of a
porous calcium-rich framework with interconnected channels
containing water and carbonate ions. ACC is the least thermo-
dynamically stable form of calcium carbonate and relatively
soluble compared to crystalline polymorphs. When suspended
in an aqueous solution at ambient temperature, these amor-
phous polymorphs usually transform to another stable form of
calcium carbonate such as calcite, vaterite, and aragonite
(Rodriguez-Blanco et al. 2011). Therefore, this characteristic
may limit its functionality for those applications that need a
stable form of calcium carbonate.

During the last decades, the phenomenon called
microbially induced calcium carbonate precipitation or
microbially induced calcium carbonate precipitation (MICP)
has received considerable attention. More recently, MICP has
been proposed as a potential tool to address many engineering
and environmental issues due to its advantages such as being
relatively inexpensive and eco-friendly. This paper aims to
elucidate the biological routes for precipitation of calcium
carbonate and to critically review the potential applications
of MICP technology.

MICP pathways, kinetics, and potential
microorganisms

Among all the recognized biominerals, MICP has drawn sci-
entists’ attention due to its potential for a variety of applica-
tions. In this process, calcium carbonate crystals form through
the reaction of metabolites generated by a microorganism
(CO3

2−) and their surrounding environment enriched in
Ca2+. Four key factors, including the concentration of Ca2+

and dissolved inorganic carbon (DIC), medium pH, and the
availability of nucleation sites, have been reported by
Hammes and Verstraete (2002) as the main influencing pa-
rameters on calcium carbonate precipitation.

Awide range of species, including heterotrophic and auto-
trophic microorganisms, are able to precipitate calcium car-
bonate crystals in various environments such as soils, oceans,
caves, and saline/soda lakes (Sarayu et al. 2014). The

bioprecipitation of calcium carbonate is classified into two
main categories: autotrophic and heterotrophic pathways.
Seifan et al. (2016a) extensively reported the mechanisms
involve in the autotrophic biosynthesis of calcium carbonate
through methanogenesis, oxygenic photosynthesis, and
anoxygenic photosynthesis pathways. Different metabolic
pathways have been described for heterotrophic precipitation
of calcium carbonate which mainly happens through sulfur
and nitrogen cycle. The sulfur cycle is a combination of reac-
tions, wherein SRB are responsible for dissimilatory reduction
of sulfate as a terminal electron acceptor (Joshi et al. 2017). It
has been reported that the largest share of global calcification
takes place via biotic processes in the oceans, and the precip-
itation of calcium carbonate in the absence ofmicroorganisms,
particularly cyanobacteria and SRB, is rare due to various
kinetic barriers (Olajire 2013). These genera of bacteria can
facilitate many biochemical processes, likeMICP, in lithifying
microbial communities. To accomplish this process, the me-
diummust be rich in organic matter, calcium, and sulfate in an
anoxic environment. As shown in Eq. 1, this process starts
with the abiotic dissolution of gypsum (Hammes and
Verstraete 2002). Under this condition, the organic matter is
consumed by SRB, and sulfate is removed and subsequently
sulfide and metabolic CO2 are released into surrounding
(Wright 1999). Then, calcium carbonate is precipitated as a
result of pH increase due to proton consumption. The potent
microbial communities, along with metabolic pathways to in-
duce calcium carbonate precipitation, are tabulated in Table 1.
The availability of exopolymeric substances (EPS) as a favor-
able nucleation site has shown to be a significant factor on
precipitation of calcium carbonate (Braissant et al. 2007; Zhu
and Dittrich 2016). EPS provides a template for adsorption of
metal cations to which carbonate ions are attracted to induce
local mineral supersaturation (Tourney and Ngwenya 2014).
The following reactions represent the overall process of sul-
fate reduction that mediate calcium carbonate precipitation,
where CaSO4·2H2O and CH2O represent gypsum and an or-
ganic carbon source, respectively.

CaSO4:2H2O→Ca2þ þ SO2−
4 þ 2H2O ð1Þ

2CH2Oþ SO2−
4 →H2Sþ 2HCO−

3 ð2Þ
Ca2þ þ 2HCO−

3→CaCO3 þ H2Oþ CO2 ð3Þ

The biosynthesis of calcium carbonate in the nitrogen cycle
are achieved through different pathways, namely (i) ammoni-
fication of amino acids, (ii) dissimilatory reduction of nitrate
(denitrification), and (iii) ureolysis (urea degradation) (Seifan
et al. 2016a). Some Gram-negative aerobic microbial strains
are capable of using amino acids as their sole source of energy
to initiate the biomineralization of calcium carbonate.
Myxococcus was reported as a potent bacterium for
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Table 1 Overview of different microorganisms and metabolic pathways to induce calcium carbonate precipitation

Metabolic pathway Microorganism Reference

Sulfate reduction Desulfovibrio sp. (Braissant et al. 2007)

Photosynthesis Spirulina platensis (Kumar et al. 2011; Ramanan et al. 2010)

Chlorella vulgaris (Ramanan et al. 2010; Wang et al. 2010)

Synechococcus (Zhu et al. 2015)

Ammonification Myxococcus xanthus (Ettenauer et al. 2011; Jroundi et al. 2010;
Rodriguez-Navarro et al. 2003)

Denitrification Pseudomonas denitrificans (Karatas 2008)

Castellaniella denitrificans (Van Paassen et al. 2010a)

Diaphorobacter nitroreducens. (Erşan et al. 2015b)

Pseudomonas aeruginosa (Erşan et al. 2015a)

Diaphorobacter nitroreducens (Erşan et al. 2015a)

Halomonas halodenitrificans (Martin et al. 2013)

Ureolysis Kocuria flava (Achal et al. 2011d; Achal et al. 2012d)

Lysinibacillus sphaericus (Kang et al. 2014b)

Sporosarcina ginsengisoli (Achal et al. 2012a)

Bacillus cereus (Kumari et al. 2014)

Halomonas sp. (Achal et al. 2012c)

Sporosarcina pasteurii (Achal et al. 2009; Achal et al. 2011a; Bang et al. 2010;
Chahal et al. 2012; DeJong et al. 2006; Gat et al. 2014;
Grabiec et al. 2012; Harkes et al. 2010; Kim et al. 2013;
Lauchnor et al. 2013; Okwadha and Li 2011; Okwadha
and Li 2010; Ramachandran et al. 2001; Warren et al.
2001; Whiffin et al. 2007)

Bacillus sp. (Achal et al. 2011b; Chu et al. 2012)

Bacillus lentus (Dick et al. 2006; Wei et al. 2015)

Proteus vulgaris (Fujita et al. 2000)

Bacillus licheniformis (Helmi et al. 2016)

Bacillus megaterium (Achal et al. 2011c; Dhami et al. 2013a; Kaur et al. 2013;
Lian et al. 2006)

Bacillus sphaericus (Arunachalam et al. 2010; De Muynck et al. 2008a; De
Muynck et al. 2008b; De Muynck et al. 2013; Dick
et al. 2006; Kim et al. 2013; Seifan et al. 2018a; Seifan
et al. 2018b; Seifan et al. 2018; Seifan et al. 2018d;
Seifan et al. 2016b; Seifan et al. 2017a; Seifan et al.
2017b; Seifan et al. 2017c; Van Tittelboom et al. 2010;
Wang et al. 2012a; Wang et al. 2012b)

Bacillus thuringiensis (Kaur et al. 2013)

Bacillus aerius U2 (Sensoy et al. 2017)

Conversion of organic acid
to calcium carbonate

Bacillus pseudofirmus (Jonkers et al. 2010)

Bacillus cohnii (Jonkers et al. 2010)

Bacillus pumilus (Daskalakis et al. 2015)

Bacillus alkalinitrilicus (Wiktor and Jonkers 2011)

Bacillus subtilis (Khaliq and Ehsan 2016)

Micrococcus sp. (Tiano et al. 1999)

Bacillus subtilis (Tiano et al. 1999)

Pseudomonas (Zamarreño et al. 2009)

Acinetobacter (Zamarreño et al. 2009)
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biosynthesis of different minerals including carbonates, phos-
phates, sulfates, chlorides, oxalates, and silicates (González-
Muñoz et al. 2010). Chekroun et al. (2004) showed that
Myxococcus xanthus is able to induce calcium carbonate pre-
cipitation in a medium containing calcium acetate. Authors
reported that Myxococcus xanthus plays an active role in the
biosynthesis of calcium carbonate by modifying the physical
chemistry of their microenvironment through active alkalini-
zation. As shown in Fig. 1, ammonia and carbon dioxide are
produced by oxidative deamination of amino acids.

According to the following reaction, the production of am-
monia creates an alkaline microenvironment around the cell
which is in favor of calcium carbonate precipitation.

NH3 aqð Þ þ H2O→NHþ
4 þ OH− ð4Þ

Carbon dioxide is another by-product which generates dur-
ing oxidative deamination of amino acids, and it tends to dis-
solve and transform into either HCO3

− or CO3
2− at elevated

pH (Rodriguez-Navarro et al. 2003).
Denitrification pathway is another subclass of the nitrogen

cycle, and it mainly occurs where nitrate and organic carbon
are available. This metabolic pathway is achievedwhen nitrate
is being used as an electron acceptor by denitrifier bacteria,

such as Bacillus, Alcaligenes, Denitro bacillus, Thiobacillus,
Spirillum, Micrococcus, Pseudomonas denitrificans,
Castellaniella denitrificans, and Achromobacter, for oxidiz-
ing organic compounds to provide energy and support micro-
bial growth (Karatas 2008; Martin et al. 2013; Van Paassen
et al. 2010a; Zhu and Dittrich 2016). As shown in Fig. 2,
elevated medium pH is attained by consuming H+ to facilitate
the biosynthesis of calcium carbonate. N2 and CO2 are the by-
products of denitrification, and this process is expected to
predominantly happen under O2 limited conditions (Erşan
et al. 2015a). Although the lack of calcium carbonate precip-
itation in aerobic conditions is the main drawback of denitri-
fication, it can be widely used to address many environmental
issues such as reinforcement at the deeper parts of soil and
Ca2+ removal from industrial waste streams.

An alternative microbial metabolism to denitrification is
ureolysis, whereby urease enzyme is generated by an ureolytic
microorganism to initiate biomineralization. Urease is urea
amidohydrolase that catalyzes the hydrolysis of urea and has
been widely used for metalloenzymes catalytic activity (Mora
and Arioli 2014). However, Dhami et al. (2013b) reported two
different opinions on the role of bacteria in the precipitation of
calcium carbonate via ureolysis pathway: the precipitation is
(i) an unwanted and accidental by-product of metabolism and

Fig. 1 Schematic representation
of the reaction in ammonification
of amino acid pathway

Fig. 2 Schematic representation
of the reaction in denitrification
pathway
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(ii) a specific process with ecological benefits for precipitating
organisms. As schematically presented in Fig. 3, hydrolysis of
urea generates ammonia and carbamate. Spontaneous decom-
position of carbamate results in a second molecule of ammo-
nia and 1 mol carbonic acid. Finally, carbonate is produced as
a result of a reaction between the released carbonic acid and
hydroxide anion which was already generated by the hydro-
lysis of ammonia. Urea hydrolysis increases the pH of the
medium by producing an unfavorable by-product Bammonia.^
This increase in alkalinity, and the availability of a calcium
source in the surrounding medium, leads to precipitation of
calcium carbonate.

Urea is a source of nitrogen for a variety of microorgan-
isms, and therefore, its availability in the medium also con-
tributes to cell growth and further urease production.
However, an ideal microbial strain for the MICP process must
be able to tolerate high concentrations of urea (Whiffin 2004).
It has been reported that a high concentration of urea has an
inhibitory effect on the growth of bacteria, and, consequently,
the biosynthesis of calcium carbonate will be negatively af-
fected. Xu et al. (2017) investigated the urea resistance capac-
ity of strain GM-1 isolated from active sludge. It was noted
that the bacterial growth was increased from 0.7 to 0.8 (optical
density) when the concentration of urea increased from 20 to
40 g/L and the maximum optical density of 0.9 was obtained
for a medium supplemented with 60 g/L of urea. However, a
further increase in the concentration of urea (80 g/L) substan-
tially decreased the bacterial growth. Bacterial urease re-
sponse to ammonium is another important factor to be taken
into account. According to this, the urease-producing bacteria
are divided into two main categories: (i) those whose urease
activity is not repressed and (ii) those whose urease activity is
repressed (Whiffin 2004). Therefore, selection of those bacte-
ria whose urease activity is not repressed by ammonium can
substantially increase the effectiveness of the MICP process.
Ureolysis pathway is distinguished by its high calcium car-
bonate yield compared to the other metabolic pathways. This
phenomenon is mainly due to the capability of bacteria to
generate a high amount of urease enzyme in a short time as
well as the structure of ureases produced by bacteria which
consist of two or three polypeptides (Krajewska 2018;Mobley

et al. 1995). However, the urease production yield varies from
species to species. Among all ureolytic bacteria, B. sphaericus
and Sporosarcina pasteurii have shown a high urease activity
(Parks 2009; Phillips et al. 2013) and suitability for inducing a
high amount of calcium carbonate mineral. Both microorgan-
isms can tolerate relatively high pH, and they are Gram-
positive endospore former and non-pathogenic bacteria.
Although S. pasteurii has been used as a model organism in
numerous studies for MICP, its long-term viability under an-
aerobic conditions has been questioned (Martin et al. 2012).

Potential applications of MICP

As shown in Fig. 4a, the statistical reviewing until April 2019
reveals a significant increase in the number of published
works related to the MICP process and its applications. The
majority of these studies have been published in the field of
environmental science and engineering (Fig. 4b). Therefore,
in this section, the potential applications of MICP for address-
ing environmental and engineering issues are discussed.

MICP for constructional purposes

Calcium carbonate is an essential component in the construc-
tion industry, and its biodeposition can be used to address the
shortcomings associated with the constructional materials.
The bioremediation of construction materials is achieved
through passive and active techniques. Passive treatments
are performed manually once the defects are detected, while
the active approaches are viable and the remediation process is
started intrinsically. Remediation of monumental stones and
surface treatment of concrete structures are among passive
treatment techniques. Monumental stones or, in general,
building stones (granites and carbonate rocks) are subjected
to the weathering action due to several physicochemical and
biological factors (Price and Doehne 2011; Rodriguez-
Navarro and Sebastian 1996). As a consequence of this action
in calcareous stones, the induction of a progressive mineral
matrix dissolution leads to calcite leaching, which contributes
to an increase in porosity and decrease in mechanical

Fig. 3 Schematic representation
of the reaction in ureolysis
pathway
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properties. Application of mineral products offers a sustain-
able solution to terminate the deterioration of monumental
buildings and stones (Castanier et al. 2000). In this technique,
the bacteria and nutrients are sprayed or brushed on the
surface of stones and calcium carbonate minerals are
precipitated as a result of microbial metabolic activity. Orial
et al. (1993) examined the formation of sacrificial layers by
bacteria and its promising effect on the treatment of historic
buildings. Le Métayer-Levrel et al. (1999) performed an in-
vestigation to observe the effectiveness of microbial treatment
for surficial protecting coatings of Thouars church tower. The
results of permeability tests show that the surficial permeabil-
ity of treated facades was lower than untreated conditions.
Likewise, Tiano et al. (1999) evaluated the effect of calcium
carbonate biodeposition by Micrococcus sp. and B. subtilis.
Authors reported that the bioremediation resulted in a de-
crease in the stone porosity. In a similar study, Rodriguez-
Navarro et al. (2003) investigated the potential application of
Myxococcus xanthus to protect and consolidate porous orna-
mental stone. They performed sonication tests to determine
the attachment efficiency of newly formed calcium carbonate
to the matrix. It was found that the new carbonate crystals
were strongly attached to the substratum, mostly due to epi-
taxial growth on pre-existing calcite grains. Further examina-
tion revealed that the newly formed crystals were more stress
resistant due to their organic-inorganic nature. However, the
ineffectiveness for in-depth consolidation and the possibility
of formation superficial biofilm are the main disadvantages of
this technique (Le Métayer-Levrel et al. 1999). The former
drawback can be addressed by introducing microbial commu-
nity and nutrients inside defects and pores. The latter disad-
vantage is mainly due to the formation of superficial calcium
carbonate crystals that has insufficient consolidation or pro-
tection effect; however, it can be minimized by selecting those
bacteria that produce less biofilm while inducing a large
amount of minerals over the biosynthesis process.

Another potential passive application of MICP is the reme-
diation of cracks on the surface of concrete and mortar.
Concrete is one of the most broadly used construction mate-
rials worldwide which is susceptible to cracking. This results
in a significant decrease in the concrete’s lifespan and leads to
allocation of considerable budget for repair and maintenance
(Seifan et al. 2016c). In contrast to conventional crack treat-
ment approaches, the biodeposition of calcium carbonate can
act as a barrier against the penetration of aggressive sub-
stances. The effectiveness of surface bioremediation relies
on both quality and quantity of biodeposited crystals in terms
of density, thickness, cohesion, and effective bond with the
concrete matrix (Wang et al. 2016). De Muynck et al. (2008a)
investigated the effect of pure B. sphaericus and ureolytic
mixed cultures on the efficiency of concrete surface treatment.
The bioremediation was performed in two steps by immersion
of mortar/concrete samples in stock culture for 24 h and then
followed by submersion in a nutrient solution. The results
showed that the biodeposition of calcium carbonate on the
surface of the specimens resulted in a decrease in capillary
water uptake and permeability towards gas. It was also
found that the utilization of pure cultures resulted in a more
pronounced decrease in the water uptake due to the combined
effect of biomass and carbonate precipitation, and the addition
of a calcium source to the medium resulted in further
reduction of water absorption for the samples treated with
pure cultures. To lessen the steps towards remediation,
Chunxiang et al. (2009) used a one-step immersion method
by submerging a cement-based sample in a solution of
S. pasteurii, urea, and calcium nitrate. Their results showed
that water penetration resistance of the specimen surface could
greatly improve when the samples were treated by deposition
of calcium carbonate. Figure 5a clearly shows the thickness of
biodeposited calcium carbonate crystals when the surface of
specimen is exposed to the bacteria and nutrients.
Interestingly, the thickness of the layers in the samples

Fig. 4 Increasing trend in the number of publications for bacterially induced calcium carbonate precipitation: a year-sorted (until April 2019) and b
subject-sorted (Bbacteria^ + Bcalcium carbonate^ were used as keywords searching in the article title, abstract and keywords)
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submerged in a solution containing bacteria at stationary
phase was larger than the other counterparts in the solution
including bacteria at exponential and decline phases. The lay-
er of precipitated crystals was examined, and the SEM micro-
graph of samples submerged in 0.1 mol/L of calcium nitrate,
urea, and bacteria (log phase) is shown in Fig. 5b. The char-
acterization reveals that calcium carbonate crystals exhibited
different morphologies at different Ca2+ concentrations. Biotic
and abiotic factors, such as bacterial genotype and concentra-
tion, nucleation site, concentration of nutrients (calcium, car-
bon, and nitrogen source), pH, and temperature, have been
reported to be influencing the biosynthesis of calcium carbon-
ate (Seifan and Berenjian 2018). In another review, Al-
Salloum et al. (2017) reported the influence of additional fac-
tor, nutritional history of bacterial at the time of addition to
cementitious materials, on calcium carbonate formation, and
subsequently the performance of crack healing process.

Since the passive treatments are not permanent, they re-
quire labor to detect cracks, examine the concrete integrity,
and repeat the repair as needed. These challenges result in a
high maintenance cost. Most importantly, the passive tech-
niques are limited to the exterior sides and reachable parts of
the structures. Currently, the utilization of mineral admix-
tures is a common practice to produce a self-healing con-
crete. However, these unprotected admixtures immediately
start to react once they come in contact with water over the
concrete mixing process (Huang et al. 2016). This phenom-
enon significantly decreases their effectiveness to heal the
cracks in hardened concrete. Recently, attempts have been
made to introduce the biological healing agent (including
bacteria and nutrients) into the concrete matrix during con-
crete preparation (Seifan et al. 2018; Seifan et al. 2018d).

However, the protection of bacteria from stresses in alkaline
environment of concrete to induce a high affinity of calcium
carbonate has remained a challenge (Wang et al. 2012b).
Bacteria must endure enough to withstand the stresses, high
temperature (during cement hydration), and long periods of
inactivated lifestyle before a crack occurs. Immobilization
or attachment to carriers that shield the bacteria from such a
stresses can be a practical solution to address the bacterial
low viability issue. Lee and Park (2018) noted that an idea
carrier for bacteria should be biocompatible, mechanically
strong enough to endure the concrete mixing and to mini-
mize the likelihood of rupturing, as well as not being effec-
tive on mechanical properties of concrete itself. Therefore,
the bacterial cells that mediate the self-healing need protec-
tion from the harsh environment and this can be achieved
through immobilization. Recently, Seifan et al. (2018) suc-
cessfully employed a nanotechnological approach to ad-
dress the current issue associated with the low viability of
bacteria in the concrete environment. They fabricated bio-
compatible magnetic iron oxide nanoparticles that can at-
tach to the cell surface because of the negative charge in the
bacterial cell walls (Seifan et al. 2018b; Seifan et al. 2019).
The proposed immobilization approach has superior advan-
tages over other techniques as it facilitates the cement hy-
dration and offers protection at nanoscale which guarantees
the integrity of the concrete structure. The additive content
in the concrete mixture is a key factor to be considered. To
preserve the main characteristics of concrete and being
commercially feasible, the allowable dosage of biological
healing agent must be in a range of 2–5% by weight of
cement. The latter limitation can be addressed by optimiza-
tion of MICP in concrete matrix.

Fig. 5 a The thickness measurement of the deposited layer of sample
submerged in 0.3 mol/L of calcium nitrate, urea, and bacteria
(stationary phase) and b scanning electron micrograph of calcium

carbonate on the surface of cement stone specimen submerged in
0.1 mol/L of calcium nitrate, urea, and bacteria (log phase) (Chunxiang
et al. 2009)
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Soil strengthening and sand consolidation

The improper mechanical properties of soil in many regions
and industrial sites can cause serious issues. Under this con-
dition, the dikes, dunes, and slopes can become unstable; the
roads and railways undergo settlement; and slopes, coasts, and
rivers are likely to be subject to erosion (Van Paassen et al.
2010b). In another scenario, the seismic loads, such as earth-
quakes, cause a phenomenon called soil liquefaction which
can largely damage infrastructures. Densification of the loose
sand in the land reclamation projects is a big concern.
Therefore, the improvement in mechanical properties of soil
becomes an important research topic. Every year, more than
US$6 billion is spent on projects involving soil improvement
around the world (DeJong et al. 2010). To prevent soil ero-
sion, stabilization at the surface can be achieved using con-
structive, ecological, or combined techniques (Jones and
Hanna 2004; Normaniza et al. 2008), though these surficial
approaches are not sufficient, and therefore in situ strengthen-
ing techniques are required. A common practice for the soil
improvement is chemical grouting techniques by insertion of
synthetic materials, such as microfine cement, epoxy, acryl-
amide, phenoplasts, silicates, and polyurethane (Xanthakos
et al. 1994). However, the injection of these materials requires
a considerable cost and energy to fabricate a huge number of
injection wells for treating a large volume of soil. Moreover,
as a consequence of treatment, the permeability of soil is re-
duced, which may disrupt the groundwater flow. Most impor-
tantly, the injection of these chemicals creates environmental
concerns, as the majority of them are toxic and/or hazardous
(Karol 2003).

Over recent years, researchers have investigated various
biomediated techniques for soil improvement such as
biocementation, bioclogging, bioremediation, and
phytoremediation (Shashank et al. 2016). Biocementation or
MICP provides a great opportunity to alter the engineering

properties of soil. Exploitation of bacteria to induce
biominerals in soil contributes to fill the pore space and bind
the soil particles together (Fig. 6). The implementation of
MICP also has potential for enhancing the stability for
retaining walls, embankments, and dams; treating pavement
surface; strengthening tailings dams to prevent erosion and
slope failure; increasing the bearing capacity of piled or non-
piled foundations; reinforcing or stabilizing soil to facilitate
the stability of tunnels or underground constructions; reducing
the liquefaction potential of soil; and controlling erosion in
coastal areas and rivers (Kucharski et al. 2012).

The properties of soil can be evaluated by examination of
different geotechnical characteristics such as permeability,
stiffness, porosity, microstructure and biding, shear strength,
shear wave velocity, and unconfined compressive strength. To
improve the soil properties via microbial approaches, the po-
tent microbial strain can be introduced to the soil matrix
through three main routes: (i) injection method, (ii) percola-
tion method, and (iii) premixing method. In the first method,
the bacteria are injected into the soil resulting in flushing of
bacterial solution top to bottom (Mujah et al. 2017). The in-
jection technique is the most commonly preferred approach
for introducing the biological healing agent into the soil. In
this method, injection parameters, such as pressure and flow
rate, can be easily controlled and the biological healing agent
can be applied in both vertical and horizontal directions.
Bacteria and nutrients can also be introduced into the soil
through a simple spraying or trickling, which is called perco-
lation. On an industrial scale, this approach is significantly
cheaper than other methods of introducing biological healing
agents to the soil matrix. However, its efficiency is limited to
the narrow depth of soil as the biological healing agent pene-
trates due to gravity. For example, Cheng and Cord-Ruwisch
(2014) reported the successful insertion of biological healing
agent using this method in a short column of 2 m long. The
mechanical mixing of bacteria with soil known as the Bpremix

Fig. 6 Illustration of calcite distribution within the soil pore space (DeJong et al. 2010). a Uniform distribution. b Preferential distribution. c Actual
distribution. d Scanning electron micrograph showing the effective bridge formation caused by MICP (Mujah et al. 2017)
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method^ is another way to introduce biological healing agent
into the treatment zone. Compared to the trickling method,
this technique requires a higher source of energy and cost,
though its effectiveness is higher, specifically in deeper levels
of soil.

To date, different studies have been performed to investi-
gate the feasibility of microglial grouting for modification of
soil properties. For instance, to study the effect of MICP on
the properties of soil, Whiffin (2004) injected the bacteria and
Ca/urea solution into the core of a sandy soil column.
Yasuhara et al. (2012) evaluated the effect of urease enzyme
and calcium chloride solution as the essential elements for
initiation of calcium carbonate on the properties of soil.
They found that the precipitated crystals could significantly
improve the strength of soil. Moreover, the permeability of the
treated soil showed one order of magnitude reduction as
compared to untreated soil, indicating that the precipitated
crystals could effectively occupy the pore space. In another
investigation, van Paassen et al. (2010a) utilized the MICP
mechanism to increase the strength and stiffness of granular
soils at a large scale experiment (100 m3). They found that the
stiffness of the soil significantly increased just after a day of
treatment as a function of the injected volume of grouting
agents and the distance from the injection points. Dhami
et al. (2013a) investigated the effect of Bacillus megaterium
on the biogenic treatment of soil–cement block. Their exper-
iments showed 40% decrease in water absorption, 31% de-
crease in porosity, and 18% increase in compressive strength
in biogenic treated samples as compared to control specimens.
As there was no precipitate on the surface of the control sam-
ples, the resulted improvement is attributed to the deposition
of a whitish layer on the surface of blocks which was attrib-
uted to the calcium carbonate formation. In a similar finding,
Al Qabany and Soga (2013) introduced S. pasteurii and var-
ious concentrations of urea-CaCl2 solution into the sand sam-
ple. It was noted that all microbial treated samples had higher
strength, and the increase in strength was proportional to the
concentration of reactants. The same positive effect was also
reported for the permeability results where a higher decline in
water absorption was obtained in treated samples with con-
centrated urea-CaCl2 solution. According to research per-
formed by Ivanov et al. (2015), the introduction of microbial
agent into the soft marine clay can contribute to an increase in
shear strength clay aggregates and, more surprisingly, it leads
to an increase in unconfined compressive strength of aggre-
gates with a size of 5 mm from 0 to more than 2 MPa. Despite
a large number of investigations performed to evaluate the
strength, stiffness, and permeability of different soils via the
MICP process, there are still challenges that need to be over-
come. The mass transfer limitations for transporting nutrients
as well as limited metabolic activity of bacteria in deeper
subsurface area of treating zones are the main challenges to
be addressed for prospective applications (Umar et al. 2016).

Bioremediation of contaminants from soil
and groundwater

During the last few decades, deterioration and contamina-
tion of soil and groundwater have been dramatically in-
creased due to different sources of pollutions mainly from
urbanization, industry, and intensive agriculture. The con-
tamination sources in soil and groundwater are mainly ra-
dionuclides and/or heavy metals such as cadmium, chro-
mium, copper, zinc, arsenic, cobalt, lead, nickel, mercury,
silver, selenium, antimony, and thallium. Although the
heavy metals are naturally occurring, they become concen-
trated as a result of anthropogenic activities (Guo et al.
2010; Pérez-Marín et al. 2008). As the majority of contam-
inants are toxic, non-degradable, and persistent to accumu-
late, the research on toxic waste degradation approaches
has been prioritized for immediate conservation of our en-
vironment. Conventionally, various types of physicochem-
ical techniques, including chemical precipitation, filtration,
oxidation/reduction, ion exchange, electrochemical treat-
ment, membrane technology, reverse osmosis, and evapo-
ration recovery, have been developed for remediation of
polluted resources (Wang and Chen 2009; Xiao et al.
2010). However, the majority of these strategies are ineffi-
cient, expensive, labor-intensive, and require a consider-
able amount of chemicals and energy (Chen et al. 2008;
Fu and Wang 2011; Guo et al. 2010; Tang et al. 2008).
More r ecen t ly, b io log i c a l t e chn iques , such as
phytoremediation, bioaccumulation, biocoagulation,
bioleaching, biosorbents, and bioimmobilization (Arias
et al. 2017; Gadd 2000; Gazsó 2001; Lloyd and Lovley
2001; Volesky 2001), have been developed as alternative
and/or supplement for chemical approaches. Despite the
advances in the removal of heavy metals from contaminat-
ed environments through biological approaches, they are
ineffective, costly, time-consuming, and, most importantly,
lead to the release of immobilized or adsorbed heavy
metals back into the environment (Achal et al. 2011d).
The confluence of these challenges necessitates the devel-
opment of a new sustainable alternative which is called
bioprecipitation. As a result of this process, the toxic com-
pounds are changed from soluble heavy metals to insoluble
forms. Although the capacity of heavy metals removal by
microorganism was reported to be higher than convention-
al techniques (Leung et al. 2001), the uptake of heavy
metals can be selective (Loaëc et al. 1997). Moreover, the
bacterial activity can be limited by heavy metals toxicity
and the precipitation process highly depends on the pH. In
general, the biosorption of heavy metals by bacteria can be
achieved through different mechanisms, namely cell sur-
face adsorption, extracellular precipitation, intracellular ac-
cumulation through special components, and intracellular
accumulation into vacuoles (Mosa et al. 2016). A vast array
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of microorganisms, such as bacteria, algae, yeasts, and
fungi, have been used for heavy metals removal due to
their high performance and low cost (Wang and Chen
2009). However, their effectiveness in environmental
cleaning differs based on their varied ability of interacting
with contaminants. The bioremediation of heavy metals
through the MICP process has an advantage over the other
biotechnological processes because it can sequester metals
as minerals precipitate for a long period (Fujita et al. 2000).
Heavy metals can be removed through a direct precipita-
tion process where metal carbonate is precipitated, or by a
co-precipitation, in which heavy ions, such as Cd2+, Cu2+,
Zn2+, Fe2+, and Pb2+, are incorporated in the lattice struc-
ture of calcite via substitution of Ca2+ (Torres-Aravena
et al. 2018). Achal et al. (Achal et al. 2011d) tested the
copper bioremediation capacity of Kocuria flava for
cleaning up the copper-contaminated soil. They found that
the isolated bacteria produce a significant amount of urease
(472 U m/l) and are able to remove 95% of copper after
120 h from the nutrient broth medium supplemented with
urea-CaCl2. In a similar investigation, Li et al. (2013) used
different isolates to assess their capability for removal of
nickel, copper, lead, cobalt, zinc, and cadmium. It was
found that the isolates could successfully remove the con-
taminations ranging from 88 to 99% in a short period of
time (24 h). The results show that S. koreensis had the
highest removal rates for copper and lead. Sporosarcina
sp. and Terrabacter tumescens showed the highest
removal for cobalt and zinc, nickel, and cadmium,
respectively. Similarly, Kang et al. (2014b) investigated
the capability of bacteria to remediate cadmium-
contaminated soil in laboratory-scale experiments. CH-5
and CH-11 (Lysinibacillus sphaericus) showed the highest
rate of calcite and urease production, respectively. It was
also shown that L. sphaericus could remove 99.95% of
cadmium at 2 g/L in 48 h. The literature also indicates
the successful removal of other heavy metals such as chro-
mium (Hua et al. 2007), arsenic (Achal et al. 2012b; Dey
et al. 2016), and lead (Kang et al. 2015) from contaminated
environments. Moreover, the application of bioremediation
can be a promising tool for remediation of highly toxic
materials such as strontium. It has been reported that stron-
tium is capable of exerting long-term health impacts as it
has a long half-life of 28.8 years (Singh et al. 2008). Its
solubility facilitates the mobility and transportation into
the groundwater and soil, and it can be readily passed
through the food chain. Warren et al. (2001) employed
S. pasteurii to remove strontium through a solid-phase cap-
ture. Associated solid-phase capture of strontium was
found to be highly effective, capturing 95% of the 1 mM
strontium only in 24 h. In another investigation, the suc-
cessful sequestration of strontium by S. pasteuriiWJ-2 was
reported (Kang et al . 2014a) . I t was noted that

approximately 80% of the strontium from the soluble frac-
tion of the sand was sequestrated. A similar finding was
observed by Achal et al. (2012c) when they used strontium
resistant bacteria to remediate strontium from aquifer
quartz sand. It was found that Halomonas sp. removed
80% of strontium from soluble-exchangeable fraction of
aquifer quartz sand.

Bioremediation technology shows a promising result and
has been proven to be effective in laboratory scale. However,
further research is required to understand the fundamentals
behind the microbial mechanisms in the degradation process
before in situ application for biorecovery of heavy metals and
radionuclides. For example, oxygen limitation is one of the
main barriers against the MICP in deeper parts of soils.
Although in many types of soils the effective oxygen
diffusion for desirable rates of bioremediation extends to
ranges less than 30 cm, Vidali (2001) reported the successful
remediation at a depth of 60 cm and greater. The utilization of
oxygen releasing compounds could be a potential solution to
further increase the availability of oxygen and consequently
bioremediation efficiency.

Removal of calcium from industrial waste

Calcium-rich effluents are associated with landfill leachates,
reverse osmosis concentrates, and industrial processes (Van
Langerak et al. 1997). It is reported that such high concentra-
tions of Ca2+ are a serious hazard for the environment or, in
some cases, may negatively affect the processes. For example,
in aerobic or anaerobic reactors, Ca2+ tends to clog the pipe-
lines, boilers, and heat exchangers and therefore causes scal-
ing or malfunctioning of instrumentations (Hammes et al.
2003). As a result of this, Ca2+ needs to be captured and
MICP serves as a new emerging solution to address this
problem. Hammes et al. (2003) reported the positive effect
of the ureolytic microbial community on removing excess
calcium from industrial effluents. They noted that 85–90%
of the soluble calcium was precipitated in the form of calcium
carbonate sedimentation in the treatment reactor. However, to
be widely implemented, some challenges need to be over-
come, such as pH adjustment, ammonium release, and
calcium/urea source. As a result of this, future research should
be focused on such challenges.

Carbon dioxide sequestration

Increasing greenhouse gas emissions and mounting their con-
centrations in the atmosphere result in major environmental
issues such as global warming. Among these gases, CO2 is the
most abundant greenhouse gas which is emitted in the atmo-
sphere by anthropogenic activity and has a significant impact
on the Earth’s climate (Drake 2014; Srivastava et al. 2014). So
far, different approaches have been proposed for carbon
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capture and storage (CCS) and carbon capture and utilization
(CCU) (Cuéllar-Franca and Azapagic 2015). In CCS, the cap-
tured CO2 is transferred to a suitable site, such as geological or
ocean sites for long-term storage (Markewitz et al. 2012; Zapp
et al. 2012), while in CCU, the captured CO2 is converted into
commercial products such as chemical feedstock, fuels, and
mineral carbonation (Styring et al. 2011). However, there are
serious concerns regarding the implementation of these tech-
niques. For example, the leakage and escaping of stored con-
centrated CO2 negatively affect the environment. Based on the
permeability of the geological structure of storage site and its
faults or defects, it is estimated that between 0.00001 and 1%
leakage is happening every year (Pehnt and Henkel 2009;
Singh et al. 2011). Therefore, these approaches can have
long-term effects on the ecosystem and their processes are
not economically viable or energy efficient. On the other
hand, the sequestration of CO2 in a form of stable and envi-
ronmentally friendly solid carbonate offers a great solution for
long-term storage of CO2 to lessen the environmental con-
cerns. Mineral carbonation is achieved in a chemical process
that CO2 reacts with a metal oxide such as calcium to form
carbonates. Carbonation has the potential to be an effective
tool for capturing CO2 as it is a single quick process, and,
more importantly, it does not require any CO2 transport which
can substantially reduce the costs and risks of leakage.
However, it has been reported that the biochemical fixation
of CO2 to carbonate minerals is a slow process in nature.
Therefore, utilization of biological catalysts, such as carbonic
anhydrase (CA), which is ubiquitously distributed in organ-
isms and involved in many biochemical and physiological
processes, can catalyze the reverse hydration of CO2 (Tripp
et al. 2001; Zhang et al. 2011). In this context, Ramanan et al.
(2009) investigated the effect of six different bacteria with
high CA activity for removal of CO2. They observed calcium
carbonate deposition when CaCl2 solution was saturated with
CO2 in the presence of CA enzyme. Authors also found that
the purified enzyme has a higher capability of carbonate pre-
cipitation (15 times) than crude enzyme. Likewise, the biomi-
metic sequestration of CO2 into calcium carbonate using CA
purified from Pseudomonas fragi, Micrococcus lylae, and
Micrococcus luteus has been successfully demonstrated
(Sharma and Bhattacharya 2010).

In addition to the abovementioned applications, MICP can
be a promising solution for other environmental issues.
Conventionally, the intrusion of salt water into freshwater
aquifers during groundwater extraction is being overcome
by creating underground dams or increasing artificial recharge
of freshwater (Phillips et al. 2013). Subsurface MICP barriers
can be an alternative to prevent mitigation of salt-laden water
into freshwater aquifers (Rusu et al. 2011; Tobler et al. 2011).
To achieve this, the selected microorganisms must be able to
tolerate high saline conditions and induce calcium carbonate
precipitation under such an environment. In continuation of

MICP for environmental engineering applications, Anbu et al.
(2016) proposed that the precipitated calcium carbonate can
be used as a coating agent to immobilize and subsequently
remove polychlorinated biphenyls contaminated oil from the
environment.

Conclusions and future perspective

Due to the rapid growth of MICP technology, a vast range of
opportunities continue to expand. TheMICP processes can be
used for the production of multifunctional materials. This
technology can also help to increase the efficiency of crude
oil extraction by a reduction in permeability and strengthening
the loosely cemented layers. Moreover, it may minimize the
risk of oil leakage and contamination at the top layers of soil
where the majority of soil microorganisms are present. As
compared to conventional techniques, MICP can be a prom-
ising solution for consolidation of particles and suppression of
dust. For environmentalists, the leakage from ponds or reser-
voirs has always been a serious concern. The leakage from
ponds/reservoirs not only causes the loss of fluid, but also
results in seepage into underlying foundation soil or sand.
For example, this phenomenon in aquaculture ponds causes
the contamination of groundwater with nutrients and organic
aquacultural wastes. This challenge may be overcome by re-
ducing the seepage rate and permeation of reservoir through
MICP process in a sustainable way.

Despite the positive effect of MICP technology, there are
still shortcomings associated with its industrial application.
The first challenge is related to upscaling and the ability of
MICP to uniformly treat a large area. The treatment homoge-
neity is another factor that needs to be investigated as it influ-
ences the mechanical properties of the treated area. The next
challenge lies in the duration of microbial treatment. As com-
pared to chemical methods, the microbial process is usually
much slower, which affects the performance of MICP.
Moreover, from the economical point of view, the cost of the
MICP process needs to be further reduced to make it a much
more feasible option for a wide range of applications. This
could happen by the utilization of nutrients from the waste
streams and/or modification of microbial preparation
procedure.
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