
MINI-REVIEW

Bacillus velezensis: phylogeny, useful applications,
and avenues for exploitation

Adetomiwa Ayodele Adeniji1,2 & Du Toit Loots2 & Olubukola Oluranti Babalola1

Received: 25 October 2018 /Revised: 21 February 2019 /Accepted: 22 February 2019 /Published online: 25 March 2019
# Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Some members of the Bacillus velezensis (Bv) group (e.g., Bv FZB42T and AS3.43) were previously assigned grouping with
B. subtilis and B. amyloliquefaciens, based on the fact that they shared a 99% DNA–DNA percentage phylogenetic similarity.
However, hinging on current assessments of the pan-genomic reassignments, the differing phylogenomic characteristics of Bv
from B. subtilis and B. amyloliquefaciens are now better understood. Within this re-grouping/reassignment, the various strains
within the Bv share a close phylogenomic resemblance, and a number of these strains have received a lot of attention in recent
years, due to their genomic robustness, and the growing evidence for their possible utilization in the agricultural industry for
managing plant diseases. Only a few applications for their use medicinally/pharmaceutically, environmentally, and in the food
industry have been reported, and this may be due to the fact that the majority of those strains investigated are those typically
occurring in soil. Although the intracellular unique biomolecules of Bv strains have been revealed via in silico genome modeling
and investigated using transcriptomics and proteomics, a further inquisition into the Bv metabolome using newer technologies
such as metabolomics could elucidate additional applications of this economically relevant Bacillus species, beyond that of
primarily the agricultural sector.

Keywords Bacillus velezensis . Beneficial compounds . Genome . Metabolome . Microbial . Omics . Biotechnological
application

Introduction

Over the past six decades, Gram-positive endospores have
received a great deal of attention due to the various discoveries
made pertaining to their use in various sectors of industry,
especially agriculturally. Additional advantages when using
these spore-forming bacteria are that they can be easily cul-
tured, stored, and manipulated for biotechnological purposes
(Cao et al. 2018). To date, B. licheniformis, B. subtilis, and
B. amyloliquefaciens are among the most exploited species
from the genus; however, over the last decade, a vast amount

of research has been done on B. velezensis (Bv). Although Bv
i s c a t e g o r i z e d a s a h e t e r o t y p i c s y n o nym o f
B. amyloliquefaciens subsp. plantarum FZB42T,
B. methylotrophicus KACC 13015T, and B. oryzicola
KACC 18228, based on DNA–DNA hybridization values
greater than 84% (Dunlap et al. 2016; Fan et al. 2017), strains
within the species still show distinct genomic characteristics
(Adeniji and Babalola 2018). Bv was originally cultured from
the river bank of Vélez in Málaga in Southern Spain, was
reported to grow at a pH of between 5.0 and 10.0 and at
temperatures of between 15 and 45 °C (Ruiz-García et al.
2005), and produce diverse metabolic intermediates, which
include antibiotics, enzymes, phytohormones, iron chelators,
antioxidants, growth promoters, and antitumor agents (Gao
et al. 2017b; Liu et al. 2010b; Meena et al. 2018).

Genome sequence reports for many of the Bv subspecies
are now readily available (Baptista et al. 2018; Chen 2017;
Kim et al. 2017a; Kim et al. 2017b; Lee et al. 2015, 2017; Li
et al. 2018; Liu et al. 2017) which is also considered extremely
advantageous from a biotechnological exploitation perspec-
tive. To date, Bv has been extensively utilized in the area of
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biocontrol and plant growth promotion; however, studies in-
volving their use in other industries or various other environ-
mental applications are scarce and hence a topic of further
research . Bet te r descr ibed Baci l lus sp . such as
B. licheniformis, for instance, has been comparatively well
exploited for various commercial applications ranging from
the manufacture of enzymes (proteases, aminopeptidases,
pectinolytic enzymes) to the production of antibiotics, bio-
chemicals, and also applied in the textile industry. Bv, on the
other hand, although considered extremely robust to work
with, and despite the numerous studies on its possible biotech
applications, has as yet not been extensively applied commer-
cially, nor if these applications have reduced reliance on the
use of synthetic products for industrial, agricultural, environ-
mental, and medical purposes.

Comparative genomic, mutagenic, transcriptomic, histolo-
gy, and proteomic analyses have all contributed to character-
izing these beneficial Bacillus strains and in the production of
improved bioformulations for various biotech applications
(Wu et al. 2015b). A limitation to using these technologies,
however, is that it appears that only those compounds previ-
ously known to be present in other Bacillus spp., such as
difficidin, surfactin, bacilysin, macrolactin, bacillaene,
bacillibactin, and fengycin, are being re-identified in many
of the Bacillus strains and species reported lately in literature.
Considering this, there is a desperate need for using other
research approaches for identifying and characterization new
Bv secondary biomolecules in vitro. Metabolomics, one of the
newest additions to Bomics^ research, is likely to identify new
microbial biomarkers and, in so doing, expand our knowledge
and subsequently the applications and commercial value of Bv
and other species of Bacillus. Here, we expound on the geno-
mic relatedness existing among the Bv species, their rapid
deployment over the years, and we suggest future approaches
for exploiting underutilized beneficial microbes such as Bv.

Phylogenomic interrelation
between the B. velezensis strains

Dunlap et al. (2016) report that members of the Bv sp. share
phenotypic and genotypic coherence based on their morphol-
ogy, physiology, chemotaxonomy, and phylogeny and since
then confirmed by others (Ye et al. 2018). In order to fully
understand the genetic relationship and biochemical diversity
which exists within the species, we collected 17 Bv genome
sequences from the National Center for Biotechnological
Information (NCBI), with identity similarity ≥ 98% and
phylogenomically surveyed them using the Kbase bioinfor-
matics platform (Arkin et al. 2016). Subsets (10) of the ge-
nomes were also compared using the online web server of
EDGAR 2.3 https://edgar.computational.bio.uni-giessen.de/.
From the in silico analysis, the conserved genes located in

all of the collected strains (representing the core genome),
and the supersets of all the genes (the pan-genome) (Dunlap
et al. 2013) were identified and described (Fig. 1a, b).

In Fig. 2a, b, the values overlapping are the gene coding
proteins (GCPs) common within the genomes and values
outside the overlaps signify the GCPs in each genome
without orthologs in the other genomes. The Venn diagram
was computed as described by Bardou et al. (2014) using the
BIOiPLUG Comparative Genomics Database (https://www.
bioiplug.com/). Also, using the default parameters of the
web server BIOiPLUG Apps (https://www.bioiplug.com/
apps), the Pan-genome Orthologous Groups (POGs) and
Gene Content (GC) of a subset of the 17 strains (5 highly
referenced and 5 somewhat less popular B. velezensis strains)
were determined. The Pan-genome Orthologous Groups
(POGs) which represent the basic unit of core genes/pan-
genome and gene presence/absence representing total genetic
content were analyzed using BIOiPLUG Comparative
Genomics Database (https://www.bioiplug.com/) (Fig. 3a, b).

Both the core genes and dispensable genes are crucial for
determining bacterial species diversity. The core genes are
responsible for indicating fundamental functions of the organ-
ism’s biology which includes replication, translation, and
maintenance of cellular homeostasis, and in Fig. 3a, b, these
core genes indicate the genetic diversity among the strains
compared. The dispensable genes are associated with surviv-
ability, antimicrobial resistance, virulence traits, and develop-
ment of novel gene functions. Some of these genes, when
present within the strains, also confer an adaptive superiority
over others lacking them (Carlos Guimaraes et al. 2015).
Average nucleotide identity (ANI) was also computed on the
online web server of EDGAR 2.3 https://edgar.computational.
bio.uni-giessen.de/. Majority of the core genes irrespective of
their functions and location are necessary for better
phylogenomic reassignments among the Bv strains. The
distance matrices heatmap (Fig. 4) indicates the genomic
similarities and differences among 10 of the 17 Bv strains.
Based on this ANI analyses, we reported that the phylogeny
of these closely related bacteria corresponds to previous
reports. A total of 154 core functions and 784 core protein
families were peculiar to all 17 the strains probed.
Additionally, the 17 strains have in combination 60,538
protein-coding genes of which 59,263 are present in homolog
families and 1275 in singleton families. The total numbers of
families identified in the 17 strains are 5538, of which 4207
are in the homolog families and 1331 in the singleton families
(Table 1). Figure 5 indicates the collinearity of genes among
10 of the Bv subset. The conserved genomic regions of the Bv
strains were probably due to their common ancestry, either by
duplication or by speciation of the genes. Several industries
have benefited from the versatile genomic resource of Bv, and
this will subsequently be discussed in greater detail in the
latter sections of this review.
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Agricultural applications of B. velezensis

As previously mentioned, the majority of research supports the
use of B. velezensis for its possible utilization in the agricultural
industry, as alternatives to the current synthetic fertilizers and
chemical pesticides (as summarized in Table 2). In an attempt
to reduce the incidence of wheat powdery mildew (Cai et al.
2017), Cai et al. (2016) performed a field trial showing the
capacity of a bioactive metabolite extract of Bv CC09 to reduce
the severity of mildew disease by 86.12% when compared to a
commercial fungicide triazolone which only showed a 50.39%
reduction when applied as pretreatment samples. Similarly,
Chen et al. (2018c) indicated that Bv extract, LM2303, signif-
icantly reduced the incidence and severity of wheat FHB
(caused by F. graminearum) under in planta conditions and

similarly to CC09, it also had a higher biocontrol efficacy when
comparedwith that of a chemical fungicide. The authors further
proposed that the biocontrol potential of Bv LM2303 was most
likely via four major mechanisms: (i) antibiosis mediated by
Bacillus antibacterial metabolites and lipopeptides, (ii) activa-
tion of induced systemic resistance (ISR) in wheat by the vol-
atiles and the lipopeptide surfactin, (iii) enhanced growth of
wheat due to an elevated production of growth hormone and
nutrient uptake, and (iv) competitive exclusion of other micro-
flora. Gilardi et al. (2015) investigated a commercially obtained
Bv (Cilus Plus IT45) towards the biocontrol of Phytophthora
capsici, which results in root and crown rot of zucchini in parts
in Italy, however, in their investigation the biocontrol effect of
the strain was determined to be non-significant. Using an
HPLC-MS, in combination with genomic analyses, Jin et al.

Fig. 1 a Pan-genomic atlas of 17 Bv strains computed on the Kbase
platform (Arkin et al. 2016). Core and non-core genome similarities and
dissimilarities are indicated on the left key of the figure. Peculiar genes in
the genome 0 (BvNWUMFkBS10.5) are indicated in its ring as light blue
arcs; genome 1: VCC genbank genome (gbg) genome; genome 2:
ATCC19217.gbg; genome 3: BS10.5.gbg; genome 4: SX.gbg; genome

5: AS43.3.gbg; genome 6: LABIM40.gbg; genome 7: J-5.gbg; genome 8:
DR08.gbg; genome 9: GYL4.gbg; genome 10: UCMB5033.gbg; genome
11: M7.gbg; genome 12: SQR9.gbg; genome 13: TrigoCor1448.gbg;
genome 14: CBMB205.gbg; genome 15: WS8.gbg; Genome 16:
LS69.gbg). b Circular map showing pairwise alignment of Bv strain_
LS69 (NZ_CP015911) with other 9 Bv genome subsets

Fig. 2 Venn diagrams showing the gene coding proteins (GCP) shared between highly referencedBv strains (a) and somewhat less popularBv strains (b)
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(2017) identified the metabolic intermediates that were respon-
sible for the plant protection and growth promoting attributes of
Bv S3-1 during an anti-Botrytis cinerea experiment. The

bioactivity of the Bvwas attributed to the production of various
lipopeptide antibiotics (iturin, fengycin, and surfactin). It is
important to note, however, that many of the aforementioned

Fig. 3 Clustering of the gene content and the conserved pan-genome orthologos groups (POGs) of 10 Bv genomes subsets (a, b)

Fig. 4 Heatmap showing intrastrain similarities of subsets from the 17 Bv based on the ANI of their genome sequences
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compounds ascribed to Bv functionality are not necessarily
novel compounds.

Streptomyces scabies is a pathogen that affects diverse crop
types, ranging from, but not limited to the following: beet,
carrot, cucumber, pepper, potato, radish, squash, tomato, and
turnip. Bv BAC03 was identified as an effective antagonist of
S. scabies; however, antagonism and plant growth promotion
of the strain was dependent on its prior application before
disease onset. Additionally, strain BAC03 increased the bio-
mass of the radish roots and leave harvest, in spite of S. scabies
infection (Chen et al. 2015; Meng and Hao 2017; Meng et al.
2016). Likewise, Bv YC7010, a multi-functional endophyte
with the capacity to induce systemic resistance against several
rice pathogens, was also found to induce systemic resistance in
Arabidopsis against Myzus persicae (Rashid et al. 2017).
Green peach aphid (GPA), Myzus persicae, is a destructive
phloem sap insect–pest that causes significant agricultural
losses. Root drenching of Arabidopsis with the aforemen-
tioned Bv strain resulted in a significant reduction in the set-
tling, feeding, and reproduction of the pest on the Arabidopsis
leaves. The authors attributed the ISR to the expression of the
senescence-promoting gene, phytoalexin deficient 4 (PAD4),
and the subsequent suppression of botrytis-induced kinase 1
(BIK1) ofM. persicae, which warrants further experiments on
the use of Bv YC7010 as a pesticide.

Lastly, Nam et al. (2009) proved the efficacy of various
formulations made up of Bv BS87 and RK1 to be highly
effective for the bioprotection of strawberries against
Fusarium oxysporum f. sp. fragariae, by performing in vitro
and in planta studies. Although the bioprotective efficacy of
the RK1 formulation was higher than its counterpart BS87, it

exhibited similar antagonism in planta in comparison to a
conventional fungicide (copper hydroxide). Application of
Bv along with a Glomus intraradices (mycorrhizal fungi) as
a potential biofertilizer for strawberry crops was later reported
by Palencia et al. (2015). These studies show the capacity of
Bv for use as a very effective alternative for conventional
biofertilizers and chemical pesticides, with subsequently com-
paratively even better crop yields with less harm to the
environment.

Industrial and environmental applications
of B. velezensis

Various Bv strains have been shown to have applications for
degrading various toxic and harmful industrial byproducts.
The azo dyes, for instance, found in textile industry
effluents, are toxic to aquatic environments, due to their
mutagenic and recalcitrant properties. A preliminary
evaluation by Bafana et al. (2008) indicated the capacity of
Bv strain AB to decolorize and detoxify these azo dyes and,
subsequently, its applications for treating and preventing azo
dye effluent pollution. Similarly, Lan (2016) indicated a total
reduction in nitrogen and COD of 83.5% and 93.2% respec-
tively, in a study testing the capacity and possible applications
of Bv strain M2 for application for slaughterhouse wastewater
bioremediation. An in silico study by Chen et al. (2018a)
indicated that a number of Bv strains, employed for in vivo
pretreatments of lignocellulosic material, had the capacity to
efficiently degrade cellulose and hemicelluloses due to the
presence of genes coding for various lignocellulolytic

Table 1 Summative statistics of the pan-genome datasets and shared genes of 17 B. velezensis strains retrieved from the NCBI data base

Genome accession nos. Genes Homologs Homolog families Singletons

Bv SQR9 NZ_CP006890.1 3985 3795 3701 190

Bv TrigoCor1448 NZ_CP0070244.1 3683 3623 3542 60

Bv SX01604 CP018007.1 3773 3626 3560 147

Bv NWUMFkBS10.5 CP007244.1 968 910 893 58

Bv UCMB5033 HG328253.1 3952 3770 3691 182

Bv M7 CP016395.1 3775 3632 3566 143

Bv LABIM40 CP023748.1 3999 3763 3687 236

Bv FZB42 CP000560.1 3797 3560 3490 237

Bv VCC CP027429.1 3792 3559 3494 233

Bv J-5 CP018295.1 3768 3640 3561 128

Bv DR-08 CP028437.1 3772 3634 3568 138

Bv GYL4 CP020874.1 3803 3600 3530 203

Bv AS43.3 CP003838.1 3856 3613 3547 243

Bv LS69 CP015911.1 3805 3633 3567 172

Bv ATCC19217 CP009749.1 3882 3634 3565 248

Bv WS-8 CP018200.1 3771 3633 3567 138

Bv CBMB205 CP011937.1 3770 3770 3564 132

Appl Microbiol Biotechnol (2019) 103:3669–3682 3673



enzymes including endo-glucanases, endo-glucosidases,
phospho-glucosidases, phospho-galactosidase, sucrose-
phosphate hydrolase, and levanases.

In a follow-up study, Chen et al. (2018b) isolated a Bv
strain (157) with the capacity for degrading various agro-
industrial byproducts including soybean meal, wheat bran,
sugarcane bagasse, wheat straw, rice husk, maize flour and
maize straw, and the subsequent utilization of these degraded
agro-materials in biofuel production. The authors additionally
indicated that during solid-state fermentation, several impor-
tant industrial enzymes are produced by this Bv strain 157. In
an explorative study, searching for Bv strains with the capacity
to efficiently depolymerize various types of lignocelluloses
(cellulose, hemicellulose, and lignin) into fermentable sugars
(Nair et al. 2018) isolated Bv ASN1 which had the capacity to
synthesize cellulase, which has a broad range of applications

in food, textile, animal feed, petroleum, waste management,
biosurfactant, and pulp/paper industries. Cellulase from Bv
ASN1 is a candidate for depolymerizing recalcitrant lignocel-
lulosic biomass from waste office paper.

There is currently a high demand for biosurfactants, for
application as commercial bioemulsifiers due to their im-
proved biodegradability as compared to their synthetic surfac-
tant counterparts. A comprehensive analysis by Liu et al.
(2010b), using rapid molecular PCR and chemical elucidation
of various Bv H3 metabolomic intermediates, indicated that
the investigated strain has excellent bioemulsifying properties.
Due to the fact that primer detection efficiency for Bv PCR
analysis is suboptimal at present, a species–subspecies in
silico exploration of Bv and B. subtilis genomes was carried
out by Cho et al. (2018) in order to identify and produce
Bacillus-specific primers. The study selected various

Fig. 5 The syntenic genes shared among the Bv strains. In each, the loci set are found on the same chromosome and are not necessarily conserved
sequentially
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Bacillus-specific genes, and the designed primers were for the
purpose of improved detection efficiency during quantitative
and real-time PCR procedures. The improved PCR assay was
subsequently further applied towards a targeted detection of
the Bacillus strains in a fermented food sample.

Microbial inoculants containing a number of different Bv
strains have also been previously investigated for their capacity
for reducing N2O and CO2 emissions occurring due to various
anthropogenic activities when manufacturing and using fertil-
izers, which is considered an environmental hazard (Calvo
et al. 2013; Calvo et al. 2016). The data provided preliminary
proof for the ex-situ application of the Bv bio-inoculants for
these applications since the Bv strains tested show excellent
nitrogen use capacities. Lastly, an inoculant containing Bv
strain NRRL B-23189 was indicated to be an antagonist of
Penicillium roqueforti sensu stricto (s.s.) (toxigenic mold)
which can have a profound effect on improving processes
related to corn silage (Wambacq et al. 2018). Although the
initial inhibitory tests showed promise, the latter in vitro and
in vivo results from the study were less encouraging.

Applications in biomedicine

The increased prevalence of drug-resistant pathogens and sub-
sequent shortage of possible drugs for eliminating these or-
ganisms and curing the associated diseases have led to an
upsurge in research on possible new drug compounds, in par-
ticular, those from natural origins. In recent years, microbial
produced exopolysaccharide (EPS) biopolymers have been
shown to be of particular value for various applications relat-
ing to medical health, bio-nanotechnology, food and cosmetic
industry gelling agents, and bio-flocculation (Moghannem
et al. 2018). Moghannem et al. (2018) applied a Plackett–
Burman statistical experimental design, in order to screen for
microbes producing EPS and identify the most optimal culture
and environmental conditions conducive for EPS production
by these species, using a response surface methodology
(RSM). The Bv KY498625 strain tested and produced com-
paratively the highest EPS, which was easily extracted and
purified using diethylaminoethyl (DEAE) cellulose. Further
identification of the EPS was carried out using gel permeation
chromatography GPC), Fourier transform infrared (FTIR),
and gas chromatography-mass spectrometry (GC–MS).
Since this microbial produced EPS is biodegradable, it is con-
sidered a considerably substantial breakthrough in terms of
environmental sustainability.

Microbial produced compounds with possible anticancer/
tumor properties (e.g., B. subtilis surfactins) are also now be-
ing investigated due to their high pharmacological potency
and medicinal value for treating these conditions (Wu et al.
2017). An exopolysaccharide (EPS) compound, isolated from
a marine BvMHM3 strain designated as MHM3EPS, showed

an extremely high anticancer (MCF-7 cells) capacity at very
low concentrations, with no apparent cytotoxic effects against
health host cells (Mahgoub et al. 2018). In a similar study,
Meena et al. (2018) indicated a lipopeptide antibiotic extract
from a novel Bv strain (KLP2016), inhibited both Aspergillus
niger and a Mucor sp., and additionally exhibited high (~
90%) cytotoxicity against human cervical carcinoma cells
Hep2-C. Furthermore, Rehman et al. (2018) recently reported
the antiproliferative activity of five compounds extracted from
Bv RA5401 against breast cancer cell lines, two of which
function via inhibition of the intracellular cancer proteases
and the remaining three via inhibition of the G protein-
coupled receptors of the cancer cells (Meena et al. 2018).

A Bv V4 strain, isolated from an aquaculture system, with
biocontrol activity against Aeromonas salmonicida subsp.
salmonicida, the causative agent of furunculosis in fish (Gao
et al. 2017a), was also investigated for possible probiotic ac-
tivity on Oncorhynchus mykiss (rainbow trout). In the study,
Bv V4 caused a significant reduction in the fish’s mortality
while also improving its growth. The authors used metabolic
profiling (genomics and metabolomics (LC-MS/MS and
NMR)) to identify the active metabolites produced by Bv
V4, which were lipopeptides from the iturin, difficidin, and
macrolactin group, with known mechanisms of action. Bv V4
has the potential for use as an aquaculture probiotic and as an
antifurunculosis agent. With similar objectives, Van Doan
et al. (2018) reported an improved immunity (via significantly
elevated serum and skin mucus lysozyme and peroxidase ac-
tivities, alternative complement activity, phagocytic activity,
and respiratory burst activities) of Nile Tilapia when treated
with a probiotic mixture of Lactobacillus plantarum N11 and
Bv H3.1., as a feed additive. However, adequate information
on the specific identity of the active metabolites (from the Bv
strain) responsible for the immune boosts and mechanism by
which the metabolite worked synergistically with other com-
ponents of the probiotic is currently lacking.

And lastly, Yoo et al. (2018) isolated Bv K68 from tradi-
tional Korean-fermented foods and indicated its functionality
and possible use in the prevention of dental caries, caused by
Streptococcus mutans by inhibiting S. mutans biofilm forma-
tion, adhesion, and GTF gene expression, through
deoxynojirimycin (DNJ) production. This study and all of
the aforementioned literature substantiate the use of Bv, vari-
ous Bv extracts and purified compounds from Bv for various
medicinal/clinical applications in both humans and animals.

Possible future use of metabolic information
in combination with other omics derived data

Microbial genome-scale metabolic models (GEMs) have been
previously developed but to date rarely used as systems’ met-
abolic engineering strategies for strain design and
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development (Covert et al. 2001; Lee et al. 2010; Oh et al.
2007). Applying microbial metabolic models or predictive
pathway analyses could greatly assist researchers in predicting
structural and functional properties of various microorgan-
isms, including that of the Bv strains discussed in this review.
Microbial metabolic models can additionally be used as a tool
for generating hypotheses and engineering the metabolism of
several organisms (Liu et al. 2010a; Patil et al. 2004). For
example, a recombinant B. subtilis strain (BBG100), obtained
from a wild strain ATCC 6633, was engineered to over secrete
mycosubtilin (15-fold increase), via manipulation of its inter-
nal mycosubtilin operon (Leclère et al. 2005). A similar ap-
proach was used to generate various microbial strains for the
production of novel bio-based compounds, medical antibi-
otics, plant/crop inoculants, and industrial chemicals via fer-
mentation (Mienda 2017; Zachow et al. 2015).

The discovery of the non-ribosomal peptide synthetase
(NRPS) siderophores (cupriachelin and taiwachelin) via in
silico genome mining of the nitrogen-fixing bacteria
Cupriavidus necator H16 (syn. Ralstonia eutropha H16)
and C. taiwanensis LMG19424 by Kreutzer et al. (2012);
Kreutzer and Nett (2012) also follow a genome-scale meta-
bolic modeling. The predicted metabolic map (from the ge-
nome sequence data) by the same researchers subsequently
assisted in the reconstruction of the putative pathways for
the biosynthesis of the aforementioned lipopeptides. The re-
constructed pathway was then used in the formulation of the

fermentation growth media for the synthesis of these afore-
mentioned compounds, which were subsequently purified,
extracted, and identified.

Biosynthetic modeling of B. velezensis
NWUMFkBS10.5 genome

Using the KEGG platform and the RAST server genome an-
notation of the Fusarium-biosuppressor BvNWUMFkBS10.5
Adeniji et al. (2018), a genome-scale metabolic model of the
Bv NWUMFkBS10.5 was mapped and or constructed. The
final model includes 1558 chemical reactions, employing
1559 compounds, associated with 1000 genes. Twenty-eight
possible significant compounds were predicted from the
modeled metabolic pathway. In Fig. 6, the biosynthetic
uniqueness of this genome is illustrated and compared to the
genomic map of three other referenced Bv strains (using the
default parameters of the web server BIOiPLUG Apps
(https://www.bioiplug.com/apps). One of the major novelties
of the NWUMFkBS10.5 genome is the presence of the
betalain and novobiocin metabolic pathways, responsible for
the synthesis of interesting compounds including
gomphren in -1 , l ampran th in -2 , ce los ian in -2 , 2 -
decarboxybetanidin, betalamic acid, miraxanthin V,
albamycin, and maltol. These compounds have been
previously documented to be useful antioxidants, food

Fig. 6 Uniqueness of the NWUMFkBS10.5 genome compared with three other highly referenced Bv genomes
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additives, and flavor enhancers. A summary of the possible
metabolic pathways for the synthesis of some of these
beneficial compounds is given in Table 3.

Exploiting the Bacillus velezensis metabolome
using practicable metabolomic insights

Interpretation of microbial intracellular information derived
from all the other omics data, in conjunction with metabolo-
mics data, would potentially revolutionize the quest for iden-
tifying and synthesizing various novel and useful natural mi-
crobial compounds (Adeniji and Babalola 2018), thereby fur-
ther enhancing natural products discovery (Fig. 7). The bene-
fits of using the multi-omics platform approach with deliber-
ate convergence to metabolomics, for microbial bioengineer-
ing applications, are clear. Various studies (as discussed in this
review) have attempted to use a multi-dimensional omics ap-
proach to determine the role of several candidate biocontrol
compounds synthesized by various Bv strains (Chen et al.
2018c). Other practicable insights are further described below.
For instance, during a host–microbe interaction (within a clin-
ical, industrial, environmental, and agricultural setting), vari-
ous metabolic processes may be disrupted within a treated
pathogen or living host, after the application of a beneficial
microbe, or its purified beneficial compounds. Metabolomics
can provide valuable information on the bio-transformation
that typically occurs in the metabolome of these beneficial
microbes when they are utilized directly as a treatment alter-
native (Xu et al. 2014).

Furthermore, metabolomics can be used tomonitor system-
ic acquired resistance/induced systemic resistance in plants

induced by exogenous microbial treatment. Its application
duringmicrobial industrial fermentation studies may addition-
ally elucidate changes to the metabolic flux, enzyme func-
tions, and gene function, which in turn can be applied to op-
timizing fermentation protocols (Gao and Xu 2015). Zhao
et al. (2016) investigated the inhibitory effect of a phage pro-
tein (gp70.1) on Pseudomonas aeruginosa using transcripto-
mics and NMR-based metabolomics. The phage protein
caused a significant reduction in the rate of amino acid con-
sumption by P. aeruginosa. The up-production of alanine and
pyroglutamate and downregulation of ornithine which was
revealed by the NMR spectroscopy confirmed the phenotypic
disruptions observed in the extracellular components of the
organism.

Lastly, Wu et al. (2015a) elucidated the mechanism by
which the biocontrol bacteria Penicillium citrinum W1 could
improve its production of the antifungal protein, PcPAF.
Using a GC-MS metabolomics approach, they determined
an upregulation in the fatty acid synthesis and TCA cycle
intermediates when cultured in media supplemented with gly-
cine, serine, and threonine, correlating to the phenotypic ex-
pression of increased bacterial growth and improved antago-
nism (Wu et al. 2015a). Similarly, Koen et al. (2018a) and
Koen et al. (2018b) used a GCXGC-TOFMS metabolomics
approach to determine the intracellular response of the organ-
ism Mycobacterium tuberculosis (Mtb) to the antimicrobials
colistin sulfate and colistin methanesulfonate respectively, in
order to determine possible mechanisms of action of the anti-
microbial. Increased uptake of various metabolic precursors
(e.g., glucose) and a subsequent elevation of other
underutilized precursors within the cell, all of which were
related to fatty acid synthesis and cell wall repair, were

Table 3 Biosynthetic pathways and possible beneficial compounds identified from the metabolic modeling of the B. velezensis NWUMFkBS10.5
genome

Biosynthetic pathway Biomolecule Beneficial significance

Tetracycline biosynthesis Oxytetracycline and tetracycline Biomedical antibiotic

Brassinosteroid biosynthesis Brassinolide Phytohormone

Puromycin biosynthesis O-beta-D puromycin Antibiotic

Zeatin biosynthesis Xylosylzeatin, zeaxanthin, and lupinate Phytohormones

Anthocyanin biosynthesis Cyanidin, malvidin, delphinidin,
malonylshisonin, and pelargonidin

Plant pigments

Benzoxazinoid biosynthesis DIMBOA Plant antibiotic

Vancomycin biosynthesis Chloroeremomycin and vancomycin Antibiotics

Ansamycins biosynthesis Rifamycin and protorifamycin Antibiotics

Chondroitin biosynthesis Chondroitin Medical supplement

Monoterpenoid biosynthesis Asperuloside and myrcene Plant defense compounds and
anti-Helicobacter pylori

Betalain biosynthesis Gomphrenin-1, lampranthin-2,
celosianin-2,2-decarboxybetanidin, betalamic acid, and miraxanthin V

Novel antioxidants and food additives

Novobiocin biosynthesis Albamycin and maltol Antibiotic, antioxidant,
and flavor enhancer
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reported by the authors. The metabolomics study corroborated
previously proposed genomics and histological generated hy-
potheses, regarding colistin’s mechanism of action against
Mtb. Negative alterations in the metabolome of beneficial mi-
crobes (like Bv) could be monitored and controlled borrowing
from the perspectives above.

Final remarks and conclusion

It is becoming paramount that the biosynthetic capacity of
microbes identified through other omics strategies be validat-
ed via metabolomics, and the presupposed or predicted signif-
icant microbial biomolecule (or the products of microbial fer-
mentation) is subsequently detected or synthesized in vitro
(Palazzotto and Weber 2018). Apparently at inception, re-
search into microbial metabolomics was limited by the capac-
ity of analytical techniques available at the time; however, the
recent advancement of the platform (metabolomics) has

resulted in an exponential increase in new and exciting dis-
coveries (Xu et al. 2014). We anticipate an exponential in-
crease in the use of systems biology research approaches to-
wards the discovery of new compounds from microbial
sources over the course of the next 10 years. A number of
challenges however still exist, and these include the difficulty
in extracting or purifying novel compounds from fermentation
broths produced by these beneficial microbes (e.g., Bv). The
latter limitation is largely attributed to suboptimized growth
conditions, improper selection of extraction solvents, and a
lack of availability for novel compounds commercially for
absolute identification of novel compounds, especially those
synthesized in lower concentrations (Machado et al. 2017).
The reported non-selectiveness of many microbial-derived
beneficial agents and their apparent inability to competently
function in vivo as detected in vitro, in comparison to synthet-
ic antimicrobials, is a challenge. A further question is whether
the location or sources of isolation of these beneficial bacteria
(e.g., Bv) influence the diversity of their applications.

Fig. 7 A multi-dimensional omics approach for enhancing natural compound discovery. The sequential events will focus on the metabolomic interpre-
tation of molecular and or cellular data stemming from microscopic, genomic, transcriptomic, and proteomic evaluations
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This study expounds on the phylogeny of Bv (using current
omics tools) to actually corroborate previous claims on the
close knitting of the species, while comprehensively revealing
the omics techniques employed in the past investigations re-
lating to Bv. Using metabolic modeling, we identified possible
novel biomolecules from our Bv strain (NWUMfkBS10.5).
We have also shared interesting perspectives on how the Bv
metabolome could be further exploited, using current
metabolomic trends capable of detecting biomarkers pertinent
to novel biosynthetic pathways. Despite the inexhaustible di-
versity of microbial metabolites and the beneficial compounds
produced by beneficial bacteria, there are only a few databases
which currently exist, documenting these compounds and
their biotechnological applications. Metabolomics would
serve a useful approach to generating such info quickly, which
deserves attention considering the need for sustainable pro-
duction of novel biotechnological products.
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