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Abstract
The emergence of antibiotic-resistant bacteria, dubbed superbugs, together with relative stagnation in developing efficient
antibiotics has led to enormous health and economic problems, necessitating the need for discovering and developing novel
antimicrobial agents. In this respect, animal venoms represent a rich repertoire of pharmacologically active components. As a
major component in the venom of European honeybeeApis mellifera, melittin has a great potential inmedical applications. In this
mini-review, we summarize a multitude of studies on anti-bacterial effects of melittin against planktonic and biofilm-embedded
bacteria. Several investigations regarding synergistic effects between melittin and antibiotics were also described. On the whole,
the properties of melittin can open up new horizons in a range of biomedical areas, from agriculture to veterinary and clinical
microbiology.
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Introduction

Modern medicine has conquered many life-threatening ill-
nesses, but threat of antibiotic-resistant bacteria seems to be
a never-ending challenge facing humankind. It is anticipated
that annual deaths attributable to anti-microbial resistance will
surpass those of cancer by 2050, if we do not take action
(O'Neill 2016). The greatest concern is imposed by the
ESKAPE pathogens (i .e . , Enterococcus faecium ,
Staphylococcus aureus , Klebsie l la pneumoniae ,
Acinetobacter baumannii, Pseudomonas aeruginosa, and
Enterobacter species) which have the ability to Bescape^ the
lethal action of conventional anti-microbials and host immune
responses (Rice 2008).

Extensive exposure to antibiotics has rapidly led to emer-
gence and nationwide propagation of multidrug-resistant
(MDR), extensively drug-resistant (XDR), and pandrug-
resistant (PDR) bacteria, often dubbed superbugs, making

the choice of chemotherapeutics for treatment more problem-
atic (Deslouches et al. 2015; Mohamed et al. 2017). Such fear
is even further compounded once pathogens establish biofilms
on tissues and medical devices. In this respect, biofilm forma-
tion empowers bacteria to abscond from various clearance
mechanisms produced by host and synthetic sources (Batoni
et al. 2016; Overhage et al. 2008).

While admirable efforts are underway to potentiate current
anti-microbial arsenal, the problem of antibiotic-resistance in
superbugs is of sufficient importance that effective anti-
microbial materials ought to be discovered and evaluated
(Deslouches et al. 2015). Among the limited numbers of
new anti-microbials in the pipeline, natural peptides from an-
imal venoms have been demonstrated to possess promising
biological properties, which warrant their development as ef-
ficacious agents against recalcitrant pathogens (Almeida et al.
2018; Memariani et al. 2017; Hale and Hancock 2007). This
review summarizes empirical evidences on anti-bacterial and
anti-biofilm properties of melittin, a major component of hon-
eybee venom.

Animal venoms

Natural products originated from both plants and animals pos-
sess a diverse array of as-yet unidentified substances that
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suggest seemingly limitless possibilities for finding potential
leads (Gajski and Garaj-Vrhovac 2013). Animal venoms are
poisonous secretions which involved in protection against
predators or immobilizing/killing preys (Andreotti et al.
2010). Though the composition of venoms varies from animal
to animal, the majority of venoms comprise a myriad of en-
zymes, peptides, low molecular weight organic molecules,
and inorganic salts (Pennington et al. 2018). Animal venoms
have been exploited for thousands of years, in many tradition-
al remedies and medicines, to cure a plethora of maladies
including atopic dermatitis, arthritis, chronic pain, multiple
sclerosis, infectious diseases, cancers, gastrointestinal issues,
and cardiovascular diseases (Pennington et al. 2018; Andreotti
et al. 2010; Lewis and Garcia 2003).

Recent propitious progresses toward high-throughput
screening and characterization of venom components have
provided the impetus to search for novel venom-based thera-
peutics such as those with anti-microbial activity (King 2011).
In this context, venom-derived anti-microbial peptides
(AMPs) are of particular interest because of their selectivity,
broad-spectrum microbicidal activity, and relative safety
(Pennington et al. 2018; Memariani et al. 2018a).

Bee venom

Unquestionably, venoms from various animals such as bees,
snakes, scorpions, spiders, toads, octopus, and marine cone
snails represent a rich source of pharmacologically active
components, creating unique avenues for discovering promis-
ing biomolecules which can be used per se or as lead com-
pounds in the development of therapeutic drugs (Sabatier
2011; Almeida et al. 2018). Honeybee venom is a complex
concoction of biologically active substances, such as melittin,
secapin, apamine, hyaluronidase, phospholipase A2, phospho-
lipids, saccharides, noradrenaline, histamine, and dopamine,
with enormous chemical and functional variability (Hider
1988).

Bee venom has been exploited since ancient times to treat
several ailments. In oriental traditional medicine, bee venom
has been used to treat skin maladies, palliate the back pain,
and attenuate chronic inflammation conditions caused by both
multiple sclerosis and rheumatoid arthritis (Oršolić 2012; Son
et al. 2007). Likewise, honeybee venom can exert anti-atopic
dermatitis (An et al. 2018), radioprotective (Varanda and
Tavares 1998), anti-mutagenic (Varanda et al. 1999), anti-
cancer (Oršolić 2012), and anti-microbial (AL-Ani et al.
2015) activities, attesting to the therapeutic potential of hon-
eybee venom and its major constituent melittin as well.

Thus far, numerous peptides with anti-microbial activities
have been isolated from bee venoms such as melittin (Fennell
et al. 1967), melectin (Cerovský et al. 2008), macropin
(Monincová et al. 2014), HYL (Nešuta et al. 2016), and

Xac-1 (Kawakami et al. 2017), suggesting their potential use
as natural antibiotics. Furthermore, there are several reviews
in the literature regarding anti-cancer effects (Rady et al. 2017;
Gajski and Garaj-Vrhovac 2013), anti-inflammatory proper-
ties (Lee and Bae 2016), and anti-diabetic activities (Hossen
et al. 2017) of melittin. As far as we know, however, reviews
of the anti-bacterial and anti-biofilm activities of melittin are
currently not available.

Physiochemical, structural, and biological
properties of melittin

Melittin is a major component in the venom of European
honeybee Apis mellifera. It is a small cationic linear peptide
(Fig. 1), comprising at least half of the venom dry weight
(Tacón 2016). Melittin is composed of 26 amino acid resi-
dues (GIGAVLKVLTTGLPALISWIKRKRQQ-CONH2).
At physiological pH, melittin has a net charge of + 6 due
to the presence of arginine and lysine residues. The N- and
C-terminal regions of melittin are mainly hydrophobic and
hydrophilic, respectively (Rady et al. 2017). Polar and non-
polar amino acid residues distribute asymmetrical in
melittin, suggesting its amphipathic nature when it is
adopted an α-helical conformation. This feature makes
the peptide not only water-soluble but also membrane-
active (Terwilliger and Eisenberg 1982).

X-ray crystallographic and nuclear magnetic resonance
(NMR) studies revealed that each melittin chain has a struc-
ture consisting of two α-helical segments, one α-helix con-
taining residues 1–10 and the longer one formed by residues
13–26. These two α-helices are joined by a Bhinge^ region
between residues 11 and 12 to constitute a bent rod (Anderson
et al. 1980; Terwilliger and Eisenberg 1982; Bazzo et al. 1988;
Lam et al. 2001). Four conformationally identical monomers
of melittin are packed together to form a tetramer which is
non-lytic and it is predominant at concentrations found in
bee’s abdominal sack (Tacón 2016; Terwilliger and
Eisenberg 1982). It has been shown that melittin exists as a
monomer at the minimum concentrations necessary for cell
lysis. When the venom is released, dissociation of the tetramer
occurs which yields the monomer (Hider 1988; Picoli et al.
2017). It is now apparent that melittin attaches to the mem-
brane surface as monomers but acts on the membrane collec-
tively to produce pores (Lee et al. 2013).

It has been proposed that melittin can form a short-lived
pore in the membrane, as evidenced by the release of calcein
dye from the liposomes, and the size of pore increases with the
peptide-to-lipid molar ratio (P/L) (Matsuzaki et al. 1997). In
addition, the peptide induces stable pores in the micromolar
concentration range (Lee et al. 2013). Melittin is able to orient
either parallel or perpendicular to a lipid bilayer (Smith et al.
1994; Yang et al. 2001). In this context, parallel binding of
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melittin to the membrane prohibits other melittin molecules
from incorporating into lipid bilayer and creating pores, there-
by protecting the membrane from leakage (van den Bogaart
et al. 2008). As P/L exceeds a certain threshold, an increasing
fraction of melittin molecules shifts toward the perpendicular
orientation (Yang et al. 2001; van den Bogaart et al. 2008).
Perpendicular orientation of melittin to the plane of the mem-
brane is required for the formation of transmembrane pores,
while the parallel orientation is inactive (Yang et al. 2001; van
den Bogaart et al. 2008). When inserted in the membrane
bilayers, the attached peptides aggregate, inducing the lipids
to bend. It inevitably gives rise to the formation of toroidal
pores and the subsequent leakage of cytoplasmic contents
(Park et al. 2006). This level of knowledge with regard to
membrane-disrupting mechanism of melittin is necessary for
developing novel anti-microbial agents with improved thera-
peutic indices.

Melittin attacks all lipid membranes including those found
in the erythrocyte membrane, resulting in hemolysis. Indeed,
the release of hemoglobin is succeeded by the formation of
ion-permeable pores (Raghuraman and Chattopadhyay 2007).
Melittin has also been shown to exert allergenic activity by
increasing serum immunoglobulin E (IgE) in nearly one-third
of honeybee venom-sensitive individuals (Paull et al. 1977).
However, this adverse feature might result from contamina-
tion with other bee venom constituents (Lee and Bae 2016).
Furthermore, melittin can incorporate into phospholipid bilay-
ers of the cell membranes and induce morphological changes
in a dose- and time-dependent manner, thereby leading to cell
lysis. Though cytotoxic to normal cells, the toxic effect of
melittin against tumor cells is more pronounced (Gajski and
Garaj-Vrhovac 2013; Lee and Bae 2016). Thus, possible ad-
verse effects of melittin should be considered before assessing
its potential therapeutic applications.

Anti-bacterial effects

In vitro studies

Historically, anti-bacterial activity of bee venom was first re-
ported by Schmidt-Lange (1941). This finding was extended
by Ortel and Markwardt (1955) as well as Benton et al.
(1963). In the early 1950s, melittin was discovered after

electrophoretically separation of direct hemolysin from the
indirect hemolysin phospholipase A (Habermann 1972;
Neumann et al. 1952). Melittin was proposed as the anti-
bacterial constituent in bee venom by Fennell et al. (1967).
They demonstrated that anti-bacterial activity of whole bee
venom is of the same order of magnitude as that of melittin
in vitro. The authors found that both honeybee venom and its
melittin fraction had anti-bacterial effects on a penicillin-
resistant strain of S. aureus (strain 80). It has been also shown
that melittin had higher anti-bacterial activity against Gram-
positive bacteria in comparison to Gram-negative bacteria
(Fennell et al. 1967). Numerous attempts were made to ascer-
tain the susceptibilities of various pathogens to melittin from
the 1960s onwards, as evidenced in Table 1.

In vitro anti-mycobacterial activities of melittin were first
demonstrated in 1971 by Dorman and Markley (1971).
Subsequent surveys during the 1980s and 1990s vividly con-
firmed that melittin has significant anti-bacterial activities
against both reference and clinical strains of bacteria (Steiner
et al. 1981; Stocker 1984; Boman et al. 1989; Blondelle and
Houghten 1991; Wade et al. 1992; Piers et al. 1994; Oren and
Shai 1996). It also showed minimum inhibitory concentration
(MIC) values of ≤ 16 μg/mL for a large number of Gram-
negative bacteria (Piers et al. 1994). However, there had been
major discrepancies between the MIC values reported by pre-
vious studies (listed in Table 1), which could be convincingly
explained by differences in purities of melittin, bacterial
strains, and methodologies.

Melittin has been reported to exhibit an immediate in-
hibitory activity against Borrelia burgdorferi, the etiologic
agent of Lyme disease (Lubke and Garon 1997; Socarras
et al. 2017). For instance, Lubke and Garon (1997)
showed a dramatic decline in the optical density of
melittin-treated cultures of B. burgdorferi compared to un-
treated cultures. In this regard, ultrastructural observation
of melittin-treated Borrelia spirochetes by field emission
scanning electron microscopy (FE-SEM) divulged tangi-
ble alterations in the surface envelope of bacteria includ-
ing augmented blebbing of surface components and pore
formation. Dark-field microscopy also confirmed that
melittin at a concentration equivalent to 100 μg/mL is
capable of ceasing spirochete motility within seconds after
exposure (Lubke and Garon 1997). Another study indicat-
ed that daily administration of melittin could significantly

Fig. 1 Structure of melittin
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diminish the numbers of Borrelia persisters (p value ≤
0.05) in comparison to the negative control (sterile PBS
buffer) using SYBR Green I/propidium iodide (PI) assay
(Socarras et al. 2017). Compared to doxycycline, melittin
significantly lessens the numbers of spirochetes (p value ≤
0.01) and B. burgdorferi persister cells (p value ≤ 0.01) at
all concentrations, suggesting melittin as an appropriate
candidate to extirpate different forms of B. burgdorferi
(Socarras et al. 2017).

The first report on anti-bacterial action of melittin against
several mollicutes dates back to 1997, when Béven and
Wróblewski (1997) investigated effects of ten naturally occur-
ring peptides on viability, morphology, and motility of
mollicutes. Mollicutes are distinguished phenotypically from
other class of bacteria by the absence of cell wall and their
minute size. Melittin was found active against six different
genera of mollicutes with MIC values in the range of 0.6–
10 μM. Probing mollicute cells through a fluorescent dye
(3,3′-dipropylthiodicarbocyanine iodides) revealed that
melittin induced depolarization of bacterial membranes
(Béven and Wróblewski 1997). Melittin, expressed within
plasmid constructs, has been also reported to be effective in
intracellular inhibition of urogenital pathogens including
Mycoplasma hominis and Chlamydia trachomatis (Lazarev
et al. 2002).

An abundance of evidence with regard to broad-spectrum
bactericidal activity of melittin has propelled researchers to
use melittin as a positive control AMP for comparison of its
anti-microbial activity to other novel-discovered/developed
AMPs. For instance, Moerman et al. (2002) used melittin as
a positive control and found that it was active against refer-
ence strains of both Gram-positive and Gram-negative bacte-
ria (Table 1). In particular, they found that melittin is effective
in inhibiting reference strains of Listeria monocytogenes and
Nocardia asteroides (Moerman et al. 2002). When the authors
observed MIC increment in the presence of 5-mM extracellu-
lar Mg2+ ions, they suggested that electrostatic interaction
occurs between melittin as a cationic peptide and negatively
charged lipopolysaccharide (LPS) in Gram-negative bacterial
membrane (Moerman et al. 2002). Furthermore, melittin has
proven to be effective in inhibiting Vibrio parahaemolyticus
KTCT 2471 (MIC of 1.56 μg/mL) and Edwardsiella tarda
NUF251 (MIC of 0.78 μg/mL), both of which are able to
cause disease in aquatic creatures (Kim et al. 2007). Using
confocal microscopy technique, Pandey et al. (2010) pointed
out that rhodamine-labeled melittin localized onto E. coli cells
and altered their morphology. It has been also found to create
holes of varying sizes onto Bacillus megaterium, as revealed
by confocal microscopy (Pandey et al. 2010).

Melittin has the ability to inhibit plant-associated bacteria
(González-Rodríguez et al. 2005; Shi et al. 2016). In an inves-
tigation of the inhibitory effects of melittin on 39 strains be-
longing to seven genera and 12 different species of plant

pathogenic bacteria, the peptide marvelously exhibited 100%
growth inhibition in vitro. Except for one strain (Dickeya
chrysanthemi), the MIC values of melittin against the tested
pathogens varied between 6.5 and 65 μM. In another study,
using an agar well diffusion assay, Shi et al. (2016) noticed the
anti-bacterial potency of melittin against Xanthomonas oryzae
pathovar oryzae, causing agent of rice blight disease (Table 1).
SEM revealed that melittin is able to induce surface roughen-
ing and shrinking, and pore formation, thereby resulting in
rapid bacterial cell death (Shi et al. 2016). Melittin is also
capable of binding to bacterial DNA/RNA in vitro, suggesting
its probable role in inhibition of intracellular targets (Shi et al.
2016). Thus, these findings open up a range of new applica-
tions for melittin in the field of agricultural microbiology.

There are multiple lines of evidence that confirm the anti-
bacterial activity of melittin toward antibiotic-resistant bacte-
ria. In a study conducted on 20 MDR nosocomial isolates of
A. baumannii, MIC and MBC values of melittin were in the
range of 0.50–16 and 0.50–32 μg/mL, respectively
(Giacometti et al. 2003). Another investigation revealed that
melittin has a strong anti-bacterial effect on 41 clinical bacte-
rial strains comprising 11 methicillin-resistant S. aureus
(MRSA), 15 methicillin-susceptible S. aureus (MSSA), and
15 E. faecalis isolates (Table 1), with MIC values from 2 to
8 μg/mL (Dosler and Gerceker 2012). One survey also dem-
onstrated that melittin inhibited 32 isolates of antibiotic-
resistant bacteria such as S. aureus, P. aeruginosa, E. coli,
and Salmonella typhimurium strains at concentrations equal
to or less than 16 μM (Gopal et al. 2013), suggesting its
potential for treating intractable infections caused by nosoco-
mial pathogens.

A study conducted by Leandro et al. (2015) demonstrated
in vitro anti-bacterial potency of melittin against prominent
etiologic agents of tooth decay with MIC values lying in the
4–40 μg/mL range (Table 1). Considering the adverse impacts
of tooth decay on people’s health, melittin has potential of
inhibiting oral pathogens (Leandro et al. 2015).

In a contemporary study, Khozani et al. (2018) observed
that there was a major difference between inhibitory (p value
< 0.05) or bactericidal (p value < 0.05) activities of melittin
and certain antibiotics including ceftazidime, doripenem, and
colistin against 33 P. aeruginosa strains from patients who
suffered from third-degree burns. The superior in vitro anti-
bacterial activity of melittin compared to mentioned antibi-
otics prompted the authors to suggest melittin as a candidate
for evaluating its topical anti-microbial activity in a mouse
model of burn infection (Khozani et al. 2018).

Synergism with other anti-microbials

Several investigations have addressed possible synergistic
effects between melittin and other anti-microbial agents, in
particular conventional antibiotics (Moerman et al. 2002;
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Giacometti et al. 2003; Dosler and Gerceker 2012; AL-Ani
et al. 2015; Bardbari et al. 2018). For instance, one study
indicated that melittin exhibited synergistic activity with
erythromycin against K. pneumoniae. Moreover, melittin
has the ability to act synergistically when combined with
amoxicillin, cefuroxime, and erythromycin against Listeria
monocy togene s (Moe rman e t a l . 2002 ) . Us ing
chequerboard titration method, synergistic effects observed
between melittin and β-lactam antibiotics against
A. baumannii ATCC 19606 and a clinical isolate of
A. baumannii (04–01) (Giacometti et al. 2003). When
exploited either alone or in combination with frequently
used antibiotics, melittin exhibited concentration-
dependent and rapid bactericidal activity against MRSA,
MSSA, and E. faecalis isolates according to killing kinetic
curves (Dosler and Gerceker 2012). It is noteworthy to
mention that fast microbicidal action of AMPs such as
melittin not only lessens the duration of treatment but also
the possibility of developing anti-microbial resistance
among bacterial pathogens (Memariani et al. 2018b). A
recent survey assessed conceivable synergistic interactions
of melittin in combination with several antibiotics against
five clinical isolates of MDR A. baumannii. The authors
pointed out that melittin exerted significant synergistic be-
haviors when combined with colistin and imipenem toward
MDR A. baumannii strains (Bardbari et al. 2018), corrobo-
rating previous findings reported by Giacometti et al.
(2003).

Aside from antibiotics, plant secondary metabolites com-
bined with melittin were also assessed by chequerboard titra-
tion assay to investigate whether their combinations are supe-
rior against certain bacteria compared to each agent alone (AL-
Ani et al. 2015). In this respect, a predominant synergism was
found to occur between melittin and either benzyl isothiocya-
nate or carvacrol toward bothMRSANCTC 10442 and E. coli
ATCC 25922, with fractional inhibitory concentration index
(FICI) values ranging from 0.24 to 0.5 (AL-Ani et al. 2015).

Synergy of melittin with other anti-microbials might arise
from destabilization of outer membrane in Gram-negative
bacteria induced by the peptide, facilitating entrance of these
anti-microbials into the bacterial cells. In the case of Gram-
positive bacteria, it has been suggested that inhibition of pep-
tidoglycan synthesis by β-lactam antibiotics can allow
melittin to pass through the altered peptidoglycan layer more
easily (Moerman et al. 2002). It should be borne in mind that
synergistic activity of melittin with conventional antibiotics
decreases the MIC values of both the peptide and antibiotics
against tested strains. As a consequence, melittin can be used
at non-toxic levels which results in its safe application without
cytotoxicity concerns (Bardbari et al. 2018). Based on afore-
mentioned scientific proofs, novel melittin-antibiotic formula-
tions can be applied to eliminate antibiotic-resistant
superbugs.

In vivo studies

In addition to in vitro studies, several evidences exist regard-
ing anti-bacterial effectiveness of melittin in animal models. In
one of the early attempts to examine the anti-bacterial efficacy
of melittin in vivo, Lazarev et al. (2004) observed that aero-
solized administration of a plasmid construct expressing
melittin gene led to significant inhibition of Mycoplasma
gallisepticum infection in chicken (Table 2). The authors sug-
gested that melittin has prophylactic and therapeutic potential
for mycoplasma infections in poultry farms (Lazarev et al.
2004). The other study in which mice intravaginally infected
with Chlamydia trachomatis, administration of a plasmid ex-
pressing gene for melittin through vaginal route caused 45–
80% inhibition of infection, as assessed by direct immunoflu-
orescence with monoclonal antibodies (Lazarev et al. 2007).
Fu r t he rmor e , i n t r ade rma l i n j e c t i on s o f l i v i ng
Propionibactierium acnes into the mouse ear and subsequent
topical treatment with melittin-vaseline mixtures resulted in
significant alleviation of swelling and granulomatous re-
sponse in comparison to mice injected with only living
P. acnes, suggesting protective effects of melittin in a
P. acnes-induced in vivo inflammatory model (Lee et al.
2014).

Anti-bacterial effects of melittin on mice skin subcutane-
ously infected with MRSA USA 300 suspension, containing
106 colony forming units (CFUs)/mL, were investigated in a
study conducted by Choi et al. (2015). Briefly, in order to
examine in vivo efficiency of melittin, each surface lesion
was treated with 100 μg of melittin in 80 μL PBS once a
day and calipers were applied to gauge lesion dimensions
for up to 10 days. The authors demonstrated that treatment
of infected zone by melittin for 4 days led to significant de-
cline in diameters of the abscesses in comparison to the PBS-
treated group (Table 2). Furthermore, half of the mice intra-
peritoneally infected with MRSA USA300 were survived af-
ter intraperitoneal injection of 5 mg/kg of melittin in 0.1 mL
PBS, whereas intraperitoneal injection of either PBS or
2.5 mg/kg melittin failed to survive infected mice after 24 h,
as shown by Kaplan-Meier survival curve (Choi et al. 2015).
This evidence was the first to confirm significant protective
effects of melittin against MRSA infection in vivo.

A new study demonstrated that topical administration of
melittin at concentrations of 16 and 32 μg/mL in mice killed
93.3% and 100% of an XDR A. baumannii on a third-degree
burned area, respectively (Pashaei et al. 2019). Blood samples
of mice treated with melittin (32 μg/mL) exhibited no hemo-
lysis, indicating that the peptide is not entered to blood circu-
lation. Moreover, melittin showed no dermal toxicity toward
both normal and burned groups. Remarkably, all the examined
mice were alive even after 1 month. This finding might create
incentives for investigators to re-examine neglected toxic
AMPs for at least topical treatment of burned areas.
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Effects on bacterial biofilms

A biofilm is an organized microbial consortium enclosed in a
self-created biopolymer matrix. It adheres irreversibly to biotic
or abiotic surfaces (Batoni et al. 2016; Høiby et al. 2010). It has
become obvious that biofilm formation is an adaptive mecha-
nism of microbial cells, permitting them to survive harsh
growth conditions (George et al. 2005). Owing to the presence
of the extracellular matrix barrier and slow growth rate,
biofilm-encased bacteria might tolerate up to 1000 times great-
er concentrations of anti-microbials compared to their plank-
tonic counterparts (Memariani et al. 2016; Macià et al. 2014).
Furthermore, detached cells from the biofilm can serve as a
steady reservoir of pathogens, giving rise to treatment failure
and recurrent infections as well (Haagensen et al. 2015). Thus,
there is an imperative need for developing efficient anti-biofilm
agents to address concerns about biofilm-related infections.

Over the past few years, there have been several attempts to
examine efficacy of melittin on the viability of biofilm-
embedded bacteria in vitro, as summarized in Table 3. For
example, melittin is effective against clinical isolates of
biofilm-producing P. aeruginosa, with a minimum biofilm
inhibition concentration (MBIC) range of 4–16 μM, which
was far more active compared to certain antibiotics including
ampicillin, chloramphenicol, and levofloxacin (Gopal et al.
2013). Moreover, melittin has been reported to inhibit either
biofilm formation or bacterial surface attachment in a time-
dependent manner (Dosler et al. 2016). The peptide was also
capable of inhibiting five strong biofilm-producer strains of
MDR A. baumannii and removing their biofilm formations
(Table 3), alone or in combination with colistin and imipenem
(Bardbari et al. 2018). Noticeably, melittin lessened both bio-
f i lm biomass and viabi l i ty of biofi lm-embedded
B. burgdorferi strain B31 at different concentrations in com-
parison to PBS-treated biofilms, which was further confirmed
by SYBR Green I/(PI) assay and atomic force microscopy
(Socarras et al. 2017). Another study divulged that melittin
inhibited biofilm production and destroyed bacterial biofilms
(Picoli et al. 2017). A recent survey implied that melittin was
able to penetrate into biofilm layers of P. aeruginosa gradually
and to kill biofilm-residing bacteria kinetically by disrupting
bacterial membrane (Khozani et al. 2018). All in all, these
evidences suggest that melittin can diminish biofilm forma-
tion, biofilm biomass, and viability of bacteria within biofilms
in a time- and concentration-dependent manner.

Future prospects

As alluded to above, melittin has strong anti-bacterial and
anti-biofilm effects on a broad spectrum of bacterial patho-
gens, though cytotoxicity of melittin at higher doses may hin-
der its therapeutic application. Several investigations areTa
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ongoing to weaken toxicity of native melittin without
influencing its microbicidal activity. Development of drug de-
livery vehicle by incorporating melittin into nanoparticle rep-
resents a safe approach for in vivo application of melittin with
favorable pharmacokinetics (Soman et al. 2009). Conjugation
of melittin with aptamers is another promising strategy for
attenuating hemolytic activity of the peptide (Rajabnejad
et al. 2018). Besides, incorporation of AMPs into commercial-
ly available hydrogels is rather the other way for an innovative
therapy of topical infections, especially those related to burn
wounds (Silva et al. 2015; Björn et al. 2015). Development of
DNA constructs in which the gene of melittin is under the
control of an inducible promoter may hold the potential as
future prophylactic and therapeutic approaches. Noticeably,
combination of natural melittin and current antibiotics and/or
AMPs is another solution to minimize doses of melittin which
can lessen both cytotoxicity concern of melittin and the like-
lihood of developing antibiotic-resistant mutant bacteria.

These combinatorial therapies can be useful for future treat-
ment of hard-to-treat MDR, XDR, and PDR pathogens.

Conclusions

Over the past half-century, empirical evidences have expanded
our knowledge regarding biological effects of melittin. In this
respect, published data suggest that melittin is effective against
both planktonic and biofilm-embedded bacteria. Furthermore,
the synergism between melittin and antibiotics can be a hopeful
solution for treatment of antibiotic-resistant superbugs. The
double-edged nature of melittin, as a microbicidal and hemo-
lytic constituent of honeybee venom, should not dissuade sci-
entists to scrutinize its conceivable therapeutic applications.
Eventually, anti-infective features of melittin will open up
new horizons in a range of biomedical areas, particularly from
agriculture to veterinary and clinical microbiology.

Table 3 Anti-biofilm activity of melittin

Method(s) Medium for biofilm
assays

Biofilm-producing strains Results References

Microtitre plate method
(MBIC100

a

determination)

Müeller-Hinton broth
supplemented with
0.2% glucose

Five Pseudomonas
aeruginosa strains isolated
from patients with otitis
media

Pseudomonas aeruginosa strains 1162
(MBIC100: 4 μM), 3547 (MBIC100:
16 μM), 4007 (MBIC100: 4 μM), 3399
(MBIC100: 4 μM), and 1034
(MBIC100: 8 μM).

Gopal et al.
2013

Microtitre plate method,
biofilm attachment
assay, and inhibition of
biofilm formation

Tryptic soy broth
supplemented with
1% glucose

Three strong biofilm-forming
strains of Pseudomonas
aeruginosa, Escherichia
coli, and Klebsiella
pneumoniae

At 1/10 ×MIC, melittin inhibited
bacterial surface attachment for 1, 2, or
4 h. At 1× or 1 × 10 MICs, melittin
significantly inhibited the 24-h biofilm
formation (p value < 0.001).

Dosler et al.
2016

Microtitre plate method
(MBIC90

b

determination, biofilm
removal assay, and
field emission scanning
electron microscopy

Tryptic soy broth
supplemented with
1% glucose

Five strong biofilm- producer
strains of MDR
Acinetobacter baumannii
collected from patients with
lung and burn infections

MBIC90 range of melittin was 1 to
2 μg/mL. After 6 and 24 h, melittin
showed higher biofilm removal activity
than that of imipenem and
ciprofloxacin (p value < 0.05). Melittin
was able to degrade biofilm and to lyse
biofilm-embedded bacteria, as assessed
by field emission scanning electron
microscopy.

Bardbari
et al.
2018

Microtitre plate method,
inhibition of biofilm
formation, and MTTc

staining

Tryptic soy broth
supplemented with
1% glucose

Escherichia coli ATCC 8739,
Pseudomonas aeruginosa
ATCC 15442, and
Staphyloccous aureus
ATCC 12600

Melittin reduced biofilm formation of
bacteria, particularly at 1× and 1 × 10
MICs. The peptide destroyed bacterial
biofilms in a time- and
concentration-dependent manner.

Picoli et al.
2017

Microtitre plate method,
degradation kinetics,
and field emission
scanning electron
microscopy

Tryptic soy broth
supplemented with
0.2% glucose

Five biofilm-producer strains
of MDR Pseudomonas
aeruginosa together with
Pseudomonas aeruginosa
ATCC 27853

Melittin at 50 μg/mL degraded the bio-
film layer and eradicated all of the
bacteria after 24 and 48 h, respectively.
These activities were further confirmed
by field emission scanning electron
microscopy.

Khozani
et al.
2018

aMBIC100: Minimum biofilm inhibitory concentration was defined as the lowest concentration of melittin that exhibited 100% inhibition in biofilm
formation
bMBIC90: Minimum biofilm inhibitory concentration was defined as the lowest concentration of melittin that exhibited 90% inhibition in biofilm
formation
cMTT: 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide
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