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Abstract
Resveratrol (3,5,4′-trihydroxystilbene) and piceatannol (3,5,3′,4′-tetrahydroxystilbene) are well-known natural products that are
produced by plants. They are important ingredients in pharmaceutical industries and nutritional supplements. They display a wide
spectrum of biological activity. Thus, the needs for these compounds are increasing. The natural products have been found in
diverse plants, mostly such as grapes, passion fruit, white tea, berries, and many more. The extraction of these products from
plants is quite impractical because of the low production in plants, downstream processing difficulties, chemical hazards, and
environmental issues. Thus, alternative production in microbial hosts has been devised with combinatorial biosynthetic systems,
including metabolic engineering, synthetic biology, and optimization in production process. Since the biosynthesis is not native
in microbial hosts such as Escherichia coli, Saccharomyces cerevisiae, and Corynebacterium glutamicum, genetic engineering
and manipulation have made it possible. In this review, the discussion will mainly focus on recent progress in production of
resveratrol and piceatannol, including the various strategies used for their production.
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Introduction

Resveratrol (3,5,4′-trihydroxystilbene) (Fig. 1), a well-known
plant-derived polyphenol, is basically used as a nutritional sup-
plement and medicinal component (Baur and Sinclair 2006). It
is a naturally occurring secondary metabolite biosynthesized
by plants commonly found in grapes, peanuts, and berry fruits.
Since the discovery of resveratrol for the first time from white
hellebore Veratrum grandiflorum (Takaoka 1939), various
beneficial aspects of resveratrol have been reported. A familiar
BFrench Paradox^ phenomenon was believed to be the conse-
quences of resveratrol, one of the vital components in red wine

(Bhullar and Hubbard 2015; Borriello et al. 2014; Yang et al.
2014). On this basis, various studies, including preclinical and
human trials, concluded the commodious effect on the cardio-
vascular system, and significant protective activities against
cancers (Hubbard and Sinclair 2014; Baur and Sinclair
2006). Moreover, the clinical trial results demonstrated that
the direct scavenging effects of resveratrol was significantly
lower but exhibited as a gene regulator of redox genes, like
inhibiting NADPH oxidase and mitochondrial superoxide pro-
duction (Xia et al. 2017). The pharmacological potency in the
treatment against neurodegenerative disorders, like
Parkinson’s, Alzheimer’s, andHuntington’s diseases, amyotro-
phic lateral sclerosis had been evaluated in vivo, as well as
in vitro (Tellone et al. 2015; Rege et al. 2014; Anekonda
2006; Wang et al. 2006; Vingtdeux et al. 2008).

Bru and colleagues in 2006 reported that abiotic and biotic
stresses induce the synthesis of resveratrol in grapevine cul-
ture. Potent anti-fungal activities have also been reported, in-
dicating that the trans-isoform of resveratrol is more biologi-
cally active than cis-conformation (Fernández-Mar et al.
2012; Savoia 2012; Mikulski et al. 2010). The pharmacolog-
ical activities have been apprehended due to having multiple
targets in cells, cellular processes, and signaling pathways in
inflammation. Likewise, it has been reported that it diminishes
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oxidative stress and plays significant roles in apoptosis, anti-
aging effects, and potent anti-influenza activities (Poulsen
et al. 2015; Frombaum et al. 2012; Kalra et al. 2008; Baur
and Sinclair 2006; Maeurer et al. 2016). Similarly, it scav-
enges free radicals, inhibits lipid peroxidation, increases the
efflux of cholesterol, and offers beneficial effects on the neu-
rological and cardiovascular systems of human health (Lorenz
et al. 2003; Berrougui et al. 2009; Okawara et al. 2007;
Bradamante et al. 2004). Resveratrol has been found to en-
hance transcription factor miR-200c in lung cancer cell, show-
ing stronger anti-tumor activity (Bai et al. 2014). Moreover,
Jang and colleagues in 1997 concluded that resveratrol also
acts as an anti-mutagen and anti-initiation activity, anti-
promotion activity, and anti-progression activity in the major
stages of carcinogenesis process. On the other hand, it has
been reported that resveratrol can elongate the life span of
lab-tested microorganisms like yeast, and eukaryotes, like
fruit flies, nematodes, and mice, indicating it is a potential
anti-aging agent (De La Lastra and Villegas 2005; Holthoff
et al. 2010; Stervbo et al. 2007; Whitlock and Baek 2012;
Lancon et al. 2012; Baur et al. 2006).

Piceatannol (3,5,3′,4′-tetrahydroxystilbene) (Fig. 1) is a
naturally occurring 3′-hydroxylated product of resveratrol that
is found in various plants. It was first isolated from the heart-
wood of Vouacapoua americana (King et al. 1956) and has
been extracted from various plants like Polygonum
cuspidatums, passion fruit (Passiflora edulis), Arachis
hypogaea, Vitis thunbergii, and many more (Beňová et al.
2008; Matsui et al. 2010; Sano et al. 2011; Lin et al. 2007).
But the important sources of piceatannol in edible form are
grapes and wine. However, the amount of piceatannol in these
natural sources is relatively low, compared to resveratrol
(Cantos et al. 2003). Previous reports suggested that the bio-
synthesis of piceatannol was increased due to abiotic stimuli
such as UV irradiation, and heavy metal contamination in
soils, as well as by fungal infection (Ku et al. 2005).
Piceatannol was metabolized by cytochrome P450
(CYP1B1), which was indeed overexpressed by human tu-
mors and enabled the removal of selective cancer cells
(Potter et al. 2002; McFadyen and Murray 2005). Cell culture
model study showed its enhanced pharmaceutical activity
against DNA damage caused by –OH radicals in certain

leukemic cells due to ortho-dihydroxy structure (Ovesná
et al. 2006). Moreover, it was reported that piceatannol was
also responsible for preventing the cells from free radical as-
sociated damage induced by cumene hydroperoxide.
Likewise, it has shown anti-tyrosinase activity during mela-
nogenesis, thus inhibiting the production of melanin (Wittgen
and van Kempen 2007). Reports have concluded that
piceatannol had stronger anti-tyrosinase activity than resvera-
trol (Yokozawa and Kim 2007). Lucas et al. in 2018 demon-
strated that resveratrol and piceatannol modulated the expres-
sion of programmed cell death ligand 1 (PD-L1) in breast and
colorectal cancer cells. Recent finding in animal model study
showed that resveratrol and piceatannol enact positive direct
effects on atrial electrophysiology and stabilize atrial repolar-
ization (Frommeyer et al. 2018). Moreover, along with the
piceatannol in human mesenchymal stem cells, it endowed
polyphenol with the ability to restrict the formation of lipids
in these adipocyte-originated matured cells. It was also re-
vealed that it lowered the glucose transport into adipocytes
and diminished the major components of lipogenic pathway
(Carpéné et al. 2018). In a different study carried by Maruki-
Uchida et al. (2018), it was concluded that the oral consump-
tion of piceatannol-enriched passion fruit seed extract im-
proved the moisture content of the skin. Piceatannol also pro-
mulgated anti-biofilm activity against the Streptococcus
mutans via the inhibition of the virulence factor Gtfs. On the
other hand, it inhibited S. mutans-induced carcinogenicity
in vivo (Nijampatnam et al. 2018). All these recent studies
demonstrated the significance of resveratrol and piceatannol
in diverse area.

This mini-review concentrates on the metabolic engineer-
ing of microbial cells for their use in the enhanced production
of resveratrol and piceatannol. The review briefly discusses
the biosynthetic pathway and the key genes involved in res-
veratrol and piceatannol biosynthesis that contemporary re-
searchers manipulate for enhanced production.

Biosynthesis of resveratrol and piceatannol

The biosynthesis of resveratrol and its derivatives is initiated
through the shikimate pathway from phenylpropanoid acids.

Fig. 1 Structures of trans-
resveratrol and piceatannol
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These phenylpropanoid acids are derived from aromatic amino
acids. The starting basic amino acids, like L-phenylalanine and
L-tyrosine, are converted to the phenylpropanoid acids:
cinnamic acid or p-coumaric acid, respectively, via non-
oxidative deamination by phenylalanine ammonia lyase
(PAL) and tyrosine ammonia lyase (TAL), which are then con-
verted to cinnamoyl-CoA and p-coumaroyl-CoA by 4-
coumaroyl-CoA ligase (4-CL) (MacDonald and D’Cunha
2007; Rosler et al. 1997; Hamberger and Hahlbrock 2004).
Finally, malonyl-CoA is condensed with cinnamoyl-CoA or
p-coumaroyl-CoA to produce pinosylvin or resveratrol, respec-
tively, catalyzed by stilbene synthases (STSs) (Fig. 2).
Resveratrol can be a platform for achieving several derivatives
through the modifications by tailoring enzymes such as

hydroxylases, O-methyltransferases, and glucosyltransferases,
whereby diverse resveratrol analogs are generated.

Bioproduction of resveratrol and piceatannol
in microorganisms

Microorganisms have been the vital sources for the production
of pharmaceutical valued compounds for a long time, because
of the low-cost value, as well as ease of manipulation of the
genetic constituents; metabolic engineering, protein engineer-
ing, and synthetic biotechnological tools can be efficiently and
economically employed thereof. Moreover, heterologous pro-
duction in non-native host diminishes the growth rate to be

Fig. 2 Biosynthesis pathway of resveratrol and piceatannol. The
heterologous biosynthesis of these two molecules is carried out in
different strains. The major metabolic engineering approaches were
focused on precursor biosynthesis (L-tyrosine and L-phenylalanine),
biosynthesis of extender-CoA substrate (malonyl-CoA), and

hydroxylation of resveratrol to piceatannol. The approaches used for the
engineering are highlighted above or next to the box. TAL tyrosine
ammonia lyase, PAL phenylalanine ammonia lyase, 4-CL 4-coumaroyl-
CoA ligase, C4H coumarate 4-hydroxylase, C3H coumarate 3-
hydroxylase, STS stilbene synthase, HpaBC monooxygenase complex
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slower than that of the native host, and significant quantities of
target compounds can be produced (Sun et al. 2015).
Naturally, resveratrol and piceatannol are not produced by
microbes. On the contrary, coadunation of the heterologous
pathways from the native host such as plants to the microbes
by virtue of genetic engineering has resulted in the efficient
and enhanced production of these compounds (Halls and Yu
2008; Mei et al. 2015; Du et al. 2011). Various studies have
reported the remarkable productions through implementation
of heterologous pathway in prokaryotes, as well as eukary-
otes, such as Escherichia coli, Lactococcus lactis, and
Corynebacterium glutamicum, and in yeasts, such as
Saccharomyces cerevisiae.

Biosynthesis of resveratrol and piceatannol
in non-E. coli hosts

Stilbenes, particularly trans-resveratrol, are widely distrib-
uted in a number of plant families. The majority of them
belong to the genus Vitis in Vitaceae family. The well-
known species for this include V. venifera, V. labrusca, V.
riparia, and V. rotundifolia (Almagro et al. 2013).
Although in the course of the biosynthesis of resveratrol
and its analogues, STSs play a key role, this enzyme is not
ubiquitously expressed, and its number is limited in plant
(Chong et al. 2009; Rivière et al. 2012). So, external stress-
es induce the production of these compounds in plants.
Though resveratrol is biosynthesized in numerous plant
species, piceatannol is only known to be produced by few
species of plants. In contrast, it was isolated from Pinus
strobus and pinosylvin synthase was suspected for biosyn-
thesis as it showed multifunctional activities (Raiber et al.
1995). Likewise, many reports revealed the biosynthesis of
piceatannol in various plant species with abiotic and biotic
stimuli (Kiselev et al. 2016; Deng et al. 2017; Boue et al.
2013; Sergent et al. 2014; Lambert et al. 2013). The strong
induction of UV-light enriched red wine–producing grapes
with stilbenes (Cantos et al. 2003). Moreover, biotic stress-
es such as fungi elicited the production of resveratrol and
piceatannol (Paul et al. 1998; Bavaresco et al. 2003;
Vezzulli et al. 2007; Sobolev 2008). For details on biosyn-
thesis of resveratrol and piceatannol using different stimu-
li, please refer to Dubrovina and Kiselev (2017).

Saccharomyces cerevisiae has been one ideal host for the
production of resveratrol. It is a Generally Regarded As
Safe (GRAS) microbe, used in the expression of plant-
derived enzymes, and genetic manipulation as well
(Krivoruchko and Nielsen 2015; Yesilirmak and Sayers
2009). Moreover, eukaryotic post translational modifica-
tions can be easily achieved (Sahdev et al. 2008; Rosano
and Ceccarelli 2014). In addition, yeast cells have similar
intracellular compartments like plants which facilitate the

better expression of eukaryotic proteins and membrane
proteins (Jiang et al. 2005; Rodrigues et al. 2015). In yeast,
basically two enzymes, 4-coumarate: coenzyme A ligase
(4-CL) and STS, have been implemented in heterologous
biosynthetic pathway for the production of resveratrol.
Milligram to almost grams level titers of resveratrol have
been reported, by introducing bacterial or plants-originated
4-CL and STS. Beekwilder et al. (2006) for the first time
incorporated 4-CL2 from Nicotiana tabacum and STS
from Vitis vinifera to yeast and obtained the titer of 6 mg/
L of resveratrol in yeast. Different reports showed various
titers of resveratrol by introducing genes from different
sources in engineered yeast (Sydor et al. 2010; Shin et al.
2011; Wang et al. 2011; Wang and Yu 2012; Li et al. 2015,
2016).

Besides yeast, engineered Corynebacterium glutamicum
has also been employed for the production of resveratrol.
Ka l l s cheue r e t a l . (2016) dep ic t ed eng inee red
C. glutamicum (Δphd B, Δ pcaF, and ΔpobA) for the
production of resveratrol using p-Coumaric acid as sub-
strate along with cerulenin in which 158 mg/L of resvera-
trol was obtained. On the other hand, in the presence of
25 μl cerulenin and 5 mM caffeic acid in C. glutamicum,
almost 55 mg/L piceatannol was isolated. This is only one
resul t reported for product ion of piceatannol in
C. glutamicum to date. No reports showed production of
piceatannol from yeast. Braga et al. (2018a) also success-
fully produced the compound in the C. glutamicum
DelAro4 strain from glucose and supplementing cerulenin,
a fatty acid synthase inhibitor that facilitates the malonyl-
CoA availability in the host organism (Lim et al. 2011; van
Summeren-Wesenhagen and Marienhagen 2015).

Streptomyces venezuelae has been also engineered to
produce a wide range of natural products including
flavonoids and stilbenes. Park et al. (2009) for the first
time reported the manipulation of Streptomyces sp. for
the heterologous expression of phenylpropanaoid biosyn-
thetic pathway genes. The authors used 4-coumarate: co-
enzyme A ligase from S. coelicolor (ScCCL) and codon-
optimized stilbene synthase gene from Arachis hypogaea
for the production of resveratrol. However, the production
was just enough for detection (0.4 mg/L). Likewise, a
tyrosinase MelC2 from melanin forming Streptomyces
avermitilis has been reported for the ortho-hydroxylation
of resveratrol, producing piceatannol (Lee et al. 2012).
Lactobacillus lactis, Aspergillus niger, and A. oryzae have
also been used for the biosynthesis of resveratrol in which
the heterologous pathway genes from Arabidopsis
thaliana (PAL, C4H, 4-CL) and Rheum tataricum (STS)
were incorporated for the production (Katz et al. 2015).
Huang et al. (2010) reported the biosynthesis in Yarrowia
lipolytica, in which 1.46 mg/L of resveratrol was
obtained.
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Biosynthesis of resveratrol in E. coli

From a long time ago, E. coli has been used for the production
of important pharmaceutical as well as industrial molecules.
Although E. coli is not a natural host for the production of
resveratrol and piceatannol, metabolic as well as pathway en-
gineering have been successfully implemented on this ideal
platform. In this process, the heterologous pathways from the
plants, as well as other prokaryotes and eukaryotes, are trans-
located in this beneficial host (Marienhagen and Bott 2013).
The beneficial aspects for consideration of E. coli as ideal host
are due to ease of genetic manipulation, short generation time,
and fast and high growth rate. Moreover, bioconversion of
exogenous precursors is efficiently achieved, and de novo
production of the target compounds from renewable carbon
source has been illustrated in microorganisms (Liu et al. 2016;
Kang et al. 2014; Wang et al. 2016). Besides this, basic pre-
cursor tyrosine and malonyl-CoA are easily assessable and
enhanced in E. coli through metabolic engineering. To date,
most reports show that the production of resveratrol in E. coli
is based on the exogenous supply of precursors like tyrosine
and p-coumaric acid. One noticeable advantage of using
E. coli as the host for the production of resveratrol over yeast
is that E. coli can tolerate more than 3 g/L of p-coumaric acid
(Shin et al. 2011; Huang et al. 2013). Metabolic engineering
has exhibited better options for efficient heterologous gene
expression, enhancement of precursors availability, and incre-
ment of the intracellular malonyl-CoA, which helps to main-
tain the physical, chemical, and physiological conditions for
the production of resveratrol (Wang et al. 2018).

Pathway engineering

Pathway engineering has been one pioneer tool for designing
E. coli for the production of value-added resveratrol.
Heterologous metabolic pathway is introduced from plant
source, as well as other microbes. Watts et al. (2006) used 4-
CL1 from A. thaliana and STS from A. hypogaea in E. coli.
With almost 50% bioconversion rate, 105 mg/L of resveratrol
was recovered when 1 mM p-coumaric acid was supplied as
precursor. Likewise, 80.5 mg/L of resveratrol was obtained
after feeding of the same amount of substrate in E. coli incor-
porated with the fusion of 4-CL1 and STS from A. thaliana
and A. hypogaea, respectively, indicating lower amount pro-
duction in fusion genes from the same sources (Zhang et al.
2015). Lim et al. (2011) developed the various combinations
of 4-CL and STS from the same strains in two E. coli strains
(Fig. 3). E. coli BW27784 strain produced resveratrol titer in
1.3 g/L. With the best strain, the authors were able to obtain
2.3 g/L after the addition of cerulenin (Lim et al. 2011)
(Table 1). Similarly, tyrosine has also been used as primary
precursor for the in vivo production of resveratrol. Using PAL

from Rhodotorula rubra, 4-CL from Lithospermum
erythrorhizon, and STS from A. hypogaea, 37 mg/L of resver-
atrol was obtained, which was higher when compared to the
E. coli strain harboring TAL from R. glutinis, 4-CL from
P. crispum, and STS from V. vinifera (Katsuyama et al.
2007a, b; Wu et al. 2013). Recently, Wang et al. (2015) intro-
duced TAL from Saccharothrix espanaensis, 4-CL from
A. thaliana, and STS from A. hypogaea in E. coli and was
able to obtain significantly higher titer (114.5 mg/L) of resver-
atrol. However, E. coli harboring TAL, 4-CL, and STS from S.
espanaensis, S. ceolicolor, and A. hypogaea, respectively, in
E. coli produced 1.4 mg/L of resveratrol from tyrosine (Choi
et al. 2011). Similarly, Liu et al. (2016) for the first time used a
site-specific integration strategy for resveratrol biosynthesis in
E. coli. The authors integrated genes TAL, 4-CL, and STS into
the loci of genes tyrR and tyr RD in the chromosome of E. coli
BW25113 (DE3) and reported the production of 4.612 mg/L
of resveratrol (Fig. 2; Table 1).

Pathway engineering for the enhancement
of precursors

Intracellular malonyl-CoA is one prime precursor in the
course of the biosynthesis of resveratrol. In the resveratrol
biosynthesis, three molecules of malonyl-CoA are utilized to
condense one molecule of p-coumaroyl-CoA. Since the major
concentration of malonyl-CoA is utilized in the primary activ-
ity of fatty acid biosynthesis, minimal level is used in resver-
atrol biosynthesis. Naturally, malonyl-CoA in E. coli is syn-
thesized in low amount (Takamura and Nomura 1988). Thus,
the approaches for the enhancement of this precursor in host
platform have been devised and implemented for the heterol-
ogous pathway implantation in E. coli host. For the enhance-
ment of cytosolic malonyl-CoA pool, two strategic steps have
been carried out in microbial platform: repression of fatty acid
biosynthesis to halt the utilization of malonyl-CoA and in-
creasing the carboxylation of acetyl-CoA, which in turn en-
hances the intracellular malonyl-CoA. Zha et al. (2009) con-
cluded that overexpression of acetyl-CoA carboxylase (ACC)
resulted in 3-fold increase in cytosolic malonyl-CoA concen-
tration. Moreover, along with the overexpression of acetate
assimilating enzyme (acs), the authors also deleted the com-
peting pathway enzymes encoding genes such as pta and ackA
which are involved in acetyl-CoA degradation to form acetate
and adhE gene which is involved in ethanol production utiliz-
ing the same acetyl-CoA, showing 15-fold higher production
(Fig. 3). Different reports on the inhibition of fatty acid bio-
synthesis have demonstrated the efficient production of res-
veratrol titers. So, different approaches have been employed to
inhibit the fatty acid biosynthesis to increase intracellular
malonyl-CoA. One simple approach is the addition of
cerulenin, a covalent inhibitor of FabB and FabF, key
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enzymes in the fatty acid biosynthesis. This approach has
revealed the significant titer of malonyl-CoA in the host
(Kallscheuer et al. 2016; Lim et al. 2011; Finzel et al. 2015;
Lu et al. 2016). In contrast, the use of cerulenin is costly; as
well, it diminishes the malonyl-CoA production even lower
than the basal metabolic rate, which halts the cellular growth
rate of the host itself (Santos et al. 2011; de Fouchécour et al.
2018; Subrahmanyam and Cronan 1998). Likewise, downreg-
ulation of fab operon has been successfully brought about for
the amassment of malonyl-CoA, and finally, redirection to
resveratrol. On this basis, Yang et al. (2015) repressed fabD
gene of the operon, using anti-sense RNA in E. coli. This
resulted in 4.5-fold enhancement in cytosolic malonyl-CoA
and almost 1.5-fold increase in resveratrol (268 mg/L) titer.
Lately, biosynthetic tool CRISPRi system has been used to
downregulate the multiple genes of the fatty acid biosynthesis
pathway. Wu et al. (2017) downregulated five genes of fab
operon (fabD, fabH, fabB, fabF, fabI) and reported the in-
creased level of resveratrol from 80.0 to 216.5% in each, in-
dividually (Fig. 3). Moreover, the authors introduced the
malonate assimilation pathway genes (matB and matC) from
Rhizobium trifolii in this system to increase the malonyl–CoA

pool. This combined system increased the titer of resveratrol
to 188.1 mg/L. Additionally, the synthetic pathway was fur-
ther improvised by the expression level of TAL. The final
strain produced 304.5 mg/L of resveratrol. Even though the
production is at milligram level, the recent synthetic tool
paved the efficient production of resveratrol in E. coli
platform.

As discussed earlier, resveratrol, a major class of polyphe-
nol, is derived from the ubiquitous aromatic amino acids: L-
phenylalanine or L-tyrosine. Both amino acids are converted
to phenylpropanoids by non-oxidative deamination. So, sig-
nificant approaches have been devised to optimize the produc-
tion of aromatic amino acids produced from shikimate path-
way or their derived phenylpropanoic acids in E. coli
(Rodriguez et al. 2015; Juminaga et al. 2012; Zhang and
Stephanopoulos 2013). For this, various steps are implement-
ed, such that carbon flux is directed towards chorismate, a
branch point to phenylalanine, and tyrosine. Increasing
erythrose-4-phosphate (E4P) supply and phosphoenolpyr-
uvate (PEP) availability are the major steps for the increment
of chorismate production (Fig. 4). In addition, other steps,
such as the overexpression of transketolases and native PEP

Fig. 3 Metabolic pathways of malonyl-CoA, an extender substrate of
STS, engineered in E. coli for enhanced production of resveratrol and
piceatannol. The enzymes involved in green arrows are overexpressed
while enzymes shown in red arrows are either inhibited, or encoding
genes are downregulated or knocked out. ACS acetyl-CoA synthase,

AccACD acetyl-CoA carboxylase complex encoding genes, matB
malonyl-CoA synthetase, matC dicarboxylate carrier protein, ack
acetate kinase, pta phosphotransacetylase, FabBDFHI fatty acid
biosynthesis complex encoding genes
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Table 1 Biosynthesis of resveratrol and piceatannol in engineered microorganisms

Microbial host Incorporated genes Host engineered Substrate Titer
(mg/L)

References

Escherichia coli (resveratrol)
E. coli BW27784 4-CL (A. thaliana)

STS (A. hypogaea)
p-Coumaric acid 0.16 Afonso et al. (2014)

E. coli BL21(DE3) 4-CL (Nicotiana tabacum)
STS (V. vinifera)

p-Coumaric acid 16 Beekwilder et al.
(2006)

E. coli BL21(DE3) Pal (Rhodotorula rubra)
4-CL (Lithospermum erythrorhizon)
STS (A. hypogaea)

Tyrosine 37 Katsuyama et al.
(2007a)

E. coli BRB 4-CL (L. erythrorhizon)
STS (A. hypogaea)
ACC (C. glutamicum)
F3H and FLS (Citrus)

Cinnamic acid 155 Katsuyama et al.
(2007b)p-Coumaric acid 171

E. coli BW27784 4-CL (A. thaliana)
STS (A. hypogaea)

p-Coumaric acid 105 Watts et al. (2006)

E. coli BW27784 4-CL (A. thaliana)
STS (A. hypogaea)

p-Coumaric acid 404 Lim et al. (2011)

4-CL (A. thaliana)
STS (V. vinífera)

1380

4-CL (P. crispum)
STS (A. hypogaea)

142

4-CL (P. crispum)
STS (V. vinífera)

610

4-CL (A. thaliana)
STS (V. vinífera)

p-Coumaric acid
and cerulenin

2340

E. coli C41 (DE3) TAL (Saccharothrix espanaensis)
4-CL (Streptomyces coelicolor)
STS (A. hypogaea)

p-Coumaric acid 104 Choi et al. (2011)

E. coli BW25113
(DE3

TAL (R. glutinis)
4-CL (P. crispum)
STS (V. vinifera)

Inactivation of tyrR and deletion of
trpED by chromosomal integration

Glucose 4.6 Liu et al. (2016)

E. coli BW27784
(DE3)

4-CL (A. thaliana)
STS (V. vinífera)

p-Coumaric acid 1600 Bhan et al. (2013)

E. coli BL21 (DE3) TAL (R. glutinis)
4-CL (P. crispum)
STS (V. vinifera)
matB and matC
(R. trifolii)

L-Tyrosine 35.02 Wu et al. (2013)

E. coli BL21 (DE3) 4-CL::STS, 4-CL (A. thaliana)- STS
(A. hypogaea) fusion enzyme

p-Coumaric acid 80.5 Zhang et al. (2015)

E. coli BL21 (DE3) TAL (Trichosporon cutaneum)
4-CL (P. crispum)
STS (V. vinifera)
matB and matC (R. trifolii)
tyrAfbr and aroGfbr (E. coli K12)

Downregulation of fabD, fabH, fabB,
fabF, fabI

Glucose 304.5 Wu et al. (2017)

E. coli BW25113 4-CL2 (P. crispum)
STS (V. vinifera)

p-Coumaric acid 268.2 Yang et al. (2015)

E. coli C41 (DE3) TAL (S. espanaensis)
4-CL (S. coelicolor)
STS (A. hypogaea)

Glucose 5.2 Kang et al. (2014)

E. coli BL21(DE3) TAL (S. espanaensis)
4-CL (A. thaliana)
STS (A. hypogaea)

Tyrosine 114.2 Wang et al. (2015)

E. coliW (pheA−) Rg
E. coli W-Vv

TAL (R. glutinis)
tktAfbr and aroG fbr (E. coli)
4-CL (S. coelicolor)
STS (V. vinífera)

Deletion of pheA Glycerol 22.58 Camacho-Zaragoza
et al. (2016)

E. coli (piceatannol)
E. coli 4-CL (A. thaliana)

STS (A. hypogaea)
Caffeic acid 13.3 Watts et al. (2006)

E. coli C41 (DE3) Tal (S. espanaensis)
CCL (S. coelicolor)
STS (A. hypogaea)

Tyrosine over expression (Phenol
acid decarboxylase; pad)

L-Tyrosine 31.5 Heo et al. (2017)
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synthase, can also be endorsed for the enhancement of aro-
matic amino acids (Lütke-Eversloh and Stephanopoulos
2007; Bulter et al. 2003; Na et al. 2013; Pandey et al. 2016).

Protein engineering

Occasionally, enzymes with low turnover or poor expression
property do not give sufficient levels of target products. So, the
improvement of such enzymes through evolutionary or rational
engineering methods may prove the solution in key enzymes to
increase the target products (Pickens et al. 2011). For the efficient
and enhanced production of resveratrol, protein engineering and
mutagenesis of 4-CL and STS have been framed out and ratified
in E. coli. Assuming that co-localization of the two enzymes
active site might improve the efficiency, the unnatural fusion of

4-CL and STS (4-CL::STS) from A. thaliana and A. hypogaea,
respectively, was constructed and introduced in E. coli. The re-
sult showed the production of resveratrol to 80.5 mg/L after
feeding 1 mM p-coumaric acid (Zhang et al. 2015).

Piceatannol biosynthesis in E. coli

Piceatannol has been proven to be one of the potentially impor-
tant pharmaceutical compounds. Various reports have been
published with significant production of piceatannol in E. coli
by heterologous pathway incorporation. Watts and colleagues
in 2006 reported the piceatannol production in E. coli for the
first time by using caffeic acid as the primary substrate. The
authors used 4-CL from A. thaliana and STS from A. hypogaea
and reported the production of 13.3 mg/L of piceatannol. After

Table 1 (continued)

Microbial host Incorporated genes Host engineered Substrate Titer
(mg/L)

References

E. coli BL21 (DE3) C3H (S. espanaensis) Resveratrol 65.4 Wang et al. (2015)
TAL (S. espanaensis)
4-CL (A. thaliana)
C3H (S. espanaensis)
STS (A. hypogaea)

L-Tyrosine 21.5

E. coli BL21 (DE3) HpaBC (E. coli) Resveratrol 1200 Lin and Yan (2014)
E. coli BL21 (DE3) HpaBC (Pseudomonas aeruginosa) Resveratrol +

Tween 80
5200 Furuya and Kino

(2014)
E. coli BL21 (DE3) HpaBC (P. aeruginosa) Resveratrol +

β-cyclodextrin
1200 Furuya et al. (2018)

E. coli BL21 (DE3) 4-CL (Petroselinum crispum)
STS (V. vinífera)
HpaBC (E. coli)

p-Coumaric acid 124 Shrestha et al.
(2018)

Non-E. coli (resveratrol)
C. glutamicum
DelAro3

STS (A. hypogaea)
4-CL (P. crispum)

Deletion of phdB, pcaF and
pobA

p-Coumaric acid 12 Kallscheuer et al.
(2016)p-Coumaric acid +

cerulenin
158

C. glutamicum
DelAro3

TAL (F. johnsoniae)
4-CL (P. crispum)
STS (A. hypogaea)
aroH (E. coli)

Deletion of phdB, pcaF, qsuB
and pobA

Glucose 12 Braga et al. (2018b)
Glucose +

cerulenin
59

Glucose (40 g/L) 4
Glucose (80 g/L) 12
Glucose

(Fed-batch)
7

S. cerevisiae
W303-1A

4-CL (A. thaliana)
STS (A. hypogaea)

p-Coumaric acid 3.1 Shin et al. (2011)

S. cerevisiae WAT11 4-CL (A. thaliana)::STS (V. vinifera) p-Coumaric acid 5.25 Zhang et al. (2006)
S. cerevisiae WAT11 TAL (Rhodobacter sphaeroides)

4-CL::STS, 4-CL1 A. thaliana)-STS
V. vinifera) fusion enzyme

Tyrosine 1.9 Wang et al. (2011)

S. cerevisiae CEN.
PK102-5B

TAL (Herpetosiphon aurantiacus)
4-CL (A. thaliana)
VST (V. vinifera)

Overexpression of aro4, aro7,
and acc1

Glucose
(Fed-batch)

415.65 Li et al. (2015)

Ethanol
(Fed-batch)

531.41

S. cerevisiae ST4990 PAL (A. thaliana)
C4H (A. thaliana)
4-CL (A. thaliana)
VST (V. vinifera)
ACS (Salmonella enterica)
Overexpression of atr2 (A. thaliana)

Overexpression of aro4, aro7, and
acc1 and deletion of aro10

Glucose
(Fed-batch)

812 Li et al. (2016)
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almost a decade, gram scale (1.2 g/L) of the piceatannol was
produced from resveratrol using non-P450 hydroxylase hpaBC
from E. coli by Lin and Yan (2014). By whole cell catalysis
with hpaBC monooxygenase, Furuya and Kino (2014) report-
ed 5.2 g/L of piceatannol in presence of Tween 80. Similarly,
1.2 g/L of piceatannol was recently reported after the addition
of β-cyclodextrin (Furuya et al. 2018). Wang et al. (2015) ob-
tained 21.5 mg/L of piceatannol by total biosynthetic pathway
in E. coli, in which the authors co-expressed TAL, 4-CL, C3H,
and STS. On the other hand, when they used resveratrol
directly as substrate, 65.4 mg/L of piceatannol was produced.
In one report, Heo et al. (2017) claimed the production of
31.5 mg/L piceatannol. The authors also stated that Sam5 en-
zyme from Saccharothrix espanaensis exhibited 5.7-fold
higher conversion rate of resveratrol to piceatannol, compared
to coumarate 3-hydroxylase. Similarly, Shrestha et al. (2018)
devised the modular pathway engineering in E. coli for the
production of piceatannol. The biosynthetic pathway genes 4-
CL from Parsley, STS from V. vinifera, hpaBC from E. coli,
matB, andmatC from Streptomyces coelicolorwere assembled

in different fashion in modular approach and used p-coumaric
acid as basic substrate. The production of 124 mg/L of
piceatannol was obtained after the supplement of disodium
malonate which was 2-fold higher than the non-supplied strain
(Fig. 5). Heterologous expression of recombinant tyrosinase
from S. avermitilis MA4680 (MelC2) in E. coli enhanced the
biotransformation of trans-resveratrol in which they found
15.4% conversion rate from 500 μM resveratrol (77.4 μM
piceatannol). Furthermore, the piceatannol conversion was in-
creased (58.0%, 290.2 μM piceatannol), after using mutant
strain along with NADH regeneration system, resulting in an
8-fold increase in product (Lee et al. 2015). Recently,
piceatannol was also produced using cytochrome P450 en-
zymes from microbial sources. For example, a CYP129A2
from Streptomyces peucetius showed high flexibility of micro-
bial CYP450 enzyme towards plant polyphenol (Rimal et al.
2018), whereas Bacillus megaterium CYP450 BM3 was re-
ported to hydroxylate wide array of substrates, including res-
veratrol to produce piceatannol (Kim et al. 2009; Chu et al.
2016) (Fig. 5).

Fig. 4 Biosynthesis pathway of two aromatic amino acids L-
phenylalanine and L-tyrosine. The biosynthesis of two initial precursors
(phosphoenolpyruvate, an intermediate of glycolysis pathway and
erythrose-4-phosphate, an intermediate of pentose phosphate pathway)
are engineered to enhance biosynthesis of L-phenylalanine and L-

tyrosine which are in turn converted to phenylpropanoyl-CoA, an
starter–CoA substrate of STS. TyrR phenylalanine DNA-binding
transcription repressor, DAHPS 3-deoxy-D-arabinoheptulosonate-7-
phosphate synthase, CM/PheA chorismate mutase/prephenate
dehydratase, PDT PDH pyruvate dehydrogenase complex

Fig. 5 Enzymes involved in
conversion of resveratrol to
piceatannol
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Conclusion and future perspective

Plant-derived natural products including resveratrol and its de-
rivative piceatannol are of special importance, due to their
pharmaceutical and nutritional value. In recent years, the
low-cost, eco-friendly, and minimal time range microbial pro-
duction of these compounds has been efficiently assessed.
Metabolic engineering and synthetic biology approaches have
allowed the microbial platform that helps the large-scale pro-
duction of these compounds. Heterologous pathway engineer-
ing in microorganisms produces relatively pure compounds
and does not need extensive processing. Even though the re-
cent techniques are endorsed for production, the overall pro-
duction is not satisfactory for industrial scale production.
Every gene involved in the biosynthetic pathways is well char-
acterized; however, the heterologous production is still
remained below few grams per liter. The reason could be due
to the low enzyme activity in trans-located hosts or low pre-
cursors supply within the cell. So, each step in the biosynthetic
pathway should be optimized, such that the every metabolite,
as well as precursor, is directed towards the final products such
as resveratrol and piceatannol. Moreover, to enhance the pro-
duction from microbial platform, comprehensive knowledge
of the intracellular organization should be utilized, such that
its entire genome, transcriptome, proteome, and metabolome
could be directed towards the production of the desired
compounds.
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