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Abstract
Bacillus thuringiensis is a gram-positive, spore-forming bacterium that produces insecticidal crystal proteins during sporulation.
The production of these crystals results primarily from the expression of cry genes. In this review, we focus on the expression and
application of cry genes directed by both cry gene promoters and non-cry gene promoters in different hosts. However, not all cry
genes and niches are compatible with B. thuringiensis. New delivery systems offsetting the current limitations in B. thuringiensis
application are needed to improve Cry production, niche fitness, and persistence. This review examines currently available
research and highlights areas in need of further research and development for more effective production and utilization of Cry
insecticidal proteins.
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Introduction

Bacillus thuringiensis (Bt) is a gram-positive, spore-forming
bacterium that produces insecticidal crystal proteins (ICPs)
during sporulation. ICPs are mainly classified into Cry and
Cyt, and their crystals have various forms: bipyramidal
(Cry1), cuboidal (Cry2), flat rectangular (Cry3A), irregular
(Cry3B), spherical (Cry4A and Cry4B), and bar shape
(Cry11A). As an insect pathogen, Bt insecticidal activity is
attributed to parasporal crystals, which are toxic to a wide
variety of insect species among the orders Lepidoptera,
Coleoptera, Hymenoptera, Diptera, Homoptera, Orthoptera,
and Mallophaga, and against nematodes, mites, and protozoa
(Schnepf et al. 1998). As of October 2018, approximately 846
cry and cyt genes have been discovered (http://www.lifesci.
sussex.ac.uk/home/Neil_Crickmore/Bt/). cry genes are
expressed during the stationary phase, and their products
generally accumulate in mother cell compartments to form a
crystal inclusion that can account for 20 to 30 % of the dry
weight of sporulating cells (Schnepf et al. 1998).

Several cry gene promoters have been identified, and
their transcription has been extensively reviewed (Agaisse

and Lereclus 1995; Baum and Malvar 1995; Deng et al.
2014; Komano et al. 2000). Here, we primarily focus on
the expression and application of cry genes directed by
cry gene promoters and non-cry gene promoters in differ-
ent hosts, which include Bt microorganisms, non-Bt mi-
croorganisms, and transgenic crops in order to provide an
overview of current knowledge and to highlight areas that
would benefit from further research. As Bt has been con-
sidered the most successful bioinsecticide of the last cen-
tury (Jouzani et al. 2017), an overview of known expres-
sion mechanisms and methods to increase application and
effectiveness will help to provide possible direction for
further research.

Expression of cry genes directed by cry gene
promoters

Transcriptional regulation mechanisms of cry genes have
been classified into two types: sporulation-dependent pro-
moters are controlled by sporulation-specific sigma factors
SigK and/or SigE, and sporulation-independent promoters
are under the control of the vegetative SigA factor.
Accessory factors also contribute to the transcriptional regu-
lation of cry gene expression such as Spo0A, ORF2, and
CcpA (Deng et al. 2014). Recently, Peng et al. (2018) report-
ed that expression of cry5Ba was silenced when YBT-1518
strain was outside of the host; however, when ingested by
Caenorhabditis elegans, Cry5Ba was synthesized in vivo by
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YBT-1518. Cry5Ba silencing was due to sRNA BtsR1,
which bind to the ribosomal binding site of the cry5Ba tran-
script via direct base pairing and inhibited cry5Ba expres-
sion. Identification of these cry gene promoters and clarifi-
cation of their regulation mechanisms provide expression
elements for cry gene expression.

The expression of many cry genes is under the control of
cry gene promoters in Bt used for studying novel gene activity,
genetic insecticidal mechanisms, construction of engineered
strains, and other applications (Table 1). The transcription of
cry1A promoter is controlled by both SigE and SigK (Aceves-
Diez et al. 2007; Bravo et al. 1996; Buasri and Panbangred
2012; Perez-Garcia et al. 2010; Sedlak et al. 2000; Walter and
Aronson 1999; Yang et al. 2012) and is most commonly used
for the expression of cry genes, including cry1Ac (Roh et al.
2004; Sun et al. 2016; Xia et al. 2009a; Xia et al. 2005; Xia
et al. 2009b; Yan et al. 2014), cry2Ab27 (Somwatcharajit et al.
2014), cry11A (Wu and Federici 1995), cry8 (Amadio et al.
2013), cry64Ba, and cry64Ca (Liu et al. 2018). Co-expression
of cry1Ac and Av3 produced a neurotoxin of Anemonia viridis
that improved insecticidal toxicity in the Bt acrystalliferous
strain Cry−B (Yan et al. 2014). Gomez et al. (2014) used Bt

to synthesize Cry1Ab, Cry1Ab F371A, or mutant
Cry1AbMod proteins to study the mechanism of pore-
forming toxins directed by cry1A promoter (Pacheco et al.
2009). Another study used cry1Ac promoter to direct co-
expression of cry64Ba and cry64Ca genes in acrystalliferous
Bt strain HD73−, which resulted in high insecticidal activity
against two important Hemipteran rice pests, Laodelphax
striatellus and Sogatella furcifera (Liu et al. 2018).

The transcription of cry3 gene is initiated during vegetative
growth, activated at the end of the exponential phase, and
continues for several hours during the stationary phase
(Agaisse and Lereclus 1994b; Agaisse and Lereclus 1995;
Salamitou et al. 1996). Production of Cry1AbMod and
Cry1AcMod (Garcia-Gomez et al. 2013), Cry1Ac (Chaoyin
et al. 2007), Cry1C (Sanchis et al. 1996), Cry3A (de Souza
et al. 1993), and Cry8 (Amadio et al. 2013) were found to be
directed by the cry3A promoter. pSTK is an E.coli-Bt shuttle
vector, used to produce Cry8Ga1 (Jia et al. 2014) and
Cry69Aa1 (Guan et al. 2014), that carries cry3A promoter.
Cry1AbMod and Cry1AcMod-encoded genes were cloned
efficiently under the regulation of the cry3A promoter region
to drive their expression in Bt but demonstrated no expression

Table 1 Expression of cry genes directed by cry gene promoters in Bt

Cry protein Promoters Vectors Bt strain Ref.

Cry1Ab cry1A promoter pHT315 4Q7− (Gomez et al. 2014; Pacheco et al. 2009)

Cry1Ac5 cry1Ac promoter pHT315 Cry−B (Sun et al. 2016)

Cry1Ac-av3 cry1Ac promoter pHT315 Cry−B (Yan et al. 2014)

Cry1Ac cry1Ac promoter pHT3101 4Q7− (Roh et al. 2004; Xia et al. 2005)

Cry1AbMod/Cry1AcMod cry3A promoter pHT315 407− (Garcia-Gomez et al. 2013)

Cry1Ac cry1Ac promoter pHT315 Cry−B (Xia et al. 2009b)

Cry1Ac cry1Ac promoter pHT304 XBU001 (Xia et al. 2009a)

Cry1Ac cry3A promoter pBMB31-304 BMB171 (Chaoyin et al. 2007)

Cry1Ba cry8E promoter pHT315 HD73− (Zhou et al. 2014)

Cry1C cry3A promoter pHT304-18Z 407− (Sanchis et al. 1996)

Cry2Ab27 cry1Ac promoter pHT304-18Z SP41 and 407− (Somwatcharajit et al. 2014)

Cry2Ab cry2Aa promoter pHT3101 4Q7− (Jain et al. 2006)

Cry3A cry3A promoter pHT304 HD1− (de Souza et al. 1993)

Cry4B/Cry4A cry4B promoter pHT3101/pHT315 4Q2-71 (Delecluse et al. 1993; Rodriguez-Almazan et al. 2012)

Cry5B cry5B promoter pHT304 BMB171 (Sajid et al. 2018)

Cry6A cry6A promoter pHT304 BMB171 (Dementiev et al. 2016)

Cry8 cry1Ac /cry3Aa promoters pHT3101 4Q7− (Amadio et al. 2013)

Cry8Ga1 cry3A promoter pSTK BIOT185 (Jia et al. 2014)

Cry8Kb3/Cry8Pa3 cry8Kb3/cry8Pa3
promoters

pHT3101 4Q7− (Navas et al. 2014)

Cry11A cry1Ac promoter pHT3101 4Q7− (Wu and Federici 1995)

Cry26Aa/Cry28Aa cry1Ca promoter pHT304 YBT-020 (Ji et al. 2009)

Cry64Ba/Cry64Ca cry1Ac promoter pHT315 HD73− (Liu et al. 2018)

Cry69Aa1 cry3A promoter pSTK HD73− (Guan et al. 2014)
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in E. coli cells (Garcia-Gomez et al. 2013). Nevertheless, the
Cry1AMod proteins produced from the cry3A promoter in Bt
were not soluble and showed low toxicity against Plutella
xylostella larvae. Construction of site-directed mutagenesis
of cysteine residues in the p3A-Cry1AbMod and p3A-
Cry1AcMod protoxin gene reestablished solubility and toxic-
ity to P. xylostella. This suggested that the combination of the
cry3A promoter expression system with single cysteine muta-
tions is a useful system for efficient expression of Cry1AMod
toxins in Bt (Garcia-Gomez et al. 2013).

Expression of other cry genes is directed by their own pro-
moters, including cry4B and cry4A (Delecluse et al. 1993),
cry5B (Sajid et al. 2018), cry8Kb3 and cry8Pa3 (Navas
et al. 2014), and cry2Ab (Jain et al. 2006). Dementiev et al.
(2016) used Cry6Aa to determine the Cry6Aa structure in
protoxin and trypsin-activated forms as well as the pore-
forming mechanism of action, which was under the control
of its own promoter in Bt strain BMB171. Other studies have
used plasmid pHT618 to produce Cry4Ba and Cry11Aa crys-
tals by their own promoters in an acrystalliferous Bt strain to
compare the cadherin-binding affinity of Cry4Ba and
Cry11Aa (Delecluse et al. 1993; Rodriguez-Almazan et al.
2012). Zhou et al. (2014) compared the transcriptional activity
of cry1Ac, cry3A, cry4A, and cry8E promoters and found that
cry8E promoter showed the highest transcriptional activity
among these promoters in Bt. The researchers constructed a
novel E. coli-Bt shuttle vector, pHT315-8E21b, for cry gene
expression using the cry8E promoter and multiple cloning
sites from vector pET21b (based on vector pHT315), then
produced Cry1Ba in the sigK mutant against Ostrinia
furnacalis and Plutella xylostella. The findings suggested that
cry8E promoter can be an efficient transcriptional element for
cry gene expression and utilized for construction of a geneti-
cally engineered strain.

Expression of cry genes directed by non-cry
gene promoters

Non-cry gene promoters are usually used to direct the expres-
sion of cry genes (Table 2). The most commonly used pro-
moter is Pcyt1A, which is also a SigE- and SigK-controlled
promoter (Sakano et al. 2017). It has been used to direct many
Cry protein production including Cry1C-t (Park et al. 2000),
Cry2A and Cry2B (Crickmore et al. 1994), Cry2A and
Cry11A (Park et al. 1999), Cry3A (Park et al. 1998),
Cry9Ec1 (Wasano et al. 2005), Cry11Aa and Cry11Ba (Sun
et al. 2014), Cry11B (Park et al. 2001), Cry19A (Barboza-
Corona et al. 2012), Cry20Aa (Lee and Gill 1997), Cry27A
(Saitoh et al. 2000), Cry30Ca, Cry60Aa, Cry60Ba (Sun et al.
2013), and Cry41Aa (Krishnan et al. 2017). One study con-
structed vectors that expressed cry3A with (pPFT3As) and
without (pPFT3A) in the STAB-SD sequence, using cytA

promoters to drive expression. They found that the volume
of Cry3A crystals produced with cyt1Aa promoters and the
STAB-SD sequence was 1.3-fold that of typical bipyramidal
Cry1 crystals toxic to Lepidopteran insects (Park et al. 1998).
The dual-promoter/STAB-SD system offers an additional
method for potentially improving the efficacy of insecticides
based on Bt. Krishnan et al. (2017) used cyt1Aa promoter to
direct the expression of cry41Aa to study the action mecha-
nism of certain protein toxins from the normally insecticidal
bacterium Bt in targeted human cell lines. An amylase pro-
moter fragment, amyE, was fused into the promoter region to
induce the expression of cry1Ac (Yang et al. 2003) and cry1C
(Chak et al. 1994) in the early log phase instead of the Bt cry
replicon, which was promoted only at the sporulation stage. A
recent report showed that there are also some highly active
non-cry gene promoters for expression of cry genes. PexsY, a
strong activity promoter of the exosporium basal layer struc-
tural gene exsY in the late sporulation phase, was used to
express cry1Ac genes in Bt in order to discover new elements
for cry gene expression (Zheng et al. 2014). A SigE-dependent
strong promoter of a non-cry gene (HD73_5014) was used to
direct strong cry1Ac gene expression in Bt HD73 (Zhang et al.
2018). The expression of the cry1Ac gene directed by the
HD73_5014 gene promoter was the same level as that directed
by the previous strongest known cry promoter, Pcry8E. The
expression of crystal proteins initiated by these high-
activation promoters in Bt could be used to develop safe
high-efficiency biological pesticides.

Expression of cry genes in non-Bt
microorganisms

E. coli expression systems are commonly used for the expres-
sion of cry genes, especially in terms of novel gene activity
and genetic insecticidal mechanisms. T7 and tac promoters are
most commonly used to direct the expression of cry genes
carried on pET or pGEX series vectors with His or GST tags.
For example, evaluation of Cry1A (Azizoglu et al. 2016;
Huang et al. 2004; Khasdan et al. 2007; Reddy et al. 2013),
Cry1Ea11 (Huang et al. 2018), Cry2 (Ogunjimi et al. 2002;
Pan et al. 2014; Reyaz and Arulselvi 2016; Reyaz et al. 2017;
Saleem and Shakoori 2017; Yilmaz et al. 2017), Cry4
(Boonserm et al. 2004; Zhang et al. 2014), Cry6A (Wang
et al. 2017), Cry11A (AP et al. 2016), Cry21 (Iatsenko et al.
2014), Cry46Ab (Hayakawa et al. 2017), and Cry78Aa toxic
activity (Wang et al. 2018a), as well as studying the insecti-
cidal mechanisms of Cry1A (Adegawa et al. 2017; Martinez-
Solis et al. 2018; Tanaka et al. 2016) and Cry2 (Shu et al.
2017; Xu et al. 2016). Another study used pET21b vector to
express Cry9Aa and Vip3Aa toxins to study the specific in-
teraction between two Bt toxins creating insecticidal syner-
gism and unraveling the molecular basis of this interaction
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(Wang et al. 2018b). Herrero et al. (2004) used pBD150 plas-
mid to produce wild-type Cry1Ca and mutant protoxins in
E.coli to determine toxin-binding parameters for specific re-
ceptors in brush border membrane vesicles of Spodoptera
exigua.

Other microorganisms have also been used to express cry
genes. Expressions of cry1Aa and cry1Ia under the control of
the lac promoter in Photorhabdus temperata strain K122
against Prays oleae (Tounsi et al. 2006) resulted in a clear
improvement in oral toxicity. This demonstrates that the het-
erologous expression of Bt cry genes in P. temperata can be
used to improve and broaden the host range for insect control.
Additionally, baculoviruses have been genetically modified to
express cry1Ab under polyhedrin promoters in order to accel-
erate their killing speed (El-Menofy et al. 2014). Durmaz et al.
(2015) used a strong constitutive promoter (P6 promoter) to
express cry5B in Lactococcus lactis for use as an
anthelminthic, while co-expression of mosquitocidal toxins
cyt1Aa and cry11Aa from Bt subsp. Israelensis under the con-
trol of Asticcacaulis excentricus tac promoter enhanced tox-
icity to the third instar larvae of Culex quinquefasciatus ex-
pressing only cry11Aa (Zheng et al. 2007). Cry34Ab1 and
Cry35Ab1 binary insecticidal proteins were produced in re-
combinant Pseudomonas fluorescens to provide large quanti-
ties of protein for safety-assessment studies associated with
the registration of transgenic corn plants (Huang et al. 2007).
Alberghini et al. (2005) also used Pseudomonas as a host for
expression of cry9Aa. Agaisse and Lereclus (1994a) used
Bacillus subtilis for cry3A expression to study the transcrip-
tional regulation of the cry3A gene.

Bt is a large family of recognized entomopathogens found
in various habitats (Jouzani et al. 2017). Many Bt-targeted
insect pests inhabit niches that Bt cannot survive or stabilize
in, such as the plant rhizosphere. Many Bt toxins have shown
insecticidal activity against underground pests including nem-
atodes and white grubs (Bi et al. 2015; Ruan et al. 2015).
However, the LC50 of Cry proteins/spores for nematodes in
most reports was quite low (Jouzani et al. 2017). This limits
the application of Bt products that can kill underground pests.
Thus, new stable microorganisms are required for cry gene
expression as an alternative delivery system to develop new-
generation biopesticides with improved persistence.

Expression of cry genes in Bt transgenic crops

Bt toxin proteins have been extensively used in plant genetic
engineering to deter pests. Bt application has allowed agricul-
ture to cater to human interest, for example, food growth free
of chemical pesticides and reduced environmental damage
due to avoidance of excessive chemical application by using
various promoters to produce toxin proteins (Fig. 1).

Cauliflower mosaic virus (CaMV) promoter 35S has been
shown to be active in most plant organs and is considered
constitutively expressed throughout plant development; it is
also considered a common strong promoter in activating Bt
toxin genes. The cry3A genes driven by 35S expressed in
potatoes were toxic to the first-instar, and the more resistant
third-instar Colorado potato beetle larvae (Adang et al. 1993);
in transgenic Norway spruce (Picea abies), cry3A genes

Table 2 Expression of cry genes directed by non-cry gene promoters in Bt

Cry gene Promoters Vectors Bt strain Ref.

Cry1C-t cyt1A promoter pHT3101 4Q7− (Park et al. 2000)

Cry2A/Cry2B cry2A/cytA promoter pSV2 An acrystalliferous Bt strain (Crickmore et al. 1994)

Cry2A/Cry11A cyt1A promoter pHT3101 4Q7− (Park et al. 1999)

Cry3A cyt1Aa promoter pHT3101 4Q7− (Park et al. 1998)

Cry9Ec1 cyt1A2 promoter pHT3101 BFR1 (Wasano et al. 2005)

Cry11Aa/ Cry11Ba cyt1A promoter pHT304 4Q7− (Sun et al. 2014)

Cry11B cyt1A promoter pHT3101 Bt subsp. israelensis strain (Park et al. 2001)

Cry19A cyt1A promoter pHT3101 4Q7− (Barboza-Corona et al. 2012)

Cry20Aa cyt1Aa promoter pHT304 YG1 or LG101 (Lee and Gill 1997)

Cry27A cyt1A promoter pHT3101 BFR1 (Saitoh et al. 2000)

Cry30Ca/Cry60Aa/Cry60Ba cyt1A promoter pHT315 4Q7− (Sun et al. 2013)

Cry41Aa cyt1Aa promoter pSVP27a 4D7 (Krishnan et al. 2017)

Cry1Ac amyE promoter pHY300PLK Tt14 (Yang et al. 2003)

Cry1C amyE promoter pSB909.4 Cry−B (Chak et al. 1994)

Cry1Ac PexsY pHT315 HD73− (Zheng et al. 2014)

Cry1Ac HD73_5014 promoter pHT315 HD73− and HDsigK− (Zhang et al. 2018)
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showed toxicity against the spruce bark beetle (Briza et al.
2013). Diamondback moth (Plutella xylostella L.), cabbage
looper (Trichoplusia ni Hübner), and corn earworm
(Helicoverpa zea Boddie) were completely controlled in
transgenic canola containing cry1Ac (Stewart et al. 1996).
Cry1Ab transgenic rice showed 100 % feeding mortality rates
for the yellow stem borer (Scirpophaga incertulas) and the
striped stem borer (Chilo suppressalis), and feeding inhibition
of Cnaphalocrocis medinalis and Marasmia patnalis (Wunn
et al. 1996). Cry9C transgenic maize delayed the development
and increased mortality rates of Plodia interpunctella (Giles
et al. 2000). Cry6A toxin protein produced by 35S can confer
tomato resistance to an endoparasitic nematode (Meloidogyne
incognita) (Li et al. 2007). cyt2Ca1 driven by 35S expressed
in citrus roots not only resulted in regular growth but also
protected the roots from larval Diaprepes abbreviatus
(Mahmoud et al. 2017). Transgenic Pigeon pea containing
Cry2Aa gained resistance to gram pod borer (Helicoverpa
armigera) (Singh et al. 2018). Double CaMV 35S promoter
expressed cry1Ac against Dendrolimus punctatus (Walker)
and Crypyothelea formosicola (Staud) in transgenic Loblolly
pine (Pinus taeda L.) (Tang and Tian 2003). 35S promoter and
alfalfa mosaic virus translational enhancer (AMV coat protein
5′ untranslated leader sequence) were used to express cry3A
and cry1Ab in tobacco against potato beetle larvae (Sutton

et al. 1992), tobacco hornworm (Manduca sexta), and tobacco
budworm (Heliothis virescens) (Carozzi et al. 1992)
respectively.

Additionally, there is a non-constitutive promoter reported
to be stronger than 35S when expressing Bt toxin genes.
Chrysanthemum ribulose-1, 5-bisphosphate carboxylase/
oxygenase small subunit (Rubisco SSU) promoter expressed
cry1Ca in shallot and provided resistance against beet army-
worm (Zheng et al. 2005). cry1Ac driven by Arabidopsis
thaliana Rubisco small subunit ats1A promoter with its asso-
ciated transit peptide showed 10- to 20-fold mRNA and pro-
tein expression compared to expression driven by the 35S
promoter (Wong et al. 1992).

Rice actin1 promoter and maize ubiquitin1 promoter are
common strong plant-derived promoters in Bt transgenic rice,
both enable high expression of cry genes and high insect re-
sistance. Cry1Ac under the control of maize ubiquitin1 pro-
moter was confirmed as highly toxic to yellow stem borer
larvae (Khanna and Raina 2002; Nayak et al. 1997). Under
the control of rice actin1 promoter, transgenic elite rice lines
producing a Cry1Ab/Cry1Ac fusion protein showed high pro-
tection against leaffolder and yellow stem borer without re-
duced yield (Tu et al. 2000), while producing Cry1Ac protein
exhibited resistance to striped stem borer (Chilo suppressalis
(Walker) in the laboratory (Liu et al. 2016).

Fig 1 Expression of cry genes in Bt transgenic crops
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Tissue-specific promoters can control Bt gene expression in
a tissue-dependent manner; Bt toxin genes driven by tissue-
specific promoters will be expressed only in tissues where in-
sect resistance is desired, leaving the rest of the plant tissues
unmodified. Green-tissue-specific rbcS promoter from
Nicotiana plumbaginifolia is a strong promoter; by expressing
cry1C primarily in leaf and green tissues, transgenic haploid
tobacco gained resistance to Spodoptera litura (Christov et al.
1999). Maize phosphoenolpyruvate carboxylase gene (PEPC)
promoter expressed a hybrid cry1Ab/1Ac gene in Jatropha
curcas that then displayed insecticidal activity to Archips
micaceanus (Gu et al. 2014). cry1Ab driven by maize PEPC
promoter expressed in maize (Koziel et al. 1993), rice (Datta
et al. 1998), and potato (Hagh et al. 2009) showed toxicity
against European corn borer, larvae of the yellow stem borer,
and tuber moth (Phthorimaea operculella (Zeller) respectively.

There is also an inducible promoter for Bt transgenic plants.
The PR-1a promoter is inducible by chemicals including
salicylic acid, 2,6-dichloro-iso-nicotinic acid (INA), and 1,2,3-
benzothiadiazole-7-carbothioic acid S-methyl ester (BTH),
which has been registered as an antifungal chemical for field
application. cry1Ab driven by PR-1a promoter in transgenic
broccoli can control diamondback moth (Plutella xylostella
L.) from damage under chemical regulation (Cao et al. 2006).

Conclusion and perspectives

In microorganisms, the Bt system is still very efficient for cry
gene expression. Many available strong promoters can direct
most cry gene expression in acrystalliferous Bt strains.
However, not all cry genes and niches are compatible with
Bt. New delivery systems including Bt subspecies with genet-
ically different backgrounds, other microorganisms, and even
strong promoters can improve Cry production, niche fitness,
and persistence.

In transgenic plants including potato, tomato, tobacco, rice,
maize, and broccoli, cry genes have been used extensively.
Constitutive promoters, such as 35S, have been frequently
utilized for expressing cry genes to protect transgenic plants
from pests. However, pests often damage the plants in special
tissues during growth phases. Thus, more efficient tissue-
specific and inducible promoters need to be investigated to
express cry genes in plants suffering from pest infestation.
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