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Abstract
Nitrification, the oxidation of ammonia via nitrite to nitrate, has been considered to be a stepwise process mediated by two distinct
functional groups of microorganisms. The identification of complete nitrifying Nitrospira challenged not only the paradigm of
labor division in nitrification, it also raises fundamental questions regarding the environmental distribution, diversity, and
ecological significance of complete nitrifiers compared to canonical nitrifying microorganisms. Recent genomic and physiolog-
ical surveys identified factors controlling their ecology and niche specialization, which thus potentially regulate abundances and
population dynamics of the different nitrifying guilds. This review summarizes the recently obtained insights into metabolic
differences of the known nitrifiers and discusses these in light of potential functional adaptation and niche differentiation between
canonical and complete nitrifiers.
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Introduction

Nitrification, the sequential aerobic oxidation of ammonia to
nitrate via nitrite, is a central nitrogen (N) cycling process. On
the one hand, nitrification depletes the pool of accessible am-
monium, the best accessible N source for biomass production.
On the other hand, the products of nitrification nitrite and
nitrate are widely used electron acceptors. From an anthropo-
genic perspective, nitrification has starkly contrasting roles. It
contributes to N loss from fertilized agricultural soils by pro-
ducing nitrite and nitrate, two compounds that are rapidly
reduced to N-containing gases, including the potent green-
house gas nitrous oxide (N2O). Additionally, nitrite and nitrate
can be easily washed out from the soil matrix, and thus leach
into the groundwater and aquatic ecosystems. The increased N

availability in these systems causes a boost of productivity
with tremendous consequences, including eutrophication of
rivers and lakes, algal blooms, and formation of dead zones
in coastal regions. In contrast, nitrification represents the ini-
tial N cycling step in biological wastewater treatment, where
well-orchestrated microbial activities result in the removal of
excess N compounds.

Since the first discovery of nitrifying microorganisms by
Sergei Winogradsky at the end of the nineteenth century
(Winogradsky 1891), it was believed that nitrification is a
two-step process performed by two distinct functional groups,
the ammonia- and nitrite-oxidizing bacteria (AOB and NOB,
respectively). However, the development of molecular tech-
niques and novel isolation approaches tremendously im-
proved our knowledge of the environmental key players
performing this process. A milestone in nitrification research
was the discovery of autotrophic ammonia-oxidizing archaea
(AOA). Shortly after first metagenomic indications of archaea
possessing the genetic inventory for ammonia oxidation, the
marine AOA Nitrosopumilus maritimus was successfully iso-
lated (Könneke et al. 2005; Treusch et al. 2005). Since the
identification of archaeal ammonia oxidizers, numerous stud-
ies have focused on their environmental distribution, physiol-
ogy, and genomics to elucidate their ecological significance
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and potential factors for niche differentiation between AOA
and their bacterial counterpart (reviewed in, e.g.,
Hatzenpichler 2012; Prosser and Nicol 2012).

In 2015, the surprising identification of microorganisms
preforming complete nitrification on their own challenged
the strict division of labor between the two nitrifying guilds,
and thus caused another paradigm shift in our understanding
of nitrification (Daims et al. 2015; van Kessel et al. 2015).
Notably, earlier theoretical studies already discussed the exis-
tence and possible niches of comammox (COMplete
AMMonium OXidation) microorganisms (Costa et al. 2006;
van de Leemput et al. 2011). It was hypothesized that the
truncation of nitrification might reduce the metabolic cost
for a cell compared to performing the whole pathway,
resulting in higher growth rates but lower yields. However, a
high-growth yield as postulated for comammox organisms
might be advantageous in nutrient-limited, slow growth-
favoring systems with low-cell washout rates, as for instance
found in biofilms. Indeed, the first comammox enrichment
cultures were obtained from biofilm samples (Daims et al.
2015; van Kessel et al. 2015). Surprisingly, when analyzing
the metagenomes of these enrichment cultures both research
groups identified the gene set for complete nitrification in
genome bins assigned to Nitrospira. Members of the genus
Nitrospira have been identified as key NOB in diverse natural
and man-made systems (Daebeler et al. 2014; Daims et al.
2001; Feng et al. 2016), but were assumed to comprise only
autotrophic nitrite oxidizers. All known comammox
Nitrospira belong to lineage II, the environmentally most
widespread clade of this diverse genus, which can be phylo-
genetically divided into at least six lineages (Daims et al.
2016). Based on phylogenetic analyses of subunit A of the
ammonia monooxygenase (AMO), the enzyme that oxidizes
ammonia to hydroxylamine, comammox bacteria can be fur-
ther separated into two monophyletic sister clades, designated
clades A and B (Daims et al. 2015). All described comammox
cultures obtained so far contain members of clade A and have
been enriched from man-made systems, including a
biofiltration unit of a recirculation aquaculture system (RAS;
Ca. N. nitrosa and Ca. N. nitrificans; van Kessel et al. 2015)
and a biofilm sustained in thermal waters from a 1200-m deep
oil exploration well (N. inopinata; Daims et al. 2015). In ad-
dition, analyzing metagenome-assembled genomes (MAGs)
of clade B comammox Nitrospira gave first genomic insights
into this group so far missing a cultured representative
(Orellana et al. 2018; Palomo et al. 2018). Since the discovery
of complete nitrifying Nitrospira, numerous studies have ad-
dressed their environmental distribution and abundance (e.g.,
Bartelme et al. 2017; Fowler et al. 2018; Hu and He 2017;
Orellana et al. 2018; Pjevac et al. 2017) as well as their po-
tential metabolic capabilities by (meta) genomic analyses
(e.g., Camejo et al. 2017; Orellana et al. 2018; Palomo et al.
2016; Palomo et al. 2018; Wang et al. 2017). Additionally,

physiological investigations of the first comammox pure cul-
ture revealed vital insights into the nitrification kinetics of
complete compared to canonical nitrifiers (Kits et al. 2017).
Recent review papers focused on microbial driven N cycling
processes (Kuypers et al. 2018), the enzymatic aspects in ni-
trification (Lancaster et al. 2018), ammonia oxidation in soil
(Beeckman et al. 2018), alternative roles ofNitrospira beyond
nitrite oxidation (Daims et al. 2016), the biotechnological po-
tential of the comammox process (Lawson and Lücker 2018),
and summarized the published literature on comammox or-
ganisms (Hu and He 2017). In this review, we cover the main
metabolic differences potentially driving niche specialization
between comammox Nitrospira and canonical ammonia and
nitrite oxidizers.

Environmental distribution of comammox
Nitrospira compared to other nitrifying guilds

The discovery of complete nitrifiers raises questions about (i)
the ecological significance of the comammox process, (ii)
driving factors for niche separation between the different
ammonia-oxidizing guilds, and (iii) the physiology of
comammox compared to strict nitrite-oxidizing Nitrospira.
Comparing the distribution and abundance of complete nitri-
fiers to other ammonia oxidizers is a first step towards deter-
mining the contribution of the comammox process to nitrifi-
cation in different environments. However, since comammox
bacteria do not form a monophyletic group within Nitrospira
lineage II (Fig. 1), comammox and canonical nitrite-oxidizing
Nitrospira cannot be distinguished by 16S rRNA-based
methods (Pjevac et al. 2017). Thus, other molecular tech-
niques such as metagenomics and functional gene-based
PCR assays have been used to detect complete nitrifiers in
environmental samples. In addition to these already applied
methods, comammox Nitrospira might be visualized in situ
using direct-geneFISH (Barrero-Canosa et al. 2017) to detect
the amoA gene, which encodes subunit A of the AMO, or by
immunofluorescence targeting the AMO protein, like per-
formed for AOB (Fiencke and Bock 2004). MAGs assigned
to comammox Nitrospira have been identified mainly in
metagenomes derived from engineered systems, but also from
natural ecosystems like fertilized soil (Table S1). For PCR-
based approaches, a widely used functional marker of aerobic
ammonia oxidation is the amoA gene. Recently, several dif-
ferent PCR assays and primer sets targeting comammox amoA
genes were developed (Bartelme et al. 2017; Fowler et al.
2018; Pjevac et al. 2017; Wang et al. 2017). Although the
two-step PCR approach ofWang and co-workers is a valuable
tool to identify potential novel members of the copper con-
taining membrane monooxygenase family (Wang et al. 2017),
other newly developed comammox amoA-targeting qPCR ap-
proaches with near-complete group coverages are more
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suitable to analyze comammox distribution and abundance in
environmental samples (Fowler et al. 2018; Pjevac et al.
2017). By applying PCR assays that target comammox clade
A and B amoA separately, complete nitrifiers could be detect-
ed in a wide range of environmental samples, including man-
made systems like drinking and wastewater treatment plants,
and several natural habitats, like forest and paddy field soils,
rice rhizosphere, and lake sediments (Pjevac et al. 2017). In
addition to environmental distribution studies, the relative
abundance of comammox bacteria compared to canonical am-
monia oxidizers has been explored in several ecosystems to
elucidate their potential contribution to nitrification. Although
large-scale surveys comparing the abundances of ammonia-
oxidizing guilds are still missing, first quantitative studies
showed co-occurrence of all three ammonia-oxidizing guilds

with varying abundance patterns in different habitats
(Bartelme et al. 2017; Fowler et al. 2018; Pjevac et al. 2017;
Orellana et al. 2018). In engineered systems, like RAS
biofilters and groundwater-fed rapid sand filters, comammox
Nitrospira outnumbered AOB and AOA (Bartelme et al.
2017; Fowler et al. 2018). Notably, timecourse analysis
showed that AOA and comammox Nitrospira stably co-
existed in a RAS biofilter microbial community (Bartelme
et al. 2017). One potential factor for the high abundance of
comammox Nitrospira compared to canonical ammonia oxi-
dizers in these engineered environments might be that the
operational setups of these systems favor surface-attached mi-
crobial communities, in which complete nitrifiers might ben-
efit from their higher growth yield (Costa et al. 2006; Kits
et al. 2017). In addition, the assignment of more than half of
the bacterial amoA reads in fertilized soil metagenomes to
Nitrospira suggests a high abundance of complete nitrifiers
in natural ecosystems with elevated N inputs (Orellana et al.
2018).

Potential niche-defining differences
between strict ammonia oxidizers
and complete nitrifiers

Based on relative abundance measures, comammox
Nitrospira rarely is the only nitrifying guild present in a hab-
itat. This co-occurrence of comammox and canonical ammo-
nia oxidizers indicates a potential functional differentiation
between these microbial groups (Annavajhala et al. 2018;
Bartelme et al. 2017; Fowler et al. 2018; Orellana et al.
2018; Palomo et al. 2018; Pjevac et al. 2017). While for
AOA and AOB the main physiological factors for niche sep-
aration were considered to be mixotrophy, ammonia affinities,
and different pH optima (Prosser and Nicol 2012), little is
known about potential factors driving niche specialization be-
tween comammox and canonical ammonia oxidizers.

The current knowledge on aerobic ammonia oxidation has
been recently summarized (Beeckman et al. 2018; Lancaster
et al. 2018). Briefly, key enzymes of bacterial ammonia oxi-
dation include the membrane-associated AMO and the peri-
plasmic hydroxylamine dehydrogenase (HAO), which togeth-
er with the cytochromes c554 and cM552 forms the
hydroxylamine-ubiquinone redox module (HURM; Klotz
and Stein 2008). All genes for ammonia and hydroxylamine
oxidation have been identified in comammox Nitrospira
(Fig. 2) and are most similar to betaproteobacterial AOB, in-
dicating an evolutionary link between the ammonia oxidation
machineries of these phylogenetically distinct groups (Daims
et al. 2015; Palomo et al. 2018; van Kessel et al. 2015). In
aerobic ammonia oxidizers, the three-subunit enzyme AMO
(encoded by amoCAB) initiates nitrification by oxidizing am-
monia to hydroxylamine, a reaction that requires molecular
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Fig. 1 Phylogenetic analysis of the genus Nitrospira based on 91 core
genes. The UBCG pipeline was used to identify the core gene set
consisting of single-copy genes found in most bacterial genomes and
for the concatenation of the nucleotide sequence alignments (Na et al.
2018). The tree was reconstructed using RaxML (Stamatakis 2014) on the
CIPRES Science Gateway (Miller et al. 2010), using the GTR
substitution and GAMMA rate heterogeneity models and 100 bootstrap
iterations. Nitrospira lineages are indicated by colored boxes and labeled
with roman numerals, comammox clades are designated by square
brackets. Two Leptospirillum species were included into the analysis
and used for rooting the tree. The position of the outgroup is indicated
by the arrow. The scale bar corresponds to 50% estimated sequence
divergence. Only genomes with a predicted completeness of > 85% were
included in the phylogenetic analysis. For details, see Table S1
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oxygen for the activation of ammonia. In AOB, the interme-
diate hydroxylamine (NH2OH) is further oxidized by HAO,
while AOA apparently lack a HAO homolog. Intriguingly,
recent biochemical investigations of the purified HAO of
Nitrosomonas europaea suggested that the product of hydrox-
ylamine oxidation might be nitric oxide (NO) and not nitrite as
assumed previously (Caranto and Lancaster 2017). This
BNH2OH/NO obligate intermediate^model proposes the need
of a third enzymatic partner of AMO and HAO for bacterial
ammonia oxidation to nitrite. The shared sequence similarity
of AMO and HAO in AOB and comammox points to compa-
rable ammonia oxidation mechanisms including NO as an
obligate intermediate in these nitrifying guilds. Notably, re-
cent investigations of the nitrification kinetics of the pure cul-
ture N. inopinata revealed a higher apparent ammonia affinity
for this comammox bacterium compared to canonical AOB
(Kits et al. 2017). Intriguingly, the affinity ofN. inopinatawas
found to be even higher than those of most terrestrial AOA,
which were previously assumed to drive ammonia oxidation
under low substrate concentrations based on the low KM for
ammonia of the marine AOAN. maritimus (Martens-Habbena
et al. 2009). Moreover, comparative genomic studies identi-
fied differences in copy numbers and genomic arrangement of
the ammonia oxidation machineries in the nitrifying guilds.
Betaproteobacterial AOB possess up to three copies of
haoAB-cycAB encoding the HURM complex, and one to
two copies of the amoCABDE genes for the AMO holoen-
zyme and two periplasmic membrane-associated proteins, po-
tentially involved in electron transport (El Sheikh et al. 2008;
Kozlowski et al. 2016a). In contrast, comammox Nitrospira
genomes contain one single gene cluster harboring all amo

and hao genes. The only exceptions are Ca. N. nitrosa and
Ca. N. nitrificans, which possess duplicated amoA or haoA
genes, respectively, and N. inopinata where the AMO and
HURM gene clusters are separated (Daims et al. 2015;
Palomo et al. 2018; van Kessel et al. 2015). In addition, genes
for the type I cytochrome c biosynthesis are located in this
gene cluster. All genomes of betaproteobacterial AOB as well
as comammox Nitrospira contain at least one additional, non-
operonal amoC gene. In AOB, this singleton AmoC may be
involved in the response to cellular stress, like starvation and
elevated temperatures, since the amoC3 gene is under regula-
tion of the global stress response regulator σ32 (Berube and
Stahl 2012). Unique features of the comammox ammonia ox-
idation machinery gene cluster, like the co-localization of
AMO, HAO, and cytochrome c biosynthesis genes and a du-
plication of amoD, suggest a common origin of this genomic
region in comammox clade A and clade B (Palomo et al.
2018). Interestingly, in contrast to the distinct forms of
AMO, phylogenetic analyses of HaoA showed no clear sepa-
ration of the two comammox clades (Fig. S1), indicating a
horizontal transfer of HAO between complete nitrifiers of dif-
ferent clades (Palomo et al. 2018). This, together with the
separate branching of clade A and B within lineage II
(Fig. 1) indicates a complex evolutionary history of
comammox Nitrospira.

Besides key characteristics of the ammonia-oxidizing ma-
chinery, like high ammonia affinity and low maximum am-
monia oxidation rate, potential niche separating physiological
characteristics include the high growth yield of N. inopinata
compared to other aerobic ammonia oxidizers (Kits et al.
2017). One metabolic feature influencing the growth yield is
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Fig. 2 Schematic representation of the ammonia and nitrite oxidation
modules in Nitrospira, including their incorporation into the respiratory
chain for energy conservation. The overall reactions, their standard free
energies, and the apparent substrate affinities for comammox and
canonical Nitrospira are indicated below the figure. AMO, ammonia
monooxygenase; HAO, hydroxylamine dehydrogenase; HURM,
hydroxylamine-ubiquinone reaction module; NXR, nitri te

oxidoreductase; Cyt. c, cytochrome c. The complexes of the respiratory
chain are indicated by roman numerals. Stippled arrows indicate electron
flow. NO as putative intermediate of NH2OH oxidation is not shown for
simplicity. For details on the modules, see main text. Ammonia and nitrite
KM values were taken from Kits et al. (2017), Nowka et al. (2015a), and
Ushiki et al. (2017)
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the pathway used for carbon fixation, which differs between
the nitrifying guilds. AOA fix CO2 by using a unique, highly
energy efficient variant of the 3-hydroxypropionate/4-
hydroxybutyrate pathway, while AOB use the energy-
demanding Calvin-Benson-Bassham cycle (Könneke et al.
2014). In contrast, Nitrospira fix CO2 via the reductive tricar-
boxylic acid (rTCA) cycle (Lücker et al. 2010), which is found
mainly in anaerobic and microaerophilic bacteria due to the
O2 sensitivity of the key enzymes 2-oxoglutarate:ferredoxin
oxidoreductase and pyruvate:ferredoxin oxidoreductase
(Campbell et al. 2006). This O2 sensitivity might be reduced
by the use of the five-subunit isoforms of these enzymes found
to be conserved in Nitrospira, which have been shown to be
functional under oxic conditions in Hydrogenobacter (Ikeda
et al. 2006; Yamamoto et al. 2003). The presence of the
ferredoxin-dependent rTCA cycle for CO2 fixation indicates
a possible adaptation to microaerophilic conditions by
Nitrospira, supported by the tendency of isolates to form ag-
gregates (Nowka et al. 2015b; Ushiki et al. 2013) and the high
abundance of uncultured representatives in the oxic-anoxic
interface of biofilms (Schramm et al. 2000). Furthermore,
the high degree of enrichment of comammox Nitrospira in a
bioreactor system inoculated with activated sludge and oper-
ated under low dissolved O2 concentrations indicates a com-
petitive advantage of comammox over canonical ammonia
oxidizers under microaerophilic conditions (Camejo et al.
2017). These findings agree with the recruitment of different
terminal oxidases by the nitrifying guilds. Canonical ammonia
oxidizers, except for Nitrosomonas eutropha, rely on the low-
affinity cytochrome aa3 oxidase to transfer electrons to O2

(Stein et al. 2007), while Nitrospira use a yet biochemically
uncharacterized putative cytochrome bd-like terminal oxidase
that shows some characteristics of cbb3-type oxidases and
might have a stronger affinity for O2 than the aa3-type
(Lücker et al. 2010).

Taken together, genomic surveys of complete nitrifiers sug-
gest several metabolic differences between the nitrifying
guilds that potentially shape microbial community composi-
tion in the environment. In addition, the observed high ammo-
nia affinity and growth yield of the first comammox pure
culture N. inopinata suggest an adaptation to slow growth in
highly oligotrophic habitats (Kits et al. 2017). Identification of
such niche-defining factors is of global interest considering
the guild-specific differences in producing N2O, a greenhouse
gas with a 300 times higher global warming potential than
CO2 (IPCC 2013). Canonical AOB produce N2O during am-
monia oxidation as byproduct of hydroxylamine oxidation
and in hypoxic conditions as product of nitrifier denitrification
(Arp and Stein 2003; Stein 2011). In contrast, AOA produce
lower amounts of N2O, which is mainly generated by abiotic
reactions from ammonia oxidation intermediates (Kozlowski
et al. 2016b; Stieglmeier et al. 2014). In agreement with these
data from pure culture studies, mesocosm experiments

revealed an increased N2O yield in fertilized soil when am-
monia oxidation was dominated by AOB (Hink et al. 2018).
In AOB, enzymatic N2O production is catalyzed by nitric
oxide reductases (NOR) that convert NO derived from nitrite
reduction (Kozlowski et al. 2016a), and cytochrome P460, a
periplasmic metalloenzyme shown to directly convert
NH2OH to N2O under anaerobic conditions (Caranto et al.
2016). Similar to AOA, the lack of NOR homologs in com-
plete nitrifiers indicates that Nitrospira do not produce N2O
via nitrifier denitrification. In addition, although some
Nitrospira lineage II encode a protein with low similarity (<
55%) to cytochrome P460 ofN. europaea, a homologous gene
is absent in most comammox genomes. Future physiological
studies focusing on potential N2O production of complete
nitrifiers are needed to determine their potential contribution
to N2O emissions.

Differences in nitrogen acquisition
and assimilation in Nitrospira

The general metabolic profiles of strict nitrite-oxidizing and
comammox Nitrospira are similar, indicated by the low
amount of comammox-specific genes detected by compara-
tive genomics (Palomo et al. 2018). Features unique to
comammox Nitrospira appear to be mainly the ammonia
and hydroxylamine oxidation machinery and the apparent ab-
sence of nitrite assimilation and cyanate degradation (Palomo
et al. 2018). The core genome of all analyzed Nitrospira in-
cludes the genes for the nitrite oxidation pathway, all five
complexes of the respiratory chain, the reductive and oxida-
tive TCA cycle, gluconeogenesis, and the pentose phosphate
cycle. Interestingly, although the nitrite oxidoreductase
(NXR), the enzyme catalyzing nitrite oxidation, is conserved
and highly similar in all Nitrospira genomes, the nitrite affin-
ity of N. inopinata is around 50-fold lower than for canonical
Nitrospira (Fig. 2; Kits et al. 2017). As mentioned above,
canonical and comammoxNitrospira also differ in their ability
to use nitrite as N source. While canonical Nitrospira can
grow under nitrite only conditions, all cultured complete nitri-
fiers show no growth with nitrite as sole substrate without an
additional N source, which can be explained by the lack of
assimilatory nitrite reductases in all available comammox ge-
nomes (Table S1; Daims et al. 2015; Palomo et al. 2018; van
Kessel et al. 2015). In strict nitrite-oxidizing Nitrospira, genes
encoding the different assimilatory nitrite reductases are co-
localized with genes involved in other N acquisition and as-
similation pathways (Fig. 3). Although these gene clusters
differ in composition, most metabolic functions are conserved
in these syntenic genome regions of canonical Nitrospira.
Besides assimilatory nitrite reduction, the conserved metabol-
ic functions include ammonia transport and assimilation, as
well as cyanate degradation and in most genomes urea
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hydrolysis. Until now, two different types of assimilatory
nitrite-reducing enzymes have been described for canonical
Nitrospira: (i) the assimilatory ferredoxin-dependent nitrite
reductase NirA and (ii) an octaheme cytochrome c (OCC) that
potentially reduces nitrite to ammonia for assimilation (Koch
et al. 2015; Lücker et al. 2010; Ushiki et al. 2018). The OCC
of Nitrospira belongs to the multiheme cytochrome c family
that harbors a variety of N-transforming enzymes, including
HAO, hydrazine dehydrogenase, as well as dissimilatory
penta- and octaheme nitrite reductases (Klotz et al. 2008).
Although the OCC of Nitrospira lacks biochemical character-
ization, genomic context and gene expression analyses sug-
gest a role in assimilatory nitrite reduction (Koch et al. 2015;
Ushiki et al. 2018). In Nitrospira genomes, the gene for OCC
is co-localized with two genes encoding a transmembrane
Rieske/cytochrome b complex (Fig. 3). The similarity of these
subunits to complex III of the respiratory chain suggests a
direct interaction of the nitrite reductase with the quinone
pool. Consistent with the supposed periplasmic localization
of the OCC is the lack of the nitrite transporter NirC in
N. moscoviensis and N. japonica, which both contain OCC
instead of the cytoplasmic NirA. In all Nitrospira genomes
harboring nirA, nirC is commonly located upstream of the

gene for cyanate degradation, indicting a possible involve-
ment in cyanate transport also. Intriguingly, one MAG classi-
fied as clade B comammox (bin CG24E) harbors a genomic
region syntenic to this N metabolism gene cluster of canonical
Nitrospira (Fig. 3). Although this region lacks genes for as-
similatory nitrite reduction, it is tempting to speculate that
other complete nitrifiers might possess the complete gene
cluster and thus are able to use nitrite as N source when am-
monium is temporarily not available.

Since ammonium, in contrast to the uncharged ammonia,
cannot diffuse passively through biological membranes, exter-
nal ammonium has to be actively transported into the cell for
N assimilation. This uptake is facilitated by members of the
Amt/MEP/Rh transporter family, which are found in all do-
mains of life. Amt-type transporters have been identified in
many bacterial and archaeal groups (including AOA) and
have been intensively studied in E. coli and Archaeoglobus
fulgidus. In contrast, Rh-type transporters are scarce in bacte-
ria, but interestingly found in most AOB (Offre et al. 2014).
While Rh- and Amt-type transporters often co-occur in eu-
karyotic genomes, such co-occurrence has been rarely identi-
fied in bacterial genomes. Among the few exceptions are an-
aerobic ammonia oxidizers (anammox), which possess both
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types of transporters (Matassi 2017). Crystal structure analy-
ses revealed that Amt- as well as Rh-type transporters form
homotrimers with a central, hydrophobic pore (Khademi et al.
2004; Lupo et al. 2007; Zheng et al. 2004). Additionally, the
Rh-type transporter ofN. europaea shows a lower ammonium
affinity compared to Amt-type transporters (Lupo et al. 2007;
Weidinger et al. 2007). However, several other key character-
istics of the ammonium transporters in nitrifiers, like substrate
specificity and substrate recruitment and conduction, are still
under debate (for reviews see Neuhauser et al. 2014; Offre
et al. 2014). So far, all comammox clade A members possess
Rh-type ammonium transporters similar (~76% amino acid
identity) to betaproteobacterial AOB. In contrast, canonical
and comammox clade B Nitrospira employ Amt-type trans-
porters (Palomo et al. 2018). Besides the different ammonium
transporter types, additional factors differentiate the
comammox clades in their genetic makeup regarding ammo-
nium uptake, including the amount and genomic localization
of genes encoding for Rh/Amt transporters. Interestingly, sev-
eral clade B and canonical Nitrospira species (Fig. 3) as well
as AOA encode more than one Amt-type transporter (Koch
et al. 2015; Offre et al. 2014; Palomo et al. 2018). The two
Amt transporters of the marine AOA N. maritimus share only
39% amino acid identity and belong to different Amt-
transporter clades as shown by phylogenetic analysis (Offre
et al. 2014), which may indicate distinct metabolic functions.
Indeed, transcriptional analysis revealed a differential expres-
sion pattern of the corresponding amtB genes in response to
changes in ammonium availability (Qin et al. 2018). This
potential functional differentiation of Amt transporters might
be beneficial in environments with fluctuating ammonium
concentrations. Intriguingly, some canonical Nitrospira en-
code three Amt homologs, which cluster separately in phylo-
genetic analyses (Fig. 4) and where the third copy shows only
limited similarity (< 50%) to the other Amt transporters pres-
ent in the genomes.

Besides the uptake of external ammonium, Nitrospira can
intracellularly generate ammonia from cyanate and/or urea
degradation. While the known canonical Nitrospira possess
a cyanase for decomposing cyanate into ammonia and CO2,
all known complete nitrifiers seem to have lost this enzyme.
Similarly, most canonical ammonia oxidizers lack the genetic
repertoire for cyanate degradation except for the freshwater
AOA Nitrososphaera gargensis (Palatinszky et al. 2015). In
most microorganisms, cyanate degradation is performed to
either detoxify cyanate or utilize it as N source (Kamennaya
et al. 2008; Luque-Almagro et al. 2008). Contrastingly,
N. gargensis has been shown to proliferate on cyanate as sole
energy substrate, and N. moscoviensis can provide AOB with
cyanate-derived ammonia resulting in the stoichiometric con-
version of cyanate to nitrate (Palatinszky et al. 2015). Cyanate
is intracellularly formed during degradation of carbamoyl
phosphate, an intermediate of arginine and pyrimidine

biosynthesis and the urea cycle, and from thiocyanate, a com-
mon pollutant released by gold mining and other industrial
processes (Allen and Jones 1964; Stratford et al. 1994). In
addition, environmental cyanate sources include abiotic urea
decomposition and photoproduction (Dirnhuber and Schutz
1948; Widner et al. 2016). Since it is technically challenging
to quantify cyanate in environmental samples, studies analyz-
ing its distribution in natural systems are rare. However, recent
surveys indicate that cyanate, together with urea and amino
acids, might be an important dissolved organic N compound
in marine systems (Widner et al. 2013; Widner et al. 2016). In
this context, metatranscriptomic analysis of an uncultured
Nitrospira associated with a marine sponge revealed high ex-
pression of the cyanase encoding gene, indicating cyanate
degradation by Nitrospira in this sponge-microbe symbiosis
(Moitinho-Silva et al. 2017).

As mentioned above, urea can also be used by nitrifiers. It
is enzymatically hydrolyzed to ammonia and CO2, and many
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canonical ammonia oxidizers and complete nitrifiers can use
this ammonia as energy and N source (Alonso-Saez et al.
2012; Daims et al. 2015; Lu and Jia 2013; Pommerening-
Röser and Koops 2005; van Kessel et al. 2015). Canonical
ureolytic Nitrospira can degrade urea for N assimilation and,
additionally, provide ammonia to non-ureolytic ammonia ox-
idizers, thus initiating full nitrification in a reciprocal feeding
interaction (Koch et al. 2015). The genetic inventory for urea
hydrolysis has been identified in many comammox and ca-
nonical Nitrospira (Table S1). It includes a nickel (Ni)-depen-
dent urease (UreABC) as well as accessory proteins
(UreDFG) for the maturation of the holoenzyme (Farrugia
et al. 2013). Additionally, all urease-positive Nitrospira iso-
lates except for N. moscoviensis possess a complete gene set
for an ATP-dependent ABC-type urea transporter
(UrtABCDE) encoded upstream of the urease structural genes
(Fig. 3). This type of transporter is characterized by its high
affinity for urea (Valladares et al. 2002), indicating an adapta-
tion to low urea concentrations in the environment. In contrast
to strict nitrite-oxidizing Nitrospira, complete nitrifiers em-
ploy two additional urea transporters, a urea carboxylase-
related transporter and an outer-membrane porin (Palomo
et al. 2018). Phylogenetic analysis of the urease gamma sub-
unit (UreA) revealed a close affiliation of most Nitrospira
UreA, except for N. japonica (Ushiki et al. 2018). Aside from
the distinct UreA, the urease cluster of N. japonica possesses
other species-specific features, including genes encoding the
metallo-chaperone UreE and an additional urea permease,
which forms an urea channel for diffusion through the mem-
brane in a pH independent manner (Sebbane et al. 2002). The
Ni-chaperone UreE is supposed to insert nickel into the urease
apoprotein (Farrugia et al. 2013). For other ureolytic
Nitrospira, it has been hypothesized that the (NiFe)-hydroge-
nase maturation enzymes HypA and HypB compensate the
lack of UreE (Koch et al. 2015). This distinct urease operon
ofN. japonica underlines the genomic flexibility ofNitrospira
especially in this particular genomic region (Fig. 3). Here,
comparable to the different assimilatory nitrite reductases
(see above), also the urease functional modules have been
exchanged in different Nitrospira species. In addition to
comammox and canonical lineage II Nitrospira, ureolytic ac-
tivity was also observed in Nitrospira sp. ND1, a lineage I
Nitrospira isolated from activated sludge (Ushiki et al.
2018). Together with the identification of a urease operon in
a sponge-associated lineage IV Nitrospira genome bin (Slaby
et al. 2017), this shows a broad distribution of the urea hydro-
lyzing capability within the genus Nitrospira.

Metabolic versatility of Nitrospira

Members of the genus Nitrospira were considered to be of
restricted metabolic capability and their presence in the

environment was thus used as proxy for nitrite oxidation.
However, recent studies identified a much broader metabolic
flexibility, including aerobic growth on formate and hydrogen
(H2) and anaerobic reduction of nitrate to nitrite in the pres-
ence of suitable electron donors (Daims et al. 2016; Ehrich
et al. 1995; Koch et al. 2014; Koch et al. 2015). Comparative
genomics did not reveal a prevalence of canonical or
comammox Nitrospira in recruiting additional metabolic ca-
pacities, and many of the alternative metabolic features are not
restricted to a certain group within Nitrospira. Two widely
distributed metabolic traits for energy conservation are for-
mate and H2 oxidation. The genetic setup for formate oxida-
tion includes genes encoding a formate transporter and the
three subunits of formate dehydrogenase. This gene cluster
was identified in most canonical Nitrospira as well as in clade
B comammox (Palomo et al. 2018). The capability of oxidiz-
ing formate was confirmed under oxic and anoxic conditions
for N. moscoviensis (Koch et al. 2015). In addition, formate
incorporation by uncultured Nitrospira was also observed in
activated sludge samples in the presence and absence of nitrite
under oxic conditions (Gruber-Dorninger et al. 2015).

Besides formate, H2 is a common fermentation product and
the capability to exploit these substrates is especially advan-
tageous in hypoxic or anoxic habitats. Two different types of
hydrogenases have been identified in Nitrospira genomes to
date. All hydrogenases identified in comammox Nitrospira
belong to the [NiFe]-hydrogenase group 3b, a large enzyme
family with distinct physiological roles. On the one hand,
these soluble cytoplasmic, bidirectional enzymes can produce
H2 by reoxidizing NAD(P)H to maintain the cellular redox
balance during fermentation (Berney et al. 2014b). On the
other hand, they can provide electrons for CO2 fixation by
oxidizing H2 in Hydrogenobacter (Yoon et al. 1996), as was
recently also hypothesized for mixotrophic verrucomicrobial
methanotrophs (Carere et al. 2017). Furthermore, these hy-
drogenases might also be involved in sulfur cycling by reduc-
ing elemental sulfur or polysulfide to H2S as shown for hy-
perthermophilic archaea (Ma et al. 2000). However, the detec-
tion of H2S production by Mycobacterium smegmatis under
O2 limitation in a mutant lacking all hydrogenases challenges
the contribution of group 3b hydrogenase to this process, at
least in this bacterium (Berney et al. 2014a). The metabolic
function of this type of hydrogenase in complete nitrifiers
remains to be determined and might include (i) H2 oxidation
as alternative or additional electron source for energy conser-
vation and/or CO2 fixation, (ii) H2 evolution for maintaining
the redox balance during anaerobic degradation of simple or-
ganic matter (as suggested by Kits et al. 2017), and (iii) H2S
production for sulfur assimilation. Moreover, the identifica-
tion of group 3b hydrogenases in canonical ammonia and
nitrite oxidizer genomes, like the marine NOB Nitrococcus
mobilis (Füssel et al. 2017), Nitrospina marina (Lücker et al.
2013), and several AOB including Nitrosococcus halophilus
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Nc4 (GenBank accession number ADE14678.1) and
Nitrosomonas mobilis (Thandar et al. 2016) emphasizes the
need to characterize the physiological function(s) of this en-
zyme in nitrifying bacteria. N. moscoviensis is the only
Nitrospira species known to have recruited a different type
of hydrogenase. In this organism, a cytoplasmic group 2a
[NiFe]-hydrogenase enables aerobic growth with H2 as sole
substrate (Koch et al. 2014). Notably, nitrite and H2 can be
oxidized simultaneously, indicating metabolic compatibility
of these substrates and a lack of substrate preference.
Furthermore, N. moscoviensis can couple H2 oxidation to an-
aerobic nitrate reduction (Ehrich et al. 1995).

The lack of known dissimilatory nitrate reductases in the
genome of N. moscoviensis points to a reversibility of NXR.
Contrastingly, in N. inopinata a putative periplasmic nitrate
reductase (NAP) might additionally catalyze nitrate reduction
in the presence of suitable electron donors (Kits et al. 2017).
Intriguingly, some Nitrospira genomes furthermore contain a
pentaheme nitrite reductase (NrfAH), including N. inopinata
and Nitrospira sp. ND1 (Table S1). NrfAH catalyzes dissim-
ilatory nitrite reduction to ammonium (DNRA) during anaer-
obic growth on low-potential electron donors. This metabolic
capability suggests an additional ecological function of
Nitrospira in the biogeochemical N cycle. While complete
nitrifiers represent an ammonia sink, Nitrospira performing
DNRA would produce ammonia and act as source of this N
compound. The observed metabolic versatility of Nitrospira
may be essential for successful adaptation to fluctuating envi-
ronmental conditions. However, this flexibility poses a chal-
lenge when inferring the function ofNitrospira in the environ-
ment, since their occurrence and abundance might not corre-
late with nitrification activity.

Isolation of comammox Nitrospira

Genomic approaches can yield a great amount of novel in-
sights into the metabolic potential of an organism or a com-
plex microbial community. However, novel physiologies can-
not be determined based on genome-inferred information
alone. In order to facilitate the study of fastidious microorgan-
isms like nitrifiers, state-of-the-art cultivation-independent
methods have successfully been employed to study
comammox and canonical Nitrospira in enrichment cultures
or directly in their environment (Daims et al. 2015; Gruber-
Dorninger et al. 2015; van Kessel et al. 2015). While these
approaches allow the direct confirmation of proposed physi-
ologies on single-cell level, they cannot completely replace
classical cultivation-dependent physiological characteriza-
tions, mainly due to their dependency on specialized equip-
ment and laboratory setups (reviewed by Singer et al. 2017)
and potential metabolic interactions with co-occurring mi-
crobes. However, the isolation of novel complete nitrifiers is

challenging due to their low growth rates and the difficulty to
separate them from other nitrifying and heterotrophic mi-
crobes. Until now, N. inopinata is the only available
comammox pure culture (Kits et al. 2017). This complete
nitrifier was first highly enriched in batch cultures that were
regularly transferred (Daims et al. 2015). Subsequently, a pure
culture was obtained by dilution to extinction (Kits et al.
2017). In contrast to this classical cultivation approach, a co-
enrichment of Ca. N. nitrosa and Ca. N. nitrificans was ob-
tained in a hypoxic bioreactor system operated in sequencing-
batch mode and supplied with low concentrations of ammo-
nium, nitrite, and nitrate (van Kessel et al. 2015). Like most
nitrifying microorganisms, the vast majority of known
Nitrospira species prefers to grow in dense microcolonies in
biofilm-like structures (Nowka et al. 2015b; Ushiki et al.
2013). This makes it virtually impossible to separate them
from accompanying heterotrophic contaminants by classical
cultivation methods alone. To circumvent this challenge,
physical isolation methods can be employed to segregate
Nitrospira cells or clonal microcolonies from their heterotro-
phic companions in pre-enriched cultures. These include the
use of label-free cell sorting (Fujitani et al. 2014), optical
tweezers (Nowka et al. 2015b), and a combination of Raman
microspectroscopy and microfluidic cell sorting (reviewed in
Huys and Raes 2018). These techniques also hold the biggest
promise to obtain pure cultures of comammox Nitrospira de-
rived from engineered environments like drinking and waste-
water treatment systems, which will be invaluable to study
their role and competitive niche, and to elucidate their biotech-
nological potential in order to optimize sustainable water treat-
ment in the future.

Conclusion

Over the last years, our understanding of nitrification and ni-
trifying microorganisms dramatically improved due to the
identification of novel key players, like AOA and complete
nitrifiers. Furthermore, the identification of novel metabolic
pathways and interactions, like the potential reciprocal feeding
interactions of aerobic nitrifiers based on urea and cyanate
hydrolysis, revolutionized our view of the N cycle. These
milestones in nitrification research show that aerobic ammo-
nia oxidation to nitrate is much more complex than simple
cross-feeding between two functional groups. The recent iden-
tification of the long-sought complete nitrifiers within the ge-
nus Nitrospira not only overturned a century-old dogma of
nitrification research; it also demonstrated the questionability
of simplified correlations of metabolic functions to taxonomy-
defined groups. Without in situ activity determination and/or a
combination of genomic and transcriptomic data, it is difficult
to assign a metabolic function to Nitrospira in the environ-
ment, since members of this genus could perform full
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nitrification, nitrite oxidation, or other alternative lifestyles
beyond the N cycle-like formate or hydrogen oxidation.
Thus, more targeted approaches to identify and isolate
comammox Nitrospira are needed to reveal and confirm
niche-separating physiological features and to further assess
the ecological significance of complete nitrification in natural
and engineered ecosystems.
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