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Abstract
Antimicrobial peptides (AMPs) from prokaryotic source also known as bacteriocins are ribosomally synthesized by bacteria
belonging to different eubacterial taxonomic branches. Most of these AMPs are low molecular weight cationic membrane active
peptides that disrupt membrane by forming pores in target cell membranes resulting in cell death. While these peptides known to
exhibit broad-spectrum antimicrobial activity, including antibacterial and antifungal, they displayed minimal cytotoxicity to the
host cells. Their antimicrobial efficacy has been demonstrated in vivo using diverse animal infection models. Therefore, we have
discussed some of the promising peptides for their ability towards potential therapeutic applications. Further, some of these
bacteriocins have also been reported to exhibit significant biological activity against various types of cancer cells in different
experimental studies. In fact, differential cytotoxicity towards cancer cells as compared to normal cells by certain bacteriocins
directs for a much focused research to utilize these compounds as novel therapeutic agents. In this review, bacteriocins that
demonstrated antitumor activity against diverse cancer cell lines have been discussed emphasizing their biochemical features,
selectivity against extra targets and molecular mechanisms of action.
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Introduction

Cancer is the leading cause of death worldwide (http://seer.
cancer.gov/statfacts) and death rate is increasing significantly
in the last few decades (Siegel et al. 2015; Howlader et al.
2015). Globally, cancer is the second leading cause of mortal-
ity and killed about 8.8 million people according to a recent
report by the World Health Organization (WHO) (www.who.
int/mediacentre/factsheets/fs297/). In addition to mortality,
adverse effects of treatment associated with human cancers
pose significant global psychological and economic burden
to the affected nations. On the other hand, an exponential
advance in biotechnology in the recent past is continuously

leading to a greater understanding about many human diseases
(Jemal et al. 2009). Altered cellular physiology is the charac-
teristic of cancer cells, which leads to abnormal proliferation
of cells. Thus, cancerous cells show certain unique character-
istics such as initiating growth signals on their own and do not
respond to the mechanisms controlling cellular growth. These
cells develop the capacity for limitless replication and stimu-
late new blood vessel development in order to allow tumor
growth. The altered cells enable to invade tissues locally and
metastasize distantly all across the body (Hanahan and
Weinberg 2000). Typically, cancer patients are treated with
surgery, radiotherapy, and chemotherapy to remove growing
tumor. However, surgical resection of cancer is a limited ap-
proach, often mutilating and mostly to be followed up by
chemotherapy and radiotherapy. Surgery and radiotherapy
are effective against localized cancers but not suitable for dis-
seminated cancers where chemotherapy remains the sole
choice. These anticancer therapies including chemotherapy
are only reasonably effective along with the serious side ef-
fects due to non-selectivity of target cells, recurrence poten-
tials, and emergence of multidrug-resistant cancerous cells
(Lao et al. 2014; Klener 1999; Porta et al. 2015).
Considering these constraints, few studies have been under-
taken in the recent past relating to the action of AMPs having
antitumor activity, with the intent of reducing the number of
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cases of tumor growth (Joo et al. 2012; Chu et al. 2015).
Therefore, there is an extensive and urgent need of developing
novel, more selective, effective, less toxic, and safe biologic
therapies such as AMPs against rapidly growing cancer cases.

Bacteriocins as anticancer therapeutics

General perspectives

A multitude of metabolites including antimicrobial peptides
(AMPs), such as ribosomally synthesized bacteriocins, are
produced by various bacterial strains as a strategy to overcome
competitive antagonism by other invading bacteria during ha-
bituation of a specific niche (Fons and Tuomo Karjalainen,
2000). Although bacteriocins were previously thought to in-
hibit the growth of only closely related strains or species, but
in the recent past they were reported with broad spectrum of
antimicrobial activity. In addition, they exhibit selective activ-
ity against distantly related bacteria and inhibited the growth
of various cancerous cell lines (Joo et al. 2012; Riley and
Wertz 2002; Coburn and Gilmore 2003; Dethlefsen et al.
2006). Most of these bacteriocins with anticancer properties
were found to be cationic and amphiphilic in nature, that were
often produced by bacteria existing in diverse environments.
These cationic peptides are also known to be “membrane ac-
tive” as they interact with a negative surface charge on the cell
in contact (Wang et al. 2013; Johnstone et al. 2000; Zhao et al.
2015; Laverty and Gilmore 2014). Killing of cancer cells is
usually reported to mediate via cell membrane lytic effect due
to the presence of increased number of negatively charged
molecules on their surface (Riedl et al. 2011). While a few
cationic AMPs are reported to disrupt the integrity of mito-
chondrial membrane and cause apoptosis in cancer cells (Cho
et al. 2012; Chen et al. 2012), others are known to inhibit
blood vessel development (angiogenesis) which is essentially
required for cancer progression (Mader and Hoskin 2006).

Historic perspectives

Utilization of microbes or their products against cancer is re-
ported dating back to the nineteenth century. For example,
culture supernatants of bacteria like Streptococcus pyogenes
and Serratia marcescens preparation called Coley’s toxins
were given to patients with unresectable tumors. Evidently,
patients with regression of malignant tumors treated with this
toxin were cured to good health (Coley 1910; Wiemann and
Starnes 1994). Subsequently, induction of enhanced secretion
of tumor necrosis factor (TNF-α) in the body of a patient was
revealed to be the main factor accountable for therapeutic
effect of Coley’s toxins. Further, the role of TNF-α factor
was also confirmed in animal models (Carswell et al. 1975).
On the other hand, it has been reported that the microbial

pathogens may proliferate inside the hypoxic cancer lesions,
and concurrently, stimulating host immune system against
cancer progression during the infection. The vaccine strain
BCG (Mycobacterium bovis Calmette-Guerin) is an example
that was used to treat superficial bladder cancer (Alexandroff
et al. 1999; Gandhi et al. 2013; Herr andMorales 2008; Kawai
et al. 2013). Members of the genus Clostridium like C. novyi-
NT are also found to be promising in bacteriolytic therapy to
treat various tumors (Dang et al. 2001; Maletzki et al. 2010;
Agrawal et al. 2004) as they were found to be effective in
reducing tumor growth. In the recent past, it has been shown
that the selected microbial infections lead to immune activa-
tion via macrophages and lymphocytes, resulting in produc-
tion of anticancer agents like TNF-α (Patyar et al. 2010).
Similarly, other microbial metabolites also displayed potential
anticancer properties, for example, nisin, the first lantibiotic
bacteriocin approved by the Food and Drug Administration, is
recently documented as a potential anticancer bacteriocin (Joo
et al. 2012; Kamarajan et al. 2015). Currently, several low
molecular weight AMPs are emerging as promising novel
cancer therapeutics. Therefore, this review aims to provide a
detailed insight into the bacteriocins having anticancer prop-
erties and their biochemical structures and potential as anti-
cancer therapeutic agents.

Characteristics of bacteriocins relevant
to anticancer potential

Most of the bacteriocins are cationic in nature

More than 80% of known bacteriocins are cationic in nature
owing to an excess number of lysine or arginine amino acid
residues (Hammami et al. 2007, 2010). Usually, they are hy-
drophobic peptides containing between 20 and 60 amino acids
in length (Nes and Holo, 2000; Ennahar et al. 2000), though
they were found to be unstructured in aqueous solution, but
displayed α-helical structure forming tendency when exposed
to trifluoroethanol or anionic phospholipids of biological
membranes. Additionally, disulfide or a covalent bond forma-
tion in certain peptides helps in acquiring loop structure and its
maintenance. In particular, the presence of intramolecular ring
structures formed as a result of thioether bonds between amino
acids is a characteristic feature of the lantibiotics, which is a
predominant bacteriocin group (Moll et al. 1999). It was noted
that a number of lantibiotics resemble cationic antimicrobial
peptides (cAMPs) by virtue of having long linear structures, a
cationic charge, and their ability to form pores in cell mem-
branes (Gunther 1991; Smith and Hillman 2008; Sahl 2000).
Other bacteriocins largely produced by Gram-positive bacte-
ria resemble antimicrobial peptides produced by eukaryotes,
such as defensins (Papagianni 2003; Singh et al. 2014) with
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cationic and amphiphil ic nature, and membrane-
permeabilizing properties (Breukink et al. 1999).

Bacteriocins are low cytotoxic in nature

Various bacteriocins have been used or consumed naturally in
fermented and non-fermented foods (Settanni and Corsetti
2008; Chen and Hoover 2003) from ages, which includes
nisin A (Cutter and Siragusa 1998), enterocin 4 (Nuñez et al.
1997), leucocin A (Leisner et al. 1996), lactocin 705 (Vignolo
et al. 1996), and enterocin (Aymerich et al. 2000).
Interestingly, these are non-toxic as lack of toxicity for these
lantibiotics has been demonstrated in several studies that
allowed their widespread clinical applications such as
probiotics (bacteriocin-producing strains) and antimicrobials
in health care and in food industries (Bastos et al. 2010;
Pieterse and Todorov 2010; Murinda and Rashid 2003;
Jasniewski et al. 2009). Antimicrobial substances from
probiotics have been considered to be “Generally regarded
as safe molecules” that confer health benefits to host.
Contemporary investigations have highlighted the low cyto-
toxicity of certain bacteriocins, for example, laterosporulin a
class IId defensin-like bacteriocin that provided a missing link
between prokaryotic and eukaryotic defensins (Singh et al.
2014). It did not show hemolysis even at significantly higher
concentrations of MIC values observed for various indicator
microbes (Singh et al. 2014). Similarly, carnobacteriocins
BM1 and B2 classified under class IIa bacteriocins also did
not exhibit cytotoxicity against Caco-2 (human epithelial co-
lorectal adenocarcinoma) cells, even at 100× higher than MIC
values against bacterial strains (Jasniewski et al. 2009).
Likewise, penisin, a class Ia lantibiotic, was also demonstrated
to be non-cytotoxic against RBCs and Raw (mouse macro-
phages) and RWPE-1 (human prostate epithelial) cells at 20×
higher concentration thanMIC values against indicator strains
(Baindara et al. 2015). However, peptides like MccE492, a
class IId bacteriocin, induced biochemical and morphological
changes as observed in apoptosis at low or intermediate con-
centrations leading to a necrotic phenotype at higher concen-
trations in cancer cells (Hetz et al. 2002). Therefore, such
ability of bacteriocins can be exploited to develop novel anti-
cancer peptides naturally or by recombinant technologies and
peptide engineering (Lagos et al. 2009). Their low cytotoxic
nature in the context of normal host cells makes them partic-
ularly an appealing target for novel anticancer agent
development.

In vivo efficacy of bacteriocins

In vitro studies demonstrated the prospective role of bacterio-
cins as alternative to various therapeutic applications due to
their minimal cytotoxic nature. Further, in vivo replication
efficacy is essential to potentiate these molecules in clinically

relevant situations as novel therapeutic candidates. Many bac-
teriocins have already been extensively examined from this
perspective as shown in Table 1. For example, bacteriocins
like Pep5 and epidermin have been reported to prevent
Staphylococcus and/or Enterococcus infections in and on
catheter tubing (Fontana et al. 2006). In fact, microbisporicin,
a novel lantibiotic, demonstrated to have potential inhibitory
effect against murine septicemia caused by S. aureus upon
intravenous and subcutaneous administration (Castiglione
et al. 2008). In vivo efficacy of a lantibiotic NAI-107 has been
documented against beta-lactam-resistant S. aureus in a neu-
tropenic murine thigh infection model that revealed it to be
effective in comparison to vancomycin and linezolid (Jabés
et al. 2011). Similarly, lacticin 3147 has been shown to pre-
vent the systemic infections of S. aureus in a mouse peritonitis
model (Piper et al. 2012). Mutacin (B-Ny266), another bacte-
riocin produced by Streptococcus mutans, was found effective
against S. aureus infection in an intra-peritoneal mouse model
and was comparable to vancomycin (Mota-Meira et al. 2005).
Importantly, lantibiotic mersacidin has been known to elimi-
nate methicillin-resistant S. aureus (MRSA) colonization in a
mouse rhinitis model (Kruszewska et al. 2004). Other notable
bacteriocins include a novel type B lantibiotic NVB302 effec-
tive to manage Clostridium difficile infection (CDI) in an
in vitro human gut model and this lantibiotic is now under
phase I clinical trials (Crowther et al. 2013). Piscicolin 126,
produced by Carnobacterium piscicola, is an antilisterial bac-
teriocin retained its antimicrobial activity under in vivo con-
ditions when administered intravenously (Ingham et al. 2003).
Penisin, a recently characterized lantibiotic, displayed antimi-
crobial activity against S. aureus in a thigh infection model
and thus increased survival rate of mice (Baindara et al. 2015).
Nisin, the first lantibiotic used as a food preservative, was
extensively studied and results suggested it to be effective
against Streptococcus pneumonia when compared to vanco-
mycin in an intravenous regimen (Goldstein et al. 1998). Nisin
has also been known to have antibacterial and spermicidal
activities in in vivo mice model and proved as a potential
vaginal contraceptive (Aranha et al. 2004; Reddy et al.
2004). Similarly, nisin F, a natural variant of nisin found to
be effective against S. aureus in vivo while incorporating into
bone cement (van Staden et al. 2012), showed protective abil-
ity to the respiratory tract against pathogens when adminis-
tered intra-nasally (De Kwaadsteniet 2009). Nisin A along
with Nisin V and Nisin F also showed protection against
Listeria monocytogenes in a murine infection model
(Campion et al. 2013) and inhibited S. aureus in peritoneal
cavity of mice model (Brand et al. 2010). Nisin variants are
being used as sanitizers against pathogenic Staphylococcus
and Streptococcus species causing mastitis in lactating cows
(Cao et al. 2007; Wu et al. 2007; Fernández et al. 2008). Since
membrane lytic effects of AMPs are considered as the major
mechanism, this mechanism is also attributed for their
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anticancer activity, thus similar mechanisms may remain effi-
cacious in the case of anticancer actions of AMPs. Though
few preliminary in vivo investigations with anticancer pep-
tides (ACPs) are available, but they need further extensive
investigations.

Bacteriocins are docile to bioengineering

Bacteriocins are small cationic peptides encoded by genes and
due to this peptide nature, they are extremely more acquies-
cent to engineering to increase activity and specificity towards
their target when compared with classical antibiotics (Perez
et al. 2014). Bacteriocin bioengineering can be done by ma-
nipulating the bacteriocin biosynthetic genes through cloning
of these genes and in vitro reconstitution of the biosynthesis
process required for antimicrobial peptide production (Cotter
2012). However, bacteriocin without posttranslational modi-
fications can be fully or partially synthesized by chemical
synthesis process. These engineered peptides have been prov-
en important for further understanding of their activity and
structure–function relationships using site-directed mutagene-
sis to reveal amino acid residues essentially required for ac-
tivity (Wang et al. 2014; Oppegård et al. 2007; Sun et al. 2015;
Haugen et al. 2008). Further, in silico approach of bacterial
genome mining and metagenomic DNA analysis provide in-
formation about many unexpressed bacteriocin gene clusters,
which may be further used for gene synthesis and engineering
(Walsh et al. 2015; Mohimani et al. 2014; Letzel et al. 2014).
Such technologic advances can further enhance the targeted
activity, efficacy, and safety of natural as well as recombinant
ACPs.

Bacteriocin interaction with cancer cell membranes

In eukaryotic cells, membrane phospholipids are distributed
unevenly between two layers of the lipid bilayer (Op den
Kamp 1979; Verkleija et al., 1973; Fadeel and Xue 2009) with
phosphatidylserine localized absolutely in the inner leaflet
(Rothman and Lenard 1977; Connor et al. 1989) that plays
an important role in cell physiology (Bevers et al. 1982;
Manno et al. 2002). Interestingly, cancer cell membranes dis-
play overexpression of phosphtidylserine (Dobrzyńska et al.
2005; Utsugi et al. 1991) and O-glycosylated mucins (Yoon
et al. 1996; Schwartz et al. 1992; Burdick et al. 1997) on the
outer membrane leaflet in comparison to non-transformed
cells. Thus, they impart a net negative charge on cell mem-
branes, which enables electrostatic interactions between can-
cerous cell surface and cationic bacteriocins. In contrast,
healthy eukaryotic cells contains zwitter-ionic phosphatidyl-
choline in the outer membrane leaflet that confers an overall
neutral charge on these cells resulting in significant reduction
of electrostatic interactions. In addition, change of membrane
fluidity in cancer cells when compared with their healthy

counterparts affects tumor cell adhesion which is related to
cancer metastases (Zeisig et al. 2007; Nakazawa and
Iwaizumi 1989; Sok et al. 1999; Kozłowska et al., 1999).
Plasma membrane fluidity tends to increase metastatic capa-
bility and may further assist cancer cell membrane deteriora-
tion by membrane interaction of ACPs. Another significant
attribute affecting the targeted/selective activity of ACPs is
the presence of abundant and irregular microvilli on cancerous
cell surface in comparison to their healthy counterpart, a fea-
ture adopted for increasing metastatic potential (Chaudhary
and Munshi 1995; Domagala 1980; Ren et al. 1990). The
net negative charge along with overall increased surface area
in cancer cells may enable ACP-mediated cytotoxicity with
greater chances of large number of peptide molecules to inter-
act with cellular surface. Collectively, all these properties of
cancer cells may assist the ACPs to interact with cell mem-
brane and subsequent killing of cancer cells selectively with-
out affecting healthy eukaryotic cells. Abundance of anionic
lipid cardiolipin in mitochondrial membrane of eukaryotic
cells result in negatively charged surface of mitochondria
(Schenkel and Bakovic 2014; de Kroon et al., 1997;
Wriessnegger et al. 2009). Interestingly, mitochondrial mem-
brane is believed to share common ancestry as it originated
from endosymbiotic prokaryotes (Gray et al. 2001; Gray
2012). This further may facilitate the ACPs to disrupt the
integrity of mitochondrial membrane and resulting in release
of several proteins such as cytochrome C and stimulate the
apoptotic cell death pathway (Kim et al. 2006; Smolarczyk
et al. 2010). Nevertheless, few studies have suggested that
many ACPs with cytotoxic properties may cause cancer cell
death by necrosis via cell membrane damage (Ye et al. 2004;
Vaucher et al. 2010; Maher and McClean 2006).

Contemporary bacteriocins investigated
as potential anticancer peptides

Nisin

Nisin (3.49 kDa) secreted by Lactococcus lactis, is a
lantibiotic class of bacteriocins composed 34 amino acids.
Recent reports showed that nisin decreases head and neck
squamous cell carcinoma (HNSCC) tumorigenesis by increas-
ing cell apoptosis through activation of CHAC1, increased
calcium influxes, and induction of cell cycle arrest (Table 2
and Fig. 1). In fact, nisin is safe for human consumption as
approved by Food and Drug Administration and currently
used in food preservation and is a potential cancer therapeutic
(Joo et al. 2012). Nisin ZP (3.47 kDa, 34 amino acids), a
natural variant of nisin, induced a high level of apoptosis in
HNSCC cells. Indeed, nisin ZP displayed gradual increase in
apoptosis with the increase of concentration. Induction of ap-
optosis was through a calpain-dependent pathway in HNSCC
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cells. Similarly, apoptosis was also induced in human umbil-
ical vein endothelial cells (HUVEC) and reduced intra-
tumoral microvessel density. Long-term treatment with nisin
ZP enhanced longevity and maintained the normal histologic
structure of the tissue without any evidence of inflammation,
fibrosis, or necrosis. It was considered to be a potential novel
therapeutic for management of squamous cell carcinoma

(Kamarajan et al. 2015). Very recently, the cytotoxic activity
of nisin was evaluated against colon cancer SW480 cells
where it showed significant antiproliferative impact and raised
the apoptotic index (bax/bcl-2 ratio). Further, intrinsic apopto-
tic pathway was suggested to be responsible for this cytotox-
icity induced by nisin (Ahmadi et al. 2017). Moreover, the
synergistic effect of nisin with doxorubicin showed significant

Table 2 Bacterial AMPs having anticancer activities against various cancer cell lines

S.N. Bacteriocin Source organism Size (kDa) Cancer cell lines

1 Nisin Lactococcus lactis 3.49 MCF7, HepG2, HNSCC In vitro/in vivo

2 Nisin ZP Lactococcus lactis SIK-83 3.47 HNSCC, HUVEC In vivo

3 Plantaricin A Lactobacillus plantarum C11 2.98 Jurkat, GH4, Reh, Jurkat, PC12, N2A, GH4 In vitro

4 Azurin Pseudomonas aeruginosa 14 J774, MCF-7, UISO-Mel-2, U2OS, HL60,
K562, HUVEC, HCT-116, MDA-MB-231

In vitro/in vivo

5 Colicin E3 Escherichia coli 9.8 P388, HeLa, HS913T, V79, BM2 In vitro/in vivo

6 Colicin A Escherichia coli > 20 HS913T, SKUT-1, BT474, ZR75, SKBR3,
MRC5

In vitro

7 Colicin E1 Escherichia coli 57 MCF7, HS913T, BM2 In vitro

8 Microcin E492 Klebsiella pneumoniae
RYC492

7.8 Hela, Jurkat, RJ2.25, KG-1, human colorectal
carcinoma cells

In vitro/in vivo

10 Pyocin S2 Pseudomonas aeruginosa
42A

74 HepG2, Im9, HeLa, AS-II, mKS-ATU-7,
HFFF

In vitro

11 Pediocin PA-1 Pediococcus acidilactici 3.5 A-549, DLD-1, HT29, HeLa In vitro

12 Pediocin CP2 Pediococcus acidilactici CP2
MTCC5101

HepG2, HeLa, MCF7 In vitro

13 Pep27 anal2 Streptococcus pneumoniae AML-2, HL-60, Jurkat, SNU-601, MCF-7 In vitro

14 Bovicin Staphylococcus bovis HC5 2.4 MCF7, HepG2 In vitro

Fig. 1 Structures of different
antimicrobial peptides
characterized with potential
anticancer therapeutics
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reduction in tumor volumes when compared to individual
treatments of these compounds (Kaur and Kaur 2015). The
combined treatment showed apoptosis in tumor tissues as
chromatin condensation and marginalization of nuclear mate-
rial was observed; thus, nisin can be a complement to doxo-
rubicin as chemotherapeutic drug.

Plantaricin A

Plantaricin A (PlnA) is another low molecular weight pep-
tide (2.98 kDa) containing 26 amino acids and secreted by
strains of Lactobacillus plantarum C11, WCFS1, and V90
(Table 2). It displayed broad-spectrum antibacterial activ-
ity with membrane permeabilizing property (Fig. 1). PlnA
could permeabilize eukaryotic cells also with a potency
that differed between various cell types. It showed elec-
trostatic attraction to negatively charged phospholipids in
the membrane as shown by microfluorometric techniques.
Interaction with glycosylated membrane proteins is prob-
ably being the first and essential first step for PlnA inter-
action with membrane. Activities against different cell
types including cancerous cells is attributed to different
glycosylat ion patterns (Sand et al . 2010, 2013;
Andersland et al. 2010). However, others demonstrated
similar sensitivity of PlnA towards cancerous lympho-
cytes, neuronal cells, kidney cortex, and vero cells from
green monkey and human Caki-2 cells that were perme-
abilized by PlnA (Kristiansen et al. 2005; Fialho et al.
2012). In further support, three-dimensional structure
PlnA determined by nuclear magnetic resonance spectros-
copy revealed effective structure that can be positioned in
membrane interface to engage in chiral interaction with
receptor (Jeuken et al. 2000).

Azurin

Azurin from Pseudomonas aeruginosa is a member of the
cupredoxin family of redox proteins with molecular weight
of about 14 kDa (Fialho et al. 2012) as shown in Table 2.
Though different variants of azurins vary in sequence homol-
ogy (50 and 90%), their structure is highly conserved. They
display a rigid β-sandwich core formed by two main β-sheets
in their structure (Jeuken et al. 2000). They are reported to
exhibit anticancer properties which can preferentially pene-
trate cancer cells like breast cancer (MCF-7), melanoma
(UISO-Mel-2), and osteosarcoma (U2OS) cells to display ap-
optotic effects, but did not show any effect against normal
cells (Punj et al. 2004; Goto et al. 2003; Zaborina et al.
2000; Yamada et al. 2002; Gupta 2002; Yang et al. 2005). A
short variant of azurin p28 peptide with 28 amino acids was
identified to act as potential protein transduction domain
(PTD) in cancer cells (Yamada et al. 2005). This derivative
p28 was also reported to inhibit cancer cell growth and pre-
vention of tumor emergence (Bizzarri et al. 2011; Yamada
et al. 2013). Interestingly, similar peptides were detected from
Lactobacillus salivarius (Shaikh et al. 2012) and other mi-
crobes from the human gut (Nguyen 2016) with high binding
affinities to cancer targets (Fig. 2).

Induction of apoptosis by these peptides was further con-
firmed using caspase-mediated mitochondrial pathways as in-
creased p53 intracellular level was observed during the treat-
ment (Yamada et al. 2002). Azurin and peptide p28 displayed
selective entry and cytotoxic effects against acute and chronic
myeloid leukemia cell line by induction of apoptosis and in-
terfering with angiogenesis of human umbilical vein endothe-
lial cells (Kwan et al., 2009; Mehta et al. 2011). Moreover,
they were found to be proficient to interfere in oncogenic
transformation as they could halt the formation of

Fig. 2 Cellular targets for
described anticancer mechanism
of various antimicrobial peptides
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precancerous lesions in a dimethyl-1,2-benzanthracene ex-
posed mouse organ culture model (Mehta et al. 2010).
Additionally, it was shown to be effective against tumor
growth in nude mice that were xenografted with UISO-Mel-
2 and MCF-7 cells (Punj et al. 2004; Yang et al. 2005). They
also induced apoptosis to inhibit the tumor growth in Dalton’s
lymphoma-bearing ascites mice model (Ramachandran and
Mandal 2011). Interestingly, p28 displayed significant antitu-
mor activities as confirmed using nude mice xenografted with
MCF-7 cells (Yamada et al. 2009). Similar results were shown
for p28 as it suppressed tumor growth in HCT-116 (colon
cancer), UISO-Mel-23 (melanoma), and MDA-MB-231
(breast cancer) cell xenografts in nude mice (Jia et al. 2011).
It was also demonstrated that azurin secretion occurred by
producing strains in the presence of cancer cells (Mahfoouz
et al. 2007). Overall, azurins are antitumor peptides that dis-
play induction of apoptosis through p53 stabilization, inhibi-
tion of angiogenesis, and binding with ephrin receptor kinases
(Mehta et al. 2011; Chaudhari et al. 2007; Riedl and Pasquale,
2015). Most importantly, p28 did not cause any immune re-
action and toxicity in mice as well as in non-human primates,
highlighting its potential application as a therapeutic agent (Jia
et al. 2011). Thus, azurin differentiates itself from other avail-
able drugs and brings about an interesting prospect to investi-
gate other bacteriocins, which might have similar or even
better anticancer properties.

Pyocins

Pyocins are high molecular weight (> 10 kDa) AMPs (Fig. 1)
secreted by strains of Pseudomonas aeruginosa (Michel-
Briand and Baysse 2002). These peptides are constitutive in
chromosomes, but environmental factors such as UVradiation
ormitomycin C can initiate the biological activity (Kageyama
1964). Pyocins have been categorized into three types: R-, F-,
and S-type. R- and F-type pyocins resemble the tails of bac-
teriophages with differences in flexibility and contractility of
their structure. Specifically, R types are non-flexible and con-
tractile entities, whereas F-type pyocins are just the reverse
with flexible and non-contractile rod-like structures. R-type
pyocins display nuclease and protease resistance with depo-
larization activity on membranes that subsequently leads to
pore formation in membrane. The killing activity carried by
large component may be variable for different varieties of
pyocins. While pyocins S1, S2, S3, and AP41 act by DNase
activity, pyocin S4 acts through tRNase activity; however,
pyocin S5 revealed channel-forming activity. Further, a small
component for S-type pyocins acts as immunity protein
interacting with large component (Michel-Briand and
Baysse 2002). For the first time, a partially purified pyocin
from P. aeruginosawas shown to inhibit the growth of mouse
fibroblast cell line L6OT by Farkas-Himsley and Cheung
(1976). Subsequently, anticancer activity of pyocin S2 was

observed against diverse cancerous cell lines like HeLa, AS-
II, and mKS-ATU-7. However, no such effects were observed
against normal mice cells (BALB/3T3), rat kidney cells, and
human lung cells. Recently, purified pyocin S2 from
P. aeruginosa 42A was reported to exhibit cytotoxic effects
against tumor cell lines HepG2 (human hepatocellular carci-
noma) and Im9 (human immunoglobulin-secreting cell line
derived from multiple myelomas) without affecting normal
human fetal foreskin fibroblasts (Abdi-Ali et al. 2004).

Colicins

The plasmid-encoded colicins are usually found to be high
molecular weight AMPs with molecular weight > 20 kDa
(Fig. 1). These were first observed in Escherichia coli
(Table 2) and named as colicin (Feldgarden and Riley 1999;
Cascales et al. 2007; Braun et al. 1994; Gratia 1925). Bacterial
strains belonging to the family Enterobacteriaceae are known
to produce this class of AMPs. Colicin secretion is a result of
stress response (Smarda and Smajs 1998). These are three
domain proteins and their cellular killing mechanism is ac-
complished in three distinct steps where the central region acts
as a receptor domain, while N-terminal and C-terminals are
translocation and cytotoxicity domains, respectively (Helbig
and Braun 2011; Arnold et al. 2009). However, unstructured
N-terminal was also shown to exhibit antibacterial activity
(Johnson et al. 2013). Cytotoxic and cytocidal activities were
observed when colicin E3 was used against HeLa cells with
specific cleavage of rRNA (Smarda et al., 1978). Studies on
colicins E1-E5 and K revealed cellular killing activity against
hamster fibroblast V79 cell lines (Smarda 1987). However,
selective anticancer activities of colicins such as A, E1, E3,
and U were demonstrated to cause cell cycle alterations in
human fibroblast cell line (MRC5). Similarly, they were re-
ported against cancerous cell lines like human breast cancer
cell lines MCF7 and MDA-MB-231, osteosarcoma cell line
HOS, HS913T and MRC5 fibroblasts with predefined p53
gene mutations, but the activity was less towards fibroblasts
MRC5 (Chumchalová and Smarda 2003). In another investi-
gation, colicin E3 showed cidal effect against human origin
carcinoma cells and HeLa cells (Smarda et al., 1978) with
dose-dependent inhibitory response to murine leukemia cells
P388 (Fuska et al. 1979). Another evidence was provided in a
different study where murine lymphoma cell lines showed
decrease in viability with the treatment of colicins A and E2
(Smarda and Oravec 1989). Colicins E1 and E3 destroyed
oncogene v-myb transformed chicken monoblasts without af-
fecting the cell cycle events (BM2), indicating the probability
of necrosis instead of apoptosis (Smarda et al. 2001). These
studies also highlighted the specificity towards anticancer
properties of colicins. Several in vivo investigations in mice
also supported evidence to the anticancer potential of colicins
through intratumor injections that decreased tumor volume
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(Cursino et al. 2002; Farkas-Himsley et al. 1995) and en-
hanced longevity in mice with transplanted LP-2
plasmacytoma (Chumchalová and Smarda 2003).

Microcins

Members of the family Enterobacteriaceae are known to pro-
duce microcins that are smaller in size (< 10 kDa) in compar-
ison to colicins. So far, there are seven microcins studied in
detail and reported (Table 2). The biosynthetic gene clusters of
microcins typically contain microcin precursor, ABC trans-
porter for peptide transport and defense, and structural modi-
fications. Genetic machinery such as plasmids and chromo-
somes harbors most of the secretion factors for the microcin
production (Duquesne and Destoumieux-Garzón, 2007). This
group includes some low molecular weight molecules with
distinct structural modifications, e.g., microcins B17, C7,
C51, and J 25 (Agarwal et al. 2011; Metlitskaya et al. 1995;
Wilson et al. 2003), others with disulfide bonds. However,
microcins like L, V, and 24 did not show any posttranslational
modifications (Pons et al. 2004; Jeziorowski and Gordon,
2007; Frana et al. 2004) and microcins E492, M, H47, and
I47 have been reported as linear peptides (de Lorenzo 1984;
Vassiliadis et al. 2010). Microcin E492 (7.8 kDa) from
Klebsiella pneumoniae strain RYC492 is reported to inhibit
a large number of pathogenic bacteria belonging to genera
including Escherichia, Klebsiella, Salmonella, Citrobacter,
and Enterobacter (de Lorenzo 1984). Microcins like E492
were reported to display activity against various human cancer
cell lines such as HeLa, Jurkat, RJ2.25, and colorectal carci-
noma cells. However, it did not inhibit normal cells such as
bonemarrow cells, splenocytes, KG-1, human tonsil cells, and
nontumor macrophage-derived cells (Hetz et al. 2002). The
principal mechanism of action for microcin E492 involved
pore formation in the cell membrane and thus disruption of
membrane potential (de Lorenzo and Pugsley 1985; Lagos
et al. 1993). Studies also emphasized cellular apoptotic fea-
tures including cell shrinkage, DNA fragmentation,
phosphatidylserine release, caspase activity, loss of mitochon-
drial membrane potential, and release of intracellular calcium
ions undermining the significance of apoptosis as the major
mechanism of cellular death (Hetz et al. 2002). In fact,
microcin E492 was delivered into the host by plasmid-
i nduced bac t e r i o c i n p roduc t i on u s i ng E . co l i
VSC257pJEM15 as a safer, non-toxic, non-immunogenic
method (Hetz et al. 2002). Moreover, systemic administration
of the peptide in mice leads to selective colonization of a
probiotic E. coli strain Nissle191 in cancerous cells (Brader
et al. 2008). Additionally, E. coli strain Nissle1917 producing
both microcin M and microcin H47 is used as a probiotic
under the name Mutaflor, that has been extensively used for
management of a variety of intestinal diseases (Rembacken
et al. 1999; Kruis 2004). These findings suggest E. coli

Nissle1917 strain is a suitable carrier for the delivery of
microcin E492 in preclinical investigations. Antitumor activ-
ities of microcin E492 were shown in a preclinical nude
mouse model xenografted with human colorectal carcinoma
cells (Lagos et al. 2009).

Pediocins

Pediocins are small, cationic, plasmid-encoded AMPs
(Table 2) yielded by members of Pediococcus and other lactic
acid-producing genera (Papgianni and Anastasiadoue 2009).
Pediocins are highly stable peptides that are effective over a
range of temperature and pH. However, they are sensitive to
proteolytic enzymes like papain, pepsin, protease, trypsin, and
α-chymotrypsin (Kumar et al. 2011). Different types of
pediocins are reported to date including pediocin L50, AcH,
AcM, CP-2, F, K1, L, L-50, SJ-1, etc., (Papgianni and
Anastasiadoue 2009; Ennahar et al. 1996; Elegado et al.
1997; Cintas et al. 1995; Schved et al. 1993). The N-
terminal region of pediocins contains a conserved motif Y-
G-N-G-V/L also known as “pediocin box” along with two
conserved cysteines that are joined by a disulfide bridge to
form a three-stranded antiparallel β-sheet structure. While
cationic β-sheet domain at N-terminal mediates binding, the
hairpin-like C-terminal region involves penetration of the pep-
tide into hydrophobic region of the target cell membrane
(Fimland et al. 2005; Drider et al. 2006). Among various
pediocins, pediocin PA-1 fromP. acidilactici PAC1.0 has been
reported to inhibit growth of human lung carcinoma cell line
and human colorectal adenocarcinoma cell line (Kaur and
Kaur 2015). In a different study, pediocin PA-1 isolated from
P. acidilactici K2a2-3 revealed cytotoxicity against human
colon adenocarcinoma cell line (HT29) and HeLa cell line
(Villarante et al. 2011). Other pediocins like CP2 produced
by P. acidilactici CP2 MTCC 5101 and its recombinant vari-
ant displayed cytotoxic effects against human cancer cell lines
including HepG2, HeLa, and MCF7 (Kumar et al. 2011).

Pep27anal2

Pep27anal2 is an analogue of Pep27 that is effective against
S. pneumoniae (Sung et al. 2007). Pep27anal2 contains 27
amino acids with more hydrophobic residues in comparison
to Pep27. Pep27anal2 was demonstrated to show cytotoxic
effects against leukemic cancer cells such as AML-2, HL-
60, Jurkat, gastric cancer cells, SNU-601 and MCF-7 cells.
Simultaneously, Pep27 anal2 revealed penetration of cell
membrane as a mechanism of action and cell-destroying ac-
tivity was independent of caspase and cytochrome-C. Results
also suggested that the hydrophobic nature of the peptide
played an important role in membrane interactions and anti-
cancer activity with potential of being a candidate for
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anticancer therapeutic agents (Sung et al. 2007; Lee et al.
2005; Huang et al. 2011).

Bovicin

Bovicin is a low molecular weight (2.4 kDa), broad-spectrum
AMP produced by Streptococcus bovis HC5 (Table 2).
Bovicin resembles nisin in both structure and function with
stability towards high temperature and low pH (Fig. 1).
Though it was resistant to proteinase K and α-chymotrypsin,
enzymes like pronase E and trypsin show effect on bioactivity.
The mechanism of activity is mainly by disrupting the integ-
rity of cell membrane through pore formation resulting in
ionic imbalance, specifically, affecting potassium efflux in
target cells (Mantovani et al. 2002). Bovicin is found to be
effective against MCF7 and HepG2 cancer cell lines (Paiva
et al. 2012).

Laterosporulins (LS)

Laterosporulin is a defensin-like peptide from Brevibacillus
spp. strains GI-9 and SKDU10. They have displayed human
defensin-like structure and broad-spectrum activity against
bacteria (Singh et al. 2014). However, LS10 showed
antimycobacterial activity as it inhibited pathogenic strains
ofMycobacterium tuberculosisRv strain (Table 2). The amino
acid composition analysis of LS10 showed predominance of
hydrophobic amino acids (Baindara et al., 2017a, b) and it is
capable of killing Mtb H37Rv strain residing inside the
phagosomes of murine macrophages. It was found to be
non-toxic to macrophage cells even at higher concentrations
(Baindara et al. 2016). This was also involved in membrane
disruption as demonstrated by alterations in ATP levels and
the NAD(P)/NAD(P)H ratios. There was no effect onRBCs as
no hemolysis was observed even at increased concentration in
comparison to their MIC values. LS10 displayed cytotoxicity
against diverse cancer cells like MCF-7, HEK293T, HT1080,
HeLa, and H1299 at significantly low concentrations
(10 μM), except prostate epithelium cells RWPE-1. Release
of lactate dehydrogenase from cancer cell lines at 15 μM con-
centration indicates the lytic ability of LS10. Furthermore,
flow cytometry analysis revealed that LS10 induced apoptosis
in cancer cell lines even at 2.5 μM concentration.
Nevertheless, RWPE-1 cells remained viable even at 20 μM
concentration (Baindara et al., 2017a, b).

Conclusions

Bacteriocins are AMPswith unique biologic properties, which
make them quite appealing and promising therapeutic com-
pounds for a variety of disease conditions. Particularly, the
anticancer properties of bacteriocins have been studied, but

they are applied only to a limited extent yet. Purified bacterio-
cins including plantaricin, nisin, pyocin, colicin, pediocin, and
microcin (Lagos et al. 2009) have shown inhibitory properties
against different cancer cell lines as few of them have been
examined in xenograft mouse models also (Shaikh et al. 2012;
Cornut et al. 2008; Saito and Watanabe 1979). Bacteriocins
are membrane active peptides and altered genetic expression
of surface charge on cancer cell surface makes them more
specific and targeted to interact with bacteriocins (Zhao et al.
2006; Riedl et al. 2011; Martín et al., 2015). Few other salient
structural characteristics of bacteriocins are positively charged
amino acid residues, hydrophobicity, amphipathic structures
and oligomerization that enhance their potential anticancer
activities. The anticancer mechanism of bacteriocins largely
includes apoptosis, inhibition of cell proliferation, depolariza-
tion of cell membrane, blockage of angiogenesis, and inhibi-
tion of tumorigenesis as observed in vivo. However, well con-
trolled in vivo investigations must be carried out to gain better
insights in mechanism of action against cancerous cell lines.
Biophysical studies, structure analysis, dynamics, topology,
and molecular mechanisms of membrane disruption and the
specific membrane component activities are essentially re-
quired to provide new insights to understand the anticancer
phenomenon of potential anticancer bacteriocins. However,
susceptibility towards the serum components like proteases
is one of the major challenges of using bacteriocins in vivo.
Chemical syntheses of bacteriocins by incorporating D-amino
acids that are less susceptible to proteolytic cleavage in the gut
have been tried. For example, synthesis of lactococcin G with
replaced D-amino acids in N- and C-terminals for improved
stability against peptidases (Oppegård et al., 2010) and site-
directed mutations of trypsin recognition sites in salivaricin P
(O’Shea et al. 2010) reveal the efforts focused on improving
stability of bacteriocins in gut environment. Moreover, the
functional vehicles for the controlled focused delivery of bac-
teriocins could also improve their in vivo stabilities and
applicability.

As bacteriocins are amenable to bioengineering, they pro-
vide an opportunity to improve the efficacy of naturally oc-
curring bacteriocins by creating the hybrid bacteriocins with
desired properties. Molecular screening of three novel bacte-
riocins Lsl_003, Lsl_0510, and Lsl_0554 from Lactobacillus
salivarius by Shaikh et al. (2012) revealed binding affinities
towards common cancer targets p53, Rb1, and AR. Among
these, Lsl_0510 showed the highest binding affinity towards
all three receptors (p53, Rb1, and AR) that suggested it as an
ideal candidate for future cancer therapeutics (Shaikh et al.
2012). Recent studies provided convincing evidence that oral
and gut bacteria may be implicated in carcinogenesis in
humans (Ahn et al. 2012; Michaud and Izard 2014; Grover
et al. 2016). In these scenarios, it is plausible that bacteriocins
having dual activities as antimicrobial as well as anticancer
properties like nisin may have greater composite benefits of
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reestablishing a healthy microbiome and disrupting the carci-
nogenesis (Shin et al. 2016). Such agents essentially require a
rigorous well-designed quality-focused research to develop
them as promising clinical therapeutic agents for human use.
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