
MINI-REVIEW

Immunobiosis and probiosis: antimicrobial activity of lactic acid bacteria
with a focus on their antiviral and antifungal properties

Mattia Pia Arena1 & Vittorio Capozzi1 & Pasquale Russo1
& Djamel Drider2 & Giuseppe Spano1

& Daniela Fiocco3

Received: 28 August 2018 /Revised: 18 September 2018 /Accepted: 18 September 2018 /Published online: 2 October 2018
# Springer-Verlag GmbH Germany, part of Springer Nature 2018, corrected publication 2018

Abstract
Lactic acid bacteria (LAB), a heterogeneous group of bacteria that produce lactic acid as the main product of carbohydrate
degradation, play an important role in the production and protection of fermented foods. Moreover, beside the technological use
of these microorganisms added to control and steer food fermentations, their beneficial healthy properties are largely overt. Thus,
numerous LAB strains have obtained the probiotic status, which entails the ability to maintain and promote a good health of
consumers. In particular, increasing consideration is being focused on probiotic microorganisms that can improve the human
immune response against dangerous viral and fungal enemies. For such beneficial microbes, the term Bimmunobiotics^ has been
coined. Together with an indirect host-mediated adverse effect against undesirable microorganisms, also a direct antagonistic
activity of several LAB strains has been largely demonstrated. The purpose of this review is to provide a fullest possible overview
of the antiviral and antifungal activities ascribed to probiotic LAB. The interest in this research field is substantiated by a large
number of studies exploring the potential application of these beneficial microorganisms both as biopreservatives and immune-
enhancers, aiming to reduce and/or eliminate the use of chemical agents to prevent the development of pathogenic, infectious,
and/or degrading causes.
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Multifunctional features of lactic acid bacteria

The term lactic acid bacteria (LAB) embraces a vast num-
ber of bacterial species among which many strains have
been proved to have multifunctional features including
high fermentative capacity and/or important beneficial
skills for humans. Within LAB, there are several phylogenet-
ically different species belonging to the Bacilli, Clostridia,
and Mollicutes classes (Garrity and Holt 2001). Within
Bacilli class, six bacteria families, i.e. Aerococcaceae,
Carnobacteriaceae, Enterobacteriaceae, Lactobacillaceae,
Leuconostocaceae, and Streptococcaceae, encompass the

LAB genera mainly associated with food such as
Lactococcus, Enterococcus, Streptococcus, Leuconostoc,
Weissella, Oenococcus, Pediococcus, Tetragenococcus, and
Carnobacterium (Franz, and Holzapfel 2011).

LAB share the characteristic to be Gram-positive, usually
non-motile and non-spore forming, catalase-negative,
aerotolerant organisms, forming lactic acid as the main fer-
mentative product through carbohydrates degradative metab-
olism (Axelsson 2004). The ability to ferment sugar, the in-
crease of the acidity, and the production of several secondary
metabolites are the main reason why LAB, since ancient
times, have been used as a sort of starter cultures in order to
improve the preservation, flavor, and texture of fermented
food and feed products (Kleerebezem et al. 2017; Petruzzi
et al. 2017; Kumar et al. 2017; Jeon et al. 2015).
Furthermore, LAB are also exploited to increase the nutrition-
al value of fermented foods, e.g., in yogurt, profiting by their
ability to produce essential substances such as folate and ribo-
flavin (Da Silva et al. 2016).

Several LAB strains, most of them belonging to
Lactobacillus genus, have been shown to perform human
and animal health-promoting activities, such as modulation
of immune response, prevention of cancer, reduction of
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chronic bowel inflammations and cholesterol levels, improve-
ment of the intestinal barrier, inhibition of pathogenic organ-
isms, beneficial interactions with the endogenous intestinal
microbiota (Mombelli and Gismondo 2000; Pothuraju and
Sharma 2018; Vijayaram and Kannan 2018). The claim by
which these microorganisms are commonly known is the term
Bprobiotics^ defined as Blive microorganisms which when
administered in adequate amount confer a health benefit on
the host^ (FAO/WHO 2001).

In order to absolve to probiotic features, beneficial micro-
organisms need to tolerate the harsh conditions of the oro-
gastro-intestinal environment, adhere on the intestinal mucosa
and colonize the gut tract, and produce helpful bioactive mol-
ecules (Arena et al. 2017; Al-Tawaha and Meng 2018). The
criteria by which microorganisms can be claimed probiotics
are listed in Table 1, although they do not need to possess all
cited properties but only some specific features, according to
the aim to be reached.

In this review, we tread the current state of the art on the
antiviral and antifungal ability of lactic acid bacteria that hold
probiotic skills.

Probiosis and immunobiosis

Probiotic LAB have been introduced widely in human and
animal feed in increasing manner in the past last decades
due to their positive impact on the prevention of some
diseases and the maintaining of a well state of health.
There is an active molecular dialog between the commen-
sal microorganisms and the host mucosal immune system
(Galdeano et al. 2007). In humans, probiotics can interact
with the gut-associated lymphoid tissue (GALT) and mod-
ulate the immune response to injury and pathogenic

organisms. Peyer’s patches, i.e. lymphoid follicles located
in the submucosa layer of the ileum and intestinal mucosa
layer, are involved in the intestinal immune defense rec-
ognizing antigens and pathogenic microorganisms through
specialized cells called microfold cells (M cells). Peyer’s
patches hold macrophages, dendritic cells, B lymphocytes,
and T lymphocytes that actively contrast the possible en-
emies (Bonnardel et al. 2015; Diener 2016). The intestinal
IgA cells are mainly produced in the Peyer’s patches and
their principal role is to protect the digestive tract which
constitutes a border line between the external and the in-
ternal environments. They continually select what is use-
ful for the organism, such as food nutrients, and what is
harmful, such as pathogenic microorganisms and viruses
(Laissue et al. 1993). Probiotic bacteria, such as strains of
Lactobacillus casei and Bifidobacterium breve, have been
recently reported to enhance the levels of specific IgA
contributing to improve the mucosal resistance against
Candida infections (Mendonça et al. 2012).

Several studies tried to outline the mechanisms through
which probiotic bacteria can have an influence in the stimula-
tion of immune system. Plausibly, the cell wall of probiotics
seems to promote the macrophages activation and the aug-
mentation of IgA-producing cells in the gut lamina propria.
Probiotic cells may be able to bindM cells and/or to direct the
macromolecular antigen uptake to Peyer’s patches (Majamaa
et al. 1995; Isolauri 1999). Thus, specific components of the
probiotic cell are essential for the immune modulation and,
earlier, for adhesion ability to intestinal mucosa, which is in-
dispensable in order to create an intimate contact between
bacteria and the intestine (Santarmaki et al. 2017). There are
many evidences that probiotic bacteria producing vitamins
could provide anti-inflammatory effects that could be consid-
ered as adjunct IBD treatments to decrease some of the un-
wanted side effects caused by primary treatments (de Moreno
de LeBlanc et al. 2018).

Some LAB, such as Lactobacillus rhamnosus and
Lactobacillus reuteri, have been demonstrated to raise the
level of IgA-specific antigen-secreting cells to rotavirus and
reduce the shedding of rotavirus (Majamaa et al. 1995). Albeit
the underlying mechanisms are not well elucidated, the adhe-
sion ability of the aforementioned probiotic species would
seem to be the key for the reduction of diarrhea caused by
rotavirus (Shornikova et al. 1997; Tuomola et al. 1999), ac-
companied by the capability to stimulate antibodies against
rotavirus (O’Halloran et al. 1998).

In parallel to adhesion, co-aggregation is a suitable feature
preferable associate to a probiotic strain. Co-aggregation is the
ability of microorganisms to adhere to each other, such as
probiotic-probiotic and/or probiotic-pathogen. The co-
aggregation properties of probiotic bacteria isolated from food
products, such as some strains of Lactobacillus acidophilus,
Lactobacillus plantarum, L. rhamnosus, Lactobacillus

Table 1 Principal criteria by which microorganisms can be claimed as
probiotics

Probiotic features

1. Survival through the oro-gastrointestinal tract, in order to reach the
intestinal compartment

2. Adhesion to intestinal epithelial surface, in order to explicit the
beneficial effects

3. Safety for human use

4. Tolerance to technological processing, in order to survive in the matrix
used as carrier for the consumer

5. Production of helpful metabolic compounds, such as vitamins and
short fatty acids

6. Modulation of immune response, acting on the expression of genes
involved in the pro- and/or anti-inflammation processes

7. Antimicrobial activity, inhibiting pathogens adhesion
and/or growth

8. Enhancement of intestinal barrier function

9. Co-aggregation probiotic-probiotic and/or probiotic-pathogens
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paracasei, and L. reuteri, were demonstrated to be specific
and time-dependent against Escherichia coli and the oral path-
ogen Streptococcus mutans, underlying the possible anti-
caries properties of probiotic (Twetman et al. 2009;
Prabhurajeshwar and Chandrakanth 2017).

Thanks to the intimate contact occurring upon co-aggrega-
tion, probiotics can inhibit the harmful microorganisms by
producing antimicrobial molecules in very close proximity
of them. The antimicrobial substances mainly produced by
LAB can be classified into low and high molecular mass com-
pounds (i.e., with a molecular mass < 1000 Da and > 1000 Da,
respectively) (Šušković et al. 2010). The first group, also
named non-bacteriocin group, includes organic acids (such
as lactic, acetic, phenyllactic, 4-hydroxyphenyllactic,
benzoic acids) (Sjögren et al. 2003; Valerio et al. 2004;
Niku-Paavola et al. 1999), hydrogen peroxide, diacetyl, acet-
aldehyde, acetoin, and carbon dioxide. In the undissociated
form, organic acids can diffuse across the cell membrane
exploiting the chemical gradient caused by the different pH
between the cytosol (alkaline) and the external environment
(acidic). Once inside the bacteria cell, they can interfere with
metabolic functions and dissipate the membrane potential
(Tejero-Sariñena et al. 2012; Lorca and de Valdez 2009).
Hydrogen peroxide, instead, is able to alter the redox po-
tential of bacterial cell and to damage the protein structures
due to its oxidizing effect (Pridmore et al. 2008; Reid
2008). Diacetyl, acetaldehyde, and acetoin, produced
through heterofermentative metabolisms, play a role in
the enhancement of shelf life of some foods as they can
control the growth of spoilage microorganisms (Jyoti et al.
2003; Lanciotti et al. 2003). Carbon dioxide is responsible
for the inhibition of enzymatic decarboxylations and the
dysfunction of membrane permeability in fungi.

The second group of antimicrobial compounds produced
by LAB, i.e., high molecular mass substances, includes pro-
teinaceous molecules referred to as bacteriocins (Sidooski
et al. 2018). The bacteriocins produced by LAB are classified
based on their molecular weight, heat sensitivity, mechanism
of action, and spectrum of activity (review by Šušković et al.
2010; López-Cuellar et al. 2016; Collins et al. 2017).
Regardless of the type of bacteriocins (e.g., heat-stable or
heat-labile, single or two-peptide bacteriocin, linear or circular
structure), these molecules have received considerable atten-
tion due to their potential application in food industry as
biopreservatives. Besides, the bacteriocin biosynthetic ability
is a desirable probiotic feature, as their antibacterial spectrum
can embrace spoilage organisms and foodborne pathogens
(Chen and Hoover 2003). For LAB bacteriocins, four classes
have been proposed: (i) lantibiotic bacteriocins, (ii) non-
lantibiotic bacteriocins, (iii) bacteriolysins, and (iv) lipid- or
carbohydrate-required bacteriocins (Šušković et al. 2010).
The mode of action of bacteriocins can vary from the modu-
lation of enzyme activity, inhibition of outgrowth of spores,

destabilization of cell membrane, or formation of pores, which
can occur through binding lipids, dissipating proton motive
force, thus altering the chemical membrane potential (Chen
and Hoover 2003; Héchard and Sahl 2002; Venema et al.
1995; Cotter et al. 2005).

Biopreservative activity of probiotic LAB:
from bacteriocins to organic acids through an
in situ fermentation approach

In the food fermentation field, those cultures of microorgan-
isms, properly selected and added to raw material in order to
accelerate and steer the fermentation process, are named start-
er cultures. Many LAB are commonly used as microbial
starters in several fermented foods based on matrices such as
vegetables, meat, cereals, and milk (Sandine and Thunell
2018; Russo et al. 2016). In these products, the starter micro-
organisms, besides contributing to transform the raw material
into a more palatable product, synthesize several metabolites,
such as lactic acid, acetic acid, hydrogen peroxide, diacetyl,
bacteriocins, which act as natural preserving agents. Thus, a
greater acidifying capacity and/or the ability to produce larger
amounts of bacteriocins are among the criteria by which the
starter bacteria are selected.

Bacteriocin-producing starter cultures may not only
contribute to food safety, by inhibiting foodborne patho-
gen microorganisms, but also prevent the growth of unde-
sirable autochthonous bacteria that produce off-flavor.
Some LAB cultures can be particularly capable to produce
antimicrobial compounds but may be unable to satisfacto-
rily carry out the desired fermentation of that particular
food product. These cultures could be added during or
after the fermentation process only for increasing the shelf
life of the food product. These bacteriocin-producing ad-
junct cultures need to be also opportunely selected in or-
der to not interfere with the performances of starter cul-
tures and negatively affect the fermentation process
(Bravo et al. 2009; Silva et al. 2018; O’Sullivan et al.
2003). Bacteriocins-producing LAB can be also added to
non-fermented products, with the aim to protect them dur-
ing their shelf life. In these cases, the used cultures are
named bacteriocin-producing protective bacteria and they
are added as food ingredient in food manufacturing
(Woraprayote et al. 2016). Many studies have been carried
out to improve the biopreservative action of microbes dur-
ing the conservation process of the food product. Thus,
numerous researches aimed to develop immobilization or
microencapsulation methods for bacteriocin-producing
bacteria or purified bacteriocins, directly into the food matrix,
or on its surface, or in the food packaging (Champagne and
Fustier 2007; Woraprayote et al. 2016; Woraprayote et al.
2018; Malhotra et al. 2015).
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Bacteriocins used in combination with other methods of
preservation, such as chemical additives (e.g., EDTA, sodium
lactate, and potassium diacetate), heating, and high-pressure
treatments, have been shown to improve the biopreservative
action (Egan et al. 2016). To date, nisin (Nisaplin, Danisco;
licensed as a food preservative (E234)) and pediocin PA1
(MicrogardTM, ALTA 2431, Quest) are the only bacteriocins
commercialized as food preservatives (Simha et al. 2012;
Favaro et al. 2015). However, the screening and characteriza-
tion of numerous other bacteriocins produced by LAB could
expand the industrial application of these compounds in the
near future (Sánchez-Hidalgo et al. 2011; Suda et al. 2012).

Nisin, produced principally by Lactococcus lactis but also
by Streptococcus strains (O’Connor et al. 2015), is mainly
active against Gram-positive bacteria, e.g., Listeria and
Staphylococcus genera, and the spore forming bacteria, e.g.,
Bacillus and Clostridium genera (Chen and Hoover 2003).
Pediocin is produced by Pediococcus spp. and is highly
active against L. monocytogenes and S. aureus pathogens,
and also against Pseudomonas genera and E. coli species
(Garsa et al. 2014).

Overall, the antifungal activity of LAB appears to be
correlated to metabolic products that can also act in syner-
gy. The chemical nature and the produced amount of these
compounds are species- and strain-dependent (Crowley
et al. 2013) and include organic acids (hydrocinnamic acid,
DL-phenyllactic acid, DL-hydroxyphenyllactic acid,
polyporic acid, azelaic acid, 2-hydroxybenzoic acid, 4-
hydroxybenzoic acid, p-coumaric acid, vanillic acid,
caffeic acid, succinic acid, 2-pyrrolidone-5-carboxylic ac-
id), fatty acids (decanoic acid, 3-hydroxydecanoic acid,
(S)-(-)-2–hydroxyisocaproic acid, coriolic acid, ricinoleic ac-
id), cyclopeptides [cyclo(L-Pro-L-Pro), cyclo(L-Leu-L-Pro),
cyclo(L-Tyr-L-Pro), cyclo(L-Met-L-Pro), cyclo(Phe-Pro),
cyclo(Phe-OH-Pro), cyclo(L-Phe-L-Pro), cyclo(L-Phe-trans-
4-OH-L-Pro), cyclo(L-His-L-Pro), and cyclo(Leu-Leu)],
reuterin, hydrogen peroxide, and volatile compounds such as
diacetyl (Leyva Salas et al. 2017).

In the overview to focus on the antifungal and antiviral
activity of LAB, an example of the use of bacteria to
prevent and/or decelerate the fungal growth in food could
be that of cereal-based fermented products. Cereals and
their derivative products are sensitive to the contamination
by spoilage filamentous fungi, and this is a critical prob-
lem both from an economic point of view, due to the loss
of raw material, and from a safety concern, due to the
potential production of mycotoxins into food matrix (Pitt
and Hocking 2009; Oliveira et al. 2014). LAB can have
antagonistic activity against filamentous fungi, and, al-
though the real mechanisms by which they contrast the
fungal development are still unclear, it seems associated
to cytoplasmic acidification and failure of proton motive
forces (Reis et al. 2012; Russo et al. 2017). Among organic

acids, phenyllactic acid (PLA) seems to be the most antifungal
compound produced by LAB (Lavermicocca et al. 2000;
Ström et al . 2002; Cortés-Zavaleta et al . 2014).
Consequently, the addition of LAB cultures, or their cell free
supernatants, showing antifungal activity, has been proposed
for several food industry applications, including dairy and
cereal-based productions, malting process, and fruits and veg-
etables storage (Axel et al. 2015; Oliveira et al. 2015; Cheong
et al. 2014; Crowley et al. 2012; Russo et al. 2017). In malting
wheat grains, treatments with strains of Lactobacillus sakei,
Pediococcus acidilactici, and Pediococcus pentosaceus have
been shown to reduce the production of Fusariummycotoxins
and the development of F. culmorum and F. poae. That
reduction was linked to probable mechanisms of binding
of mycotoxins b and/or their detoxification by LAB
(Juodeikiene et al. 2018). In fact, it seems plausible that
LAB could detain enzymes able to destabilize the myco-
toxin structure making them less active. This feature has
been already reported for other microorganisms, including
Eubacterium, which are able to produce specific enzymes
(e.g., deepoxidase) that catalyze the oxidation of the toxic
epoxy ring of some mycotoxins in a strain-specific manner
(Karlovsky 1999; Garvey et al. 2008; Juodeikiene et al.
2012; Mccormick 2013; Hathout and Aly 2014).

Recently, Miezkin et al. (2017) found a synergist effect
of acetic, lactic, 2-pyrrolidone-5-carboxylic, (S)-(-)-2–
hydroxyisocaproic, and 2-hydroxybenzoic acids produced
by Lactobacillus harbinensis strains against several fungi.
Moreover, the production of diacetyl together with 2,3-
pentadione, acetic acid, and butanoic acid was suggested
as the key antifungal capability of L. paracasei strain
(Aunsbjerg et al. 2015).

In Fig. 1, a schematic representation of probiosis,
immunobiosis, and biopreservative activity of LAB is
reported.

Probiosis and antiviral activity

In recent years, the problem of antibiotic resistance has
troubled both the scientific community and consumers.
Antibiotic resistance of pathogenic bacteria is the mecha-
nism through which bacteria become resistant to the anti-
biotic used in the medical treatments of the diseases. The
overuse of those medications, as well as a lack of new
drug development by the pharmaceutical industry, deter-
mined the worldwide emergence of resistant bacteria
(Ventola 2015). Consequently, many efforts have been
made in order to find antibiotic bio-alternatives, such as
phages, bacteriocins, essential oils, metals, minerals, or-
ganic acids, or enhancement of modulation of human im-
mune response (Lazarus et al. 2018; Ouwehand et al.
2016). In this regard, probiotics have been found to
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reduce the risk of certain infectious disease directly acting
against the etiologic agent of the disease or indirectly
modulating the host’s immune response and modifying
the gut microflora in order to prevent pathogen coloniza-
tion (Cavera et al. 2015).

The mult iple act ions of probiot ic in the oro-
gastrointestinal tract include the production of metabolites
that modify the acid and redox environment and disadvan-
tage the pathogenic colonization, the enhancement of in-
testinal barrier function and mucin production, and the
competition for nutrients and adhesion sites against patho-
gens. Moreover, the production of antimicrobial com-
pounds that directly intervene to reduce the growth of
enemies and the stimulation of immune system response
are two main mechanisms able to contrast the onset of
infections and diseases (Arqués et al. 2015; Arena et al.
2016, 2014; Yahfoufi et al. 2018). The consumption of
probiotic microorganisms, such as Lactobacillus johnsonii
and B. lactis, has been related to increased phagocytosis
of pathogens, such as E. coli (Schiffrin et al. 1994). Other
probiotic bacteria have been shown to activate the lymphoid
cells of the gut-associated lymphoid tissue through bacterial
cell envelope constituents, such as peptidoglycan, and thanks
to the intimated contact that is established when the probiotic
cell adheres to the intestinal monolayer surface (Ranadheera
et al. 2014). However, probiotics could also modulate im-
mune response by acting on the permeability of the intes-
tine to eventual antigens and enemies, including viruses,

and by producing antimicrobial metabolites (Seo et al.
2010).

LAB can exert antiviral capabilities by three main
mechanisms: (i) the direct interaction with viruses, (ii)
the production of antiviral inhibitory substances, or/and
(iii) the stimulation of immune system. The direct inter-
action is probably the most common process by which
probiotic bacteria are able to inactive viruses. It occurs
through adsorption or trapping the virus and is strictly a
strain-dependent mechanism (Al Kassaa et al. 2014).
Strains of L. paracasei, L. rhamnosus, L. plantarum,
and L. reuteri have been studied for their ability to trap
vesicular stomatitis virus (VSV) (Botić et al. 2007),
while Enterococcus faecium and Lactobacillus gasseri
strains have been reported to directly inactive influenza
viruses and herpes simplex type 2 (HSV-2), respectively
(Al Kassaa et al. 2015; Wang et al. 2013). Frequently,
many probiotics can attach to cell surfaces, thereby af-
fecting the first stages of the viral infection by blocking
the virus binding to the cell receptors and reducing its
entrance into the cell (Bermudez-Brito et al. 2012;
Varyukhina et al. 2012).

Moreover, antiviral activity by probiotic can occur also
through the stimulation of host’s immune system. A strain
of Bifidobacterium adolescentis has been proved to de-
crease HPV16 mRNA transcript and protein levels dem-
onstrating antiviral capability (Cha et al. 2012). As the
HPV oncogene mRNA and protein overexpression are
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Fig. 1 Schematic representation
of probiosis, immunobiosis, and
biopreservative activity of lactic
acid bacteria (LAB)
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correlated to carcinogenesis process of the cervical cancer
(Woodman et al. 2001), the downregulation exerted by
B. adolescentis highlights the potential application of that
strain in the prevention of HPV-associated cervical cancer
(Cha et al. 2012; Li et al. 2010).

The production of inhibitory substances can also contrast
viruses and their activities. For example, hydrogen peroxide
produced by LAB is able to attenuate human immunodefi-
ciency virus (Conti et al. 2009), while lactic acid, the main
product of the LAB metabolism, reduce the pH values and
make the environment unfavorable for viruses, such as human
lymphotropic virus and herpes simplex virus (Martin et al.
1985, 2010; Tuyama et al. 2006). Other bacterial molecules,
such as non-protein cell wall component, could contrast viral
replication (Mastromarino et al. 2011). Several LAB bacterio-
cins have been investigated for their ability to reduce coli-
phage HSA viral progeny (Humaira et al. 2006) or to affect
intracellular viral multiplication and late stages of replication
of herpes simplex virus (HSV-1 and HSV-2) (Wachsman et al.
1999, 2003; Todorov et al. 2005). The antiviral effect of bac-
teriocins during viral multiplication seems to depend on their
ability to avoid the aggregation of viral particles by blocking
the receptors sites on host cells (Wachsman et al. 2003).
Numerous studies on antiviral activity against viral respiratory
infections brought to light that the oral administration of pro-
biotic LAB, such as strains of L. plantarum, Lactobacillus
casei, and Lactobacillus fermentum, decreased influenza virus
effects (Maeda et al. 2009; Boge et al. 2009; Olivares et al.
2007). Moreover, a strain of L. rhamnosus, in combination
with B. animalis subsp. lactis biotype, has been proved to
ameliorate the incidence of respiratory virus infections (RVI)
(Rautava et al. 2009). The ability to beneficially modulate the
IFN-c and IL secretion in order to contrast respiratory syncy-
tial virus was correlated to the assumption of L. rhamnosus
(Chiba et al. 2013; Salva et al. 2011). L. plantarum was in-
vestigated for its antiviral and protective effects against influ-
enza virus, associated to a beneficial modulation of innate
immunity of dendritic and macrophage cells and cytokines
production pattern. The strains were able to modulate the
levels of cytokines IL-12 and IFN-c in bronchoalveolar lavage
fluids, and to reduce the degree of inflammation upon infec-
tion with influenza virus (Park et al. 2013).

The most known and studied antiviral activity by LAB is
that against enteric viruses that are commonly associated with
diarrhea and gastroenteritis in humans (Maragkoudakis et al.
2010). L. casei and L. rhamnosus stains could reduce the
symptoms of acute infectious diarrhea in infants and children
(Agarwal and Bhasin 2002; Szajewska andMrukowicz 2001).
The production of NO− and H2O2 by strains of E. faecium,
L. fermentum, Lactobacillus pentosus, and L. plantarum could
account for their antiviral activity (Al Kassaa et al. 2014).

The research focused on sexually transmitted viruses
(STV) that are relatively more recent and various inhibitory

activities have been found against widespread viruses such as
human papilloma (HPV) and human immunodeficiency virus
(HIV) (Weiss et al. 2004). Some authors have shown that the
probiotic activity against these kinds of virus possibly in-
volves the suppression of oncogene proteins (Cha et al.
2012) and/or the stimulation of macrophages activity
(Khania et al. 2012).

Several studies proposed an antiviral mechanism based on
probiotic metabolites that can alter the production of viral
proteins. In detail, Olaya Galán et al. (2016) suggested that
four metabolites produced by probiotic bacteria were able to
reduce the quantity of the intracellular NSP4 protein, which is
produced by rotavirus during the infection. The consumption
of probiotics has been associated also to an amelioration of the
incidence of viral respiratory infection such as those caused by
rhinovirus. The ingestion ofBifidobacterium animalis subspe-
cies lactis has been shown to have an effect on the baseline
state of innate immunity in the nose and on the subsequent
response of the human host to rhinovirus infection in a clinical
trial of volunteers. B. animalis subspecies lactis seems toman-
ifest its anti-rhinovirus activity by modulating the inflamma-
tory host response, e.g., CXCL8 nasal response, and by de-
creasing the shedding of virus in the nasal secretion (Turner
et al. 2017).

Several compounds produced by probiotic microorganisms
have been associated with antiviral activity. For example, cells
from two L. plantarum strains, as well as their derivatives,
were found to antagonize the enterovirus Coxsackievirus B4
(CV-B4), which can infect different human tissues and pro-
voke abnormal function or destruction of various organs and
cells (Arena et al. 2018). The inhibitory effect by L. plantarum
against CV-B4 was associated to a direct interaction probiotic-
pathogen, although the antiviral mode of action needs to be
further elucidated. Similarly, other authors described antiviral
effect by L. reuteri against enteroviruses Coxsackievirus A
and Enterovirus 71, achieved through a direct physical inter-
action between bacterial and viral particles, which hinders the
virus entry into host cells (Ang et al. 2016).Moreover, another
study showed that a B. adolescentis strain was active against
Coxsackievirus B3 (CV-B3) by inhibiting its intracellular rep-
lication and acting on host IFN-mediated antiviral response
(Kim et al. 2014).

Probiotics could be also a suitable alternative or co-
treatment of urogenital infections with the aim to reduce anti-
biotic use and avoid the increasing development of resistance.
In women, in most of the studies, probiotic intervention was
supplied via vaginal route although also the oral via seems to
be effective. In the vaginal mucosa environment, probiotic
colonization determines a pH reduction and, then, an inhibi-
tion of bacterial vaginosis, urinary tract infections,
vulvovaginal candidiasis, and human papillomavirus (HPV)
(Hanson et al. 2016). The use of probiotic L. rhamnosus GG
has been demonstrated to be efficient in the prevention of
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mucosal infections by the fungal pathogen Candida albicans,
probably due to a reduction of its adhesion, invasion, and
hyphal extension in vaginal and oral sites (Mailänder-
Sánchez et al. 2017).

Conclusion

LAB represent a remarkable resource in the fight against fungi
and viruses and key allies allowing the potential reduction of
fungicidal and virucidal chemical agents. Such microorgan-
isms are able both to act directly against pathogens and
through the production of metabolites that interfere with fungi
and virus activity. Although the detailed mechanisms by
which LAB contrast microbial enemies are not well elucidat-
ed, many steps forward have been made in the last decades
and many others are still being done, as nowadays, the atten-
tion of consumers and scientists is oriented toward an increas-
ing use of bio-renewable and non-chemical approaches in
both food manufacture and medical treatments.
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