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Abstract
This paper discusses the microbial basis and the latest research on nitrous oxide (N2O) emissions from biofilms
processes for wastewater treatment. Conditions that generally promote N2O formation in biofilms include (1) low DO
values, or spatial DO transitions from high to low within the biofilm; (2) DO fluctuations within biofilm due to varying
bulk DO concentrations or varying substrate concentrations; (3) conditions with high reaction rates, which lead to greater
formation of intermediates, e.g., hydroxylamine (NH2OH) and nitrite (NO2

−), that promote N2O formation; and (4)
electron donor limitation for denitrification. Formation of N2O directly results from the activities of ammonia-
oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA), and heterotrophic denitrifying bacteria. More research
is needed on the roles of AOA, comammox, and specialized denitrifying microorganisms. In nitrifying biofilms, higher
bulk ammonia (NH3) concentrations, higher nitrite (NO2

−) concentrations, lower dissolved oxygen (DO), and greater
biofilm thicknesses result in higher N2O emissions. In denitrifying biofilms, N2O accumulates at low levels as an
intermediate and at higher levels at the oxic/anoxic transition regions of the biofilms and where COD becomes limiting.
N2O formed in the outer regions can be consumed in the inner regions if COD penetrates sufficiently. In membrane-
aerated biofilms, where nitrification takes place in the inner, aerobic biofilm region, the exterior anoxic biofilm can serve
as a N2O sink. Reactors that include variable aeration or air scouring, such as denitrifying filters, trickling filters, or
rotating biological contactors (RBCs), can form peaks of N2O emissions during or following a scouring or aeration
event. N2O emissions from biofilm processes depend on the microbial composition, biofilm thickness, substrate con-
centrations and variability, and reactor type and operation. Given the complexity and difficulty in quantifying many of
these factors, it may be difficult to accurately predict emissions for full-scale treatment plants. However, a better
understanding of the mechanisms and the impacts of process configurations can help minimize N2O emission from
biofilm processes for wastewater treatment.
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Introduction

Wastewater treatment processes can be a significant source
of nitrous oxide (N2O), a powerful greenhouse gas (GHG)
with a global warming potential around 300 times that of
carbon dioxide (CO2) (Montzka et al. 2011). N2O is very
stable and may persist in the atmosphere for over 120 years
(Kampschreur et al. 2009; Schreiber et al. 2012). The U.S.
Environmental Protection Agency (EPA) estimates that U.S.
wastewater treatment plants emit around 5.2 Tg N2O year−1

as CO2 equivalents (Ritter & Chitikela 2014), and these
amounts are expected to increase with time (Law et al.
2012; Okabe et al. 2011).
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Much past research has addressed N2O emissions from
suspended growth processes (Ahn et al. 2010; Kampschreur
et al. 2009; Law et al. 2012). However, much less is known
about emissions from biofilm processes, such as the moving
bed biofilm reactor (MBBR), integrated fixed-film activated
sludge (IFAS), biological aerated filter (BAF), granular
sludge, and membrane-aerated biofilm reactors (MABRs)
(Henze et al. 2008; Martin and Nerenberg 2012; Syron and
Casey 2008). Biofilm processes are becoming increasingly
popular due to their higher volumetric treatment rates, reduced
operational costs, minimal need for settling, and operational
simplicity (Henze et al. 2008; Khan et al. 2013; Nicolella et al.
2000; WEF 2010).

While the microbial basis of N2O formation, i.e., the
microorganisms and metabolic pathways leading to its
formation, are the same for suspended growth and biofilm
systems, the observed behavior may be very different.
This results from the microbial stratification, microbial
interactions, substrate gradients, and substrate interactions
unique to biofilms, as well as the biofilm reactor config-
uration (Henze et al. 2008; Law et al. 2012; Vlaeminck
et al. 2010). Thus, the Bmechanisms^ leading to N2O
emissions in biofilms may significantly differ from those
of suspended growth systems.

Todt and Dorsch (2016) provided a comprehensive re-
view of N2O emissions from biofilm systems. They ex-
plored the biochemistry of N2O production/consumption
in relevant organisms, discussed current biofilm models,
evaluated possible environmental factors affecting N2O
emissions, and tabulated emission factors for different
processes. Massara et al. (2017) briefly addressed biofilms
as part of a comprehensive review of N2O emissions from
wastewater processes. This review provides an update,
considering new information on the N2O emissions from
microbial systems. It also discusses new types of microbial
metabolism and different biofilm reactor configurations,
and their impacts on N2O emissions.

Biofilms vs. suspended growth systems

Biofilms are aggregates of microbial cells embedded in a net-
work of self-produced extracellular polymeric substances
(EPS) (Flemming et al. 2016; Stoodley et al. 2002). Biofilms
are widespread in natural systems (Donlan 2002) and increas-
ingly used in engineered treatment processes, especially for
those with low substrate concentrations and high flows
(Henze et al. 2008; Nicolella et al. 2000; WEF 2010).
Unlike with suspended bacteria, diffusion and reaction in
biofilms lead to substrate gradients. As a result, concentrations
in the biofilm may differ significantly from those in the bulk
liquid (Fig. 1). In addition, bacteria stratify into layers, where
different types of metabolism may predominate at different
depths within the biofilm.

The dynamics of growth, decay, and detachment influence
the microbial community structure of biofilms (Elenter et al.
2007). Slow growing organisms may be Bpushed out^ of the
biofilm by faster growing organisms (Lackner et al. 2008;
Xavier et al. 2005). Metabolic products may diffuse out of
the biofilm or may be consumed by other populations. pH
gradients may form due to proton-producing or consuming
processes within the biofilm (Vroom et al. 1999). The greater
complexity of biofilms, compared to suspended growth pro-
cesses, makes their behavior more difficult to predict.

N2O and nitrogen cycle

This section discusses basic microbial transformations that af-
fect N2O formation in wastewater treatment processes. These
processes are relevant to both suspended growth and biofilm
processes. The relationship between these transformations and
N2O formation in biofilms is discussed in subsequent sections.

The nitrogen cycle includes a number of N species and
both microbial and abiotic transformations, where N varies
in redox state between − 3 and + 5.While most of the nitrogen

Fig. 1 Idealized schematics of a a
floc and b a biofilm. The biofilm
schematic shows the liquid
diffusion layer (LDL), as well as
profiles of a substrate and
metabolic product. Note that real
flocs are highly complex and
heterogeneous in morphology,
and biofilms may have rough or
dendritic surfaces with
internal pores
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cycle is well established, new biotic and abiotic transforma-
tion processes continue to be discovered (Daims et al. 2016;
Kuypers et al. 2018; Schreiber et al. 2012; Stein and Klotz
2016). Figure 2 schematically shows key N species and bio-
logical transformations. For wastewater treatment processes,
the key transformations include nitrification and denitrifica-
tion, where nitrate (NO3

−) is sequentially reduced to nitrogen
gas (N2). Both processes can lead to N2O formation.

N2O from microorganisms related to nitrification

Nitrification is carried out by the sequential activity of
ammonia-oxidizing bacteria (AOB) and archaea (AOA), and
nitrite-oxidizing bacteria (NOB). AOB and AOA oxidize am-
monia (NH3) to nitrite (NO2

−), with hydroxylamine (NH2OH)
as an intermediate (Fig. 3) (Daims et al. 2016; Guo et al.
2017), while NOB oxidize NO2

− to NO3
−. AOB directly pro-

duce N2O through two main pathways: nitrifier denitrification
and NH2OH oxidation (Fig. 3). NOB, AOA, anammox, and
comammox microorganisms may play an indirect role in N2O
formation by affecting the availability of NH3 and NO2

−.
In the nitrifier denitrification pathway, AOB reduce NO2

− to
nitric oxide (NO) and N2O (Chandran et al. 2011; Kampschreur
et al. 2007; Kim et al. 2010; Tallec et al. 2006) (Fig. 3). The
NH2OH oxidation pathway involves the oxidation of NH2OH
to NO by hydroxylamine oxidoreductase (HAO) and subse-
quent reduction to N2O catalyzed by the enzyme NO reductase
(Chandran et al. 2011; Law et al. 2012; Stein 2011) (Fig. 3).

Recent findings show that, in the canonical nitrifying bac-
teria N. europaea, two other routes for N2O production exist
under anaerobic conditions. One is the direct oxidation of
NH2OH to N2O by cytochrome P460 (Caranto et al. 2016)
and the nitrification intermediate NO (Caranto and Lancaster
2017). Although not all AOB share the same route for N2O
production, these recent findings expand on previous knowl-
edge where chemical reactions were thought to be mainly
important at higher oxygen (O2) levels (Liu et al. 2017a).

N2O can also be produced biologically or abiotically by
coupling NH2OH oxidation with the reduction of NO2

−

(Harper et al. 2015; Terada et al. 2017), free nitrous acid
(HNO2) (Soler-Jofra et al. 2016), or NO (Spott et al. 2011).
These are termed N-nitrosation hybrid reactions, or simply
Bhybrid^ reactions (Spott and Stange 2011). In addition,
metals, such as copper (Harper et al. 2015) and manganese
(Heil et al. 2015), can catalyze abiotic N2O production from
NH2OH via the hybrid reaction. Under some conditions, the
hybrid reaction can become a predominant pathway for N2O
production in a partial nitrifying reactor (Soler-Jofra et al.
2018; Terada et al. 2017). N2O production via the hybrid
reaction is enhanced in the presence of AOB (Liu et al.
2017a; Terada et al. 2017).

Under aerobic conditions, N2O is mainly formed via the
NH2OH pathway, and rates are relatively low. When DO con-
centrations decrease, the nitrifier denitrification pathway be-
comes more important, leading to higher rates of N2O forma-
tion (Chen et al. 2018; Kampschreur et al. 2009; Ma et al.
2017a; Park et al. 2000; Tallec et al. 2008). However, under
complete anoxic conditions N2O emissions are again low due
to the lack of DO for NH3 oxidation (Fig. 3). Spikes of N2O
production can occur at transitions from anoxic to aerobic, or
aerobic to anoxic, conditions, due to an electron imbalance
(Domingo-Felez et al. 2014; Kampschreur et al. 2008; Sabba
et al. 2015; Yu et al. 2010). Thus, N2O emissions can be sig-
nificant in processes with anoxic/aerobic stages or intermittent
aeration (Chandran et al. 2011).

Unlike AOB, which have well-elucidated N2O production
pathways, the pathways for AOA are yet to be fully understood
(Blum et al. 2018b). They perform NH3 oxidation in a similar
way to AOB (Kozlowski et al. 2016); however, they lack the
ability to produce N2O enzymatically through side reactions of
NH3 oxidation or nitrifier denitrification, as mediated by AOB
(Spang et al. 2012; Tourna et al. 2011; Walker et al. 2010).
Stieglmeier et al. (2014) showed that Nitrososphaera
viennensis, a pure culture of AOA from soil, produces N2O
via a hybrid reaction. While AOA are found in WWTPs
(Park et al. 2006; Sauder et al. 2012; Zhang et al. 2009),
AOA are more common in marine environments (Santoro
et al. 2011) and soils (Gubry-Rangin et al. 2010; Li et al.
2018; Nicol et al. 2008; Zhang et al. 2012).

Anammox bacteria convert NH3 and NO2
− to N2 under

anoxic conditions (Kuypers et al. 2003). NO is a key

Fig. 2 Key processes in the N-cycle. N2O is highlighted in gray (adapted
from Daims et al. 2016 and Schreiber et al. 2012). The dashed line for
comammox shows not only the formation of NO2

− as intermediate but
also its oxidation to NO3

− by the same organism. Abbreviations in figure:
DNRA is dissimilatory nitrite reduction to ammonia; assimil. is
assimilatory; dissimil. is dissimilatory. Note that denitrification can
produce N2O, but it is also the only known process that can reduce it
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intermediate in anammox metabolism (Kartal et al. 2011), and
genomic evidence suggests that anammox species have the
potential to produce N2O via NO reduction (Kartal et al.
2007; Strous et al. 2006). However, research suggests that
N2O production under process-relevant conditions is negligi-
ble (Blum et al. 2018a). Anammox may indirectly affect N2O
formation by heterotrophs and AOB by reducing the concen-
trations of NH3 and NO2

−.
Comammox bacteria are a subset of the genus Nitrospira

capable of complete ammonia oxidation (comammox) via ox-
idation of NH3 to NO3

− (Daims et al. 2015; van Kessel et al.
2015). Comammox are thought to have a competitive advan-
tage over conventional ammonia oxidizers (e.g., AOA and
AOB) under ammonia-limiting conditions (Costa et al.
2006; Daims et al. 2015; Kits et al. 2017; van Kessel et al.
2015). While little is known about comammox in wastewater
biofilms, van Kessel et al. (2015) and Daims et al. (2015)
obtained comammox enrichments in the lab by operating their
systems with low NH3 concentrations. Thus, it is likely they
play a role in wastewater biofilms under similar conditions.

Evidence suggests that comammox Nitrospira, as opposed
to canonical Nitrospira, harbor genomic NH3 and NO2

− oxi-
dation machinery homologous to classical AOB and NOB,
respectively (e.g., gene clusters encoding amo, hao, and nxr)
(Daims et al. 2015; van Kessel et al. 2015). However, very
little is known about their capacity for N2O production.
NH2OH appears to be an obligate intermediate of comammox
metabolism, analogous to AOB catabolism, and it is likely
that N2O can be formed by comammox via the NH2OH path-
way (Fig. 3). Comammox genomes recovered to date also

harbor capacity for NO2
− reduction to NO (NirK), similar to

non-comammox Nitrospira (Camejo et al. 2017; Lawson and
Lucker 2018). Comammox clades A and B genomes reported
to date lack a known NOR or proteins related to NOx metab-
olism (Palomo et al. 2018), similarly to common Nitrospira
taxa (Lawson and Lucker 2018) and therefore may be incapa-
ble of nitrifier denitrification. Thus, the presence of reactive
nitrogen species produced by comammox biomass, e.g., NO
or NH2OH, could to lead to abiotic reactions with the produc-
tion of N2O as a final product.

Comammox may be detrimental to PN/A systems,
where NO2

− production is needed. However, they may
also reduce N2O emissions by minimizing NO2

− accumu-
lation. The presence of comammox in wastewater treat-
ment processes, both in suspended growth and biofilm
processes, and the metabolic versatility of Nitrospira spe-
cies including the two comammox Nitrospira clades is
currently an active area of research. Future research
should also address the selecting factors for partitioning
between comammox and canonical Nitrospira and clarify
the potential role for comammox in N2O emissions.

N2O from microorganisms related to denitrification

Denitrification is the sequential reduction of NO3
− and NO2

−

to NO, N2O, and finally N2 (Ni and Yuan 2015). It involves
four enzymes: the nitrate reductase (NAR), nitrite reductase
(NIR), nitric oxide reductase (NOR), and nitrous oxide reduc-
tase (NOS). A schematic of the denitrification metabolism is
shown in Fig. 3.

Fig. 3 Nitrogen transformations
in AOB, NOB, and DNB.
Abbreviations: AOB, ammonia-
oxidizing bacteria; NOB, nitrite-
oxidizing bacteria; DNB,
denitrifying bacteria, AMO,
ammonia monooxygenase; HAO,
hydroxylamine oxidoreductase
(hydroxylamine dehydrogenase
in Nitrospira); NXR, nitrite
oxidoreductase; NirK, copper-
containing nitrite reductase; NirS,
cytochrome cd1 type nitrite
reductase; NOR, nitric oxide
reductase; and NOS, nitrous
oxide reductase. Purple arrows
show intermediates potentially
shared between nitrification and
denitrification pathways. Abiotic
reactions (gray) are further
discussed in the text
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The formation of N2O in wastewater denitrification pro-
cesses is often due to selective inhibition of the NOS enzyme
(Guo et al. 2017). This can be caused by its greater sensitivity
to DO (Firestone et al. 1979; Tallec et al. 2008), pH (Firestone
et al. 1979; Hanaki et al. 1992), NO2

− (Alinsafi et al. 2008),
carbon source type and concentration (Tallec et al. 2006),
carbon limitation (Alinsafi et al. 2008; Tallec et al. 2006),
and hydrogen sulfide (H2S) (Schonharting et al. 1998).

While denitrifying bacteria produce N2O during denitrifi-
cation, they also can reduce N2O to N2 (Read-Daily et al.
2016). Externally supplied N2O can be reduced concurrently
with NO3

− and NO2
− (Conthe et al. 2018a; Pan et al. 2013a,

2015; Read-Daily et al. 2016).
While many denitrifying bacteria have a complete re-

duction pathway and can reduce NO3
− and NO2

− all the
way to N2, less is known about bacteria that can grow with
N2O but not with NO3

− or NO2
−. Newly classified clade II-

type nosZ N2O reducing bacteria were recently discovered
(Jones et al. 2013; Sanford et al. 2012). These have since
been detected in a granular sludge reactor (Lawson et al.
2017), a MABR (Kinh et al. 2017b) and a biofiltration
system (Yoon et al. 2017). Some isolates harboring clade
II type nosZ have higher affinity for N2O reduction than
those harboring clade I type nosZ (Suenaga et al. 2018;
Yoon et al. 2016), whereas a contradictory finding was
reported (Conthe et al. 2018a), requiring more in-depth
analysis concerning bacteria as an N2O sink at a low N2O
concentration. Some clade II-type nosZ bacteria appear to
lack genes encoding for NIR and/or NOR, suggesting their
potential as an N2O sink but not an N2O source (Graf et al.
2014). As reviewed elsewhere, these non-denitrifying
N2O-reducing bacteria in wastewater engineering are yet
to be explored in detail (Hallin et al. 2018). The ecophys-
iology of non-denitrifying N2O reducers in a biofilm sys-
tem warrants further research.

There are a wide range of denitrifying microorganisms
and some with special behavior with respect to N2O for-
mation and reduction. Some can fully reduce NO3

− and
NO2

− to NH3 in an ecologically important process called
dissimilatory nitrate or nitrite reduction to ammonium
(DNRA) (Stein and Klotz 2016) (Fig. 2). In this process,
NO3

− or NO2
− is reduced to NH3, with N2O produced at

the NO2
− reduction stage as a by-product (Fig. 2) (Kelso

et al. 1997; Rutting et al. 2011; Streminska et al. 2012).
Unlike denitrification, this process conserves N in the eco-
system (Rutting et al. 2011; Tiedje et al. 1982). Many
DNRA microorganisms can produce N2O as a by-product
(Stevens and Laughlin 1998; Stevens et al. 1998). Some of
these microorganisms employ DNRA as a detoxification
mechanism in order to avoid high concentration of NO2

−

(Kaspar 1982). However, the actual contribution of DNRA
to N2O formation in these species remains uncertain
(Butterbach-Bahl et al. 2013).

Behavior regarding N2O emissions may also vary based on
the type of electron donor. For example, elemental-sulfur (So)-
oxidizing denitrifiers (Di Capua et al. 2015; Liu et al. 2017b),
methane (CH4)-oxidizing denitrifiers (He et al. 2018),
phosphate-accumulating (PAO) denitrifiers (Gao et al. 2017;
Wang et al. 2011, 2014; Zhou et al. 2012), H2-oxidizing de-
nitrifiers (Li et al. 2017), and bacteria growing with an elec-
trode as an electron donor (Jiang et al. 2018) display different
behaviors with respect to N2O emissions. Methane-oxidizing
denitrifiers appear to reduce NO2

− to N2 without forming N2O
as an intermediate and therefore are thought to minimize N2O
emissions (He et al. 2018). While the details on each of these
donors are beyond the scope of this review, the kinetics for
each donor can have important impacts on N2O formation and
consumption.

Types of biofilm reactors and impacts on N2O
emissions

This section describes different types of biofilm reactors and
their special characteristics as relate to N2O emissions. Based
on the analysis in the previous section, and also following
Todt & Dorsch (2016) and Massara et al. (2017), conditions
that promote N2O emission include (1) low DO values, or DO
spatially transitioning from high to low within the biofilm, as
this leads to nitrifier denitrification or incomplete heterotro-
phic denitrification; (2) conditions where the DO fluctuates
temporally from high to low values, (3) conditions with high
reaction rates, which lead to greater formation of intermediates
(e.g., NH2OH, NO2

−) that promote N2O formation; and (4)
limiting electron donor for denitrification.

The above factors may have different impacts for different
types of biofilm reactors. There is a wide range of biofilm
reactors, and they can be classified based on the arrangement
of their solid, liquid, and gas phases, whether the carriers are
fixed or moving, their carrier specific surface area (area of
carrier per unit volume of reactor), their mixing regime
(completely mixed or plug flow), and the mechanisms of
transfer of gases and electron donor or acceptor substrates.
Typical biofilm reactor configurations are shown schematical-
ly in Fig. 4.

Trickling filters (Fig. 4a) are commonly used for COD
removal and nitrification. The media is non-submerged and
is kept aerobic by convective air currents within the bed.
While considered aerobic, anoxic niches can form in the
deeper biofilm (Dalsgaard and Revsbech 1992). The varia-
tions in DO and donor concentration in the biofilm between
passes of the wastewater distributor arm can lead to N2O
emissions. When used for nitrification, N2O is likely to form
within the bed, with some stripped by the air currents and
present in the effluent (Melse and Mosquera 2014). There is
little experimental data on N2O emissions from trickling
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filters, possibly due to the difficulty in capturing the off-gases,
and further research is needed in this area.

Biofilters (Fig. 4a) are similar to trickling filters, but used to
treat gaseous contaminants such as odorous compounds in air
or volatile organic compounds (VOCs). Air is passed through
a non-submerged packed bed with biofilms growing on the
media, and the contaminants partition into the liquid phase
coating the biofilm. Yoon et al. (2017) proposed using a
biofilter supplied to remove N2O in off gases from an activat-
ed sludge aeration basin. Raw wastewater was used as the
electron donor. In lab tests, 99.9% of N2O was removed when
supplied at 100 ppmV in N2, i.e., without any O2. However,
removals decreased significantly when supplied in air.
Biofilters are likely an expensive approach to mitigating
N2O emissions, as they require covering aeration basin to
collect off gases, treating large volumes of gas, and adding
an additional process and complexity to the treatment train.

Packed bed reactors (Fig. 4b, c) are fully submerged fixed
bed biofilm reactors. They can be operated in upflow or
downflow mode and either aerated (e.g., for nitrification) or
unaerated with electron donor addition (denitrifying filters).
Upflow packed bed reactors, such as nitrifying or denitrifying
filters, typically operate in plug flow fashion. Thus, the filters
experience high substrate concentrations at the influent end and
low concentrations at the effluent end. The concentration gra-
dients (e.g., high NH3 at influent, low DO at effluent) can
impact N2O formation processes.When used for denitrification,
air pulses are periodically performed at the bottom of the filter

to release N2 bubbles accumulating in the reactor. These pulses
can strip N2O formed at the beginning of the bed, when nor-
mally it would be reduced to N2 further within the bed (Bollon
et al. 2016). Whenever air is added to a denitrifying filter, there
is potential for N2O formation at some location within the bio-
film due to the greater sensitivity of N2OR to O2 inhibition.
N2O may also accumulate due to insufficient electron donor
supply. For nitrifying and denitrifying packed bed reactors,
backwashing is carried out regularly to remove excess
biomass. Thinner biofilms may not allow full treatment,
leading N2O breakthrough from the reactor. For denitrifying
biofilms, breakthrough can also be caused by donor
limitation. Bollon et al. (2016) found that a full-scale
denitrifying filter with a C/N of 3 or higher had up to 93%
N2O reduction. However, during a carbon supply failure, re-
movals lowered 26%. Similar results were found by Capodici
et al. (2018) and Zhang et al. (2016). In the latter study, the
authors found that a decrease of the C/N from 3 to 0.65 led to an
increase of the genes encoding for NOR that would enhance the
transformation of NO to N2O and lead to increased N2O emis-
sions. Zhang et al. (2017) studied the behavior of lab-scale
denitrification filters and found a complex interaction of the
denitrification with anammox and DNRA. Gene abundance
together with accumulation of NO2

− at temperatures between
5 and 15 °C were found to be important factors for N2O accu-
mulation. Further research is required to investigate the impact
of influent NO2

− and possible adaptation of bacteria to variable
influent loadings of both NO2

− and NO3
− in denitrifying filters.
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Fig. 4 Types of biofilm reactors. a
Unsubmerged filter (e.g., trickling
filter or biofilter), b upflow fixed-
bed reactor (e.g., biologically active
filter (BAF), c downflow fixed-bed
reactor (e.g., BAF), d rotating
biological contactor (RBC), e
suspended or airlift biofilm reactor,
f fluidized-bed biofilm reactor
(FBBR or granular sludge), g
moving-bed biofilm reactor
(MBBR), integrated fixed film
activated sludge (IFAS), and h
membrane-supported biofilm
reactor (e.g., MBfR or MABR).
Note: i = influent; e = effluent; r =
recycle; w =wasting flow; g = gas
flow (typically air) in or out. Black
dots in panels e, f, and g are biofilm
carriers. Adapted from (Morgenroth
2008) and (WEF 2010)
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RBCs (Fig. 4d) use rotating wheels of media partially
submerged in wastewater. When the wheels are outside the
water, the biofilm can experience O2 concentrations in the
biofilm exterior, while the DO concentrations can drop sig-
nificantly when immersed in the wastewater (Pynaert et al.
2002). This cycling of high and low DO concentrations, as
well variations in donor concentration when the biofilm is
submerged vs. when it is out of the wastewater, can poten-
tially lead to higher N2O emissions. There does not appear
to be any published findings of N2O emissions from RBCs.
Note that RBCs are often covered to prevent from UV tox-
icity and to protect from low temperatures in winter. In these
cases, it may be possible to pump air from the enclosures
through an anoxic zone or into a biofilter, such as that de-
scribed above, to reduce N2O to N2.

Airlift, MBBRs, and IFAS (Fig. 4e, g) use carriers that
Bfloat^ in the water and therefore have little relative velocity
between the carrier and the water. They can be operated under
aerobic or anoxic conditions. In continuous systems, the bio-
film carriers are kept in a single zone, experiencing consistent
bulk environments. This can avoid the high N2O emissions in
suspended growth systems transitioning from anoxic to aero-
bic zones (Chandran et al. 2011). Recent research on N2O
emissions from MBBRs are consistent with the factors de-
scribed at the beginning of this section, depending on the
application (Mannina et al. 2017, 2018a, b; Wei et al. 2017).

Fluidized bed reactors (Fig. 4f) behave similarly to a BAF,
but use much finer media. This provides a high specific sur-
face area and allows the particles to become suspended in the
upward wastewater flow. These reactors also experience a
somewhat higher degree of mixing, compared to packed bed
reactors, but still have some plug flow behavior. Excess bio-
film is continuously removed by abrasion, and biofilms typi-
cally are thinner than in BAFs. The behavior with respect to
N2O emissions should be similar to the BAFs. Note that aer-
obic granular sludge can behave similarly to a fluidized bed
reactor. However, granular sludge is typically operated in se-
quencing batch mode (Castro-Barros et al. 2015). Recent re-
search on N2O emission from granular sludge also confirms
the above mechanisms (Jia et al. 2018; Lu et al. 2018; Peng
et al. 2017; Reino et al. 2017).

Counter-diffusional biofilms are those where one substrate
diffuses from the bulk liquid, while the other penetrates the
biofilm from the attachment surface. The counter-diffusion of
substrates leads to a range of different behaviors with respect
to conventional, co-diffusional biofilms (Nerenberg 2016).
Examples of counter-diffusional biofilms include MABRs,
where the membranes are used to supply air or O2;
membrane-biofilm reactors (MBfRs) where membranes sup-
ply H2 or CH4 (Liu et al. 2017b); sulfur-based biofilms, where
solid So particles support a biofilm (Wang et al. 2016a); and
even bioelectrochemical biofilms (Jiang et al. 2018). MABR
behavior is discussed in more detail in the next section.

Mechanisms of N2O formation in biofilm
processes for wastewaster treatment

Because of their special layered structure and organization,
biofilms allow unique niche formation with specific metabolic
functions. In addition, intermediates formed in one biofilm
location can diffuse to another with different environments,
leading to transformations that would not normally occur in a
suspended growth system (Dalsgaard et al. 1995; de Beer et al.
1997; Nielsen et al. 1990; Sabba et al. 2017b; Schreiber et al.
2009). This section discusses basic behavior of biofilms for
some key processes, including nitrification, denitrification,
combined nitrification and denitrification, and partial nitrifica-
tion/anammox. The behavior is common for most biofilm re-
actors except for MABRs, which are described separately. The
figures in this section are intended to illustrate typical behav-
ior. They are only schematics, not meant to reflect an actual
operating condition.

Nitrifying biofilms

Nitrifying biofilms form when NH3 is the dominant or sole
electron donor. While AOB and NOB are primary population
members in nitrifying biofilms, heterotrophic bacteria typical-
ly co-exist (Kindaichi et al. 2004), growing on the decay prod-
ucts from nitrifying microorganisms (Gieseke et al. 2005;
Okabe et al. 2005). However, N2O production in nitrifying
biofilms is likely dominated by AOB, with a minor contribu-
tion from heterotrophic bacteria. In this section, we focus on
the mechanisms of N2O from the nitrifying population. In the
subsequent section, we discuss the impact of heterotrophs on
nitrifying biofilms, especially when organic carbon is present
in the bulk.

Typical substrate profiles in nitrifying biofilms and
zones of N2O formation and emission are shown schemat-
ically in Fig. 5. In conventional, co-diffusional biofilms,
the outer biofilm is aerobic and has the highest NH3 con-
centrations. As a result, the NH3 oxidation rates are high,
leading to high NH2OH concentrations. In addition, the
nitrifier denitrification pathway is inhibited by the high
DO in this zone. Thus, the NH2OH oxidation pathway is
likely to dominate, and N2O formation rates are likely to be
relatively low. Nitrifier denitrification may become signif-
icant in the aerobic/anoxic transition zone (Mao et al.
2008; Schreiber et al. 2008, 2009). In the anoxic zone,
N2O formation rates are low. This is because NH3 oxida-
tion, which is the source of electrons for nitrifier denitrifi-
cation, requires O2. However, Sabba et al. (2015) proposed
that NH2OH formed in the aerobic biofilm exterior would
diffuse to the interior anoxic zones. AOB in this zone could
utilize NH2OH as a rich electron source, enabling the ni-
trifier denitrification pathway and resulting in a spike of
N2O. Further research is needed to confirm this mechanism
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experimentally. In Fig. 5, the N2O concentration profile
slopes towards the outer biofilm, indicating diffusive mass
transfer towards the bulk. If diffused aeration is used, the
N2O is readily stripped from the liquid phase (Law et al.
2012; Rassamee et al. 2011; Wu et al. 2014).

MABRs are a novel biofilm process for wastewater treat-
ment, where O2 is supplied from the membrane and NH3 from
the bulk (Martin and Nerenberg 2012; Syron and Casey 2008)
(Fig. 5). Because of the unique penetration of NH3 and O2

from opposite sides of the biofilm, they are called, as men-
tioned above, counter-diffusional biofilms (Nerenberg 2016).
N2O can also occur inMABRs systems. InMABs, the highest
nitrification rates usually occur in the biofilm interior, not at
the outer edge. Thus, N2O formation via the NH2OH pathway
is likely to occur in the deep biofilm. In addition, the aerobic/
anoxic transition occurs in the biofilm interior, and the bulk is
anoxic. Thus, while N2O can be stripped from suspended
growth systems by bulk aeration (Law et al. 2012; Rassamee
et al. 2011;Wu et al. 2014), N2O inMABRs can be consumed
by denitrifying bacteria in the outer biofilm or bulk liquid.
Conversely, some N2O may be stripped fromMABR biofilms
by air flowing through the membrane lumen, if operated with
open end membranes (Kinh et al. 2017a). Stripping from the
lumen is indicated in Fig. 5b by the slope of the N2O concen-
tration profile towards the membrane in its proximity.

NOB can contribute indirectly to N2O emissions by
scavenging DO and favoring the formation of a steeper
gradient for transitioning from oxic to anoxic conditions
(Sabba et al. 2015, 2017a). They also can play a key role
in reducing the NO2

− concentration, which reduces the
rates of nitrifier denitrification (Schreiber et al. 2009).
Anammox bacteria can play a similar role in decreasing
N2O emissions (Pellicer-Nacher et al. 2010). As mentioned
previously, NOB do not play a direct role for NO and N2O
emissions, but may affect emission by modifying the NO2

−

concentrations (Wang et al. 2016b).

Denitrifying biofilms

Denitrifying biofilms are those where NO3
− is the primary

electron acceptor. We also consider biofilms with an aerobic
exterior and denitrifying interior, but neglect any nitrification
in the aerobic zone. In denitrifying biofilms, N2O is an obli-
gate intermediate. It is typically present at higher concentra-
tions in the outer biofilm region, where NO3

− and NO2
− re-

duction activity is higher, but can diffuse and be consumed in
deeper regions where NO3

− and NO2
− concentrations are low-

er (Fig. 6a). Thus, biofilms can have regions that can serve as
an N2O sink, mitigating N2O emissions (Dalsgaard and
Revsbech 1992; Nielsen et al. 1990).

In the presence of high DO, denitrification is usually
inhibited and therefore little N2O is formed (Conte et al.
2018b) (Fig. 6b). However, biofilms typically have DO gradi-
ents, and denitrification and N2O formationmay occur deeper in
the biofilm (Dalsgaard and Revsbech 1992; Nielsen et al. 1990).
In the transition zone from oxic to anoxic, higher amounts of
N2O will be formed due to the higher sensitivity of NOS to O2

inhibition (Bonin et al. 1992; Lu and Chandran 2010; Morley
et al. 2008; Otte et al. 1996). When this transition zone is near
the outer biofilms,moreN2Omay be exported to the bulk liquid.
When the transition occurs deeper in the biofilm, i.e., at higher
bulk DO concentrations, and when electron donor is sufficient,
N2O is more likely to be reduced in the deeper biofilm and less
emissions will occur (Dalsgaard and Revsbech 1992).

If N2O is formed in the outer biofilm and if sufficient elec-
tron donor is available in the deeper zones of the biofilm,
denitrifying biofilms can serve as an N2O sink (Eldyasti
et al. 2014; Sabba et al. 2017b). However, if sulfate reduction
occurs in the deeper biofilm where NO3

− has been depleted,
H2S may accumulate and inhibit N2O reduction (Pan et al.
2013b). Electron donor limitation in the denitrifying zone also
may result in greater N2O formation (Dalsgaard and Revsbech
1992; Nielsen et al. 1990; Todt and Dorsch 2015) (Fig. 6c).

Fig. 5 N2O formation in
nitrifying biofilms. a Co-
diffusional and b counter-
diffusional. Solid black arrow
indicates N2O loss towards either
bulk or membrane lumen. NO2

−

and NO are not shown for clarity
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Combined nitrifying/denitrifying biofilms

Biofilms exposed to both organic carbon andNH3 usually have
an outer layer dominated by fast-growing heterotrophic bacte-
ria (Henze et al. 2008). In the presence of non-limiting organic
substrates, O2 is usually consumed by heterotrophic activity
with little formation nitrifying biomass. However, in presence
of low or transient organic carbon concentrations, nitrifying
organisms can develop in the biofilm. These biofilms are here
referred as Bcombined nitrifying/denitrifying biofilms.^

In combined nitrifying/denitrifying biofilms, the mecha-
nisms of N2O formation can be quite complex. Both co- and
counter-diffusional combined nitrifying/denitrifying biofilms
are characterized by the presence of complex communities,
where N2O not only is formed by both nitrifiers and denitri-
fiers but also reduced by denitrifiers (Matsumoto et al. 2007;
Nerenberg 2016). Various intermediates play roles in both
pathways, as indicated in Fig. 2. For example, NO2

− and
NO, two crucial components of both nitrifier denitrification
and NH2OH oxidation pathways, also play a role as interme-
diates in the denitrification pathway (Todt and Dorsch 2015).

Thickness is also a crucial component for both co- and
counter-diffusional biofilm, if adequate thickness and COD
concentrations are present, then N2O reduction can occur
(Eldyasti et al. 2014; He et al. 2017).

Co-diffusional combined nitrifying/denitrifying biofilms
receive both electron donor and acceptor from the bulk
(Fig. 7a). In this type of biofilm, heterotroph are typically
more abundant in the outer biofilm, due to their faster growth
rates and the greater availability of COD. This zone is typical-
ly aerobic, so little or no denitrification or N2O reduction
occurs. Nitrifiers are typically located in the aerobic zone be-
low the heterotrophs. If enough COD is present, then N2O
reduction can occur in the deeper biofilm (Fig. 7a) (Chae
et al. 2012; Eldyasti et al. 2014; He et al. 2017). When the
bulk is aerated in co-diffusional combined nitrifying/
denitrifying biofilms, there is greater N2O mass transfer to-
wards the bulk rather than towards the anoxic zone where it
can be reduced. This translates in higher N2O emissions.

In counter-diffusional combined nitrifying/denitrifying
biofilms, DO penetrates the biofilm from the attachment sur-
face. In this case, and assuming the bulk liquid is anoxic, the

Fig. 6 N2O formation in
denitrifying biofilms. a Excess e−

donor, b excess e− donor with O2,
and c limiting e− donor. Solid
black arrow indicates N2O loss
towards bulk and dashed black
arrow indicates reduction within
the biofilm depth. NO2

− and NO
are not shown for clarity

Fig. 7 N2O formation in
combined nitrifying/denitrifying
biofilms. a Co-diffusional and b
counter-diffusional. Solid black
arrow indicates N2O loss towards
either bulk or membrane lumen;
dashed black arrow indicates
reduction within the biofilm
depth. NO2

− and NO are not
shown for clarity
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nitrifiers would only be active near themembrane surface (Kinh
et al. 2017a). In addition, N2O formed by the nitrifiers could
potentially be reduced by the heterotrophs in outer, anoxic re-
gion of the biofilm, where the COD concentrations are highest
(Cole et al. 2004; Kinh et al. 2017b; LaPara et al. 2006). As
seen for nitrifying biofilms (Fig. 5b), there could also be N2O
stripping by the membrane, as indicated from a negative slope
of the N2O profile towards the membrane (Fig. 7b). The lack of
bulk aeration reduces N2O mass transfer to the bulk. Note that
MABR membranes can also strip CO2 from the biofilm, lead-
ing to pH shifts that can impact the microbial community and
potentially impact N2O emissions (Ma et al. 2017b).

Based on the above, the type of biofilm (co- vs. counter-
diffusional) also can affect the microbial community structure
and therefore the N2O emissions. For each bulk substrate con-
dition and detachment regime, there may be a different micro-
bial community structure, which in turn can affect the
formation/reduction and emissions of N2O. Therefore, the be-
havior of these biofilms is complex and hard to predict (Martin
and Nerenberg 2012; Nerenberg 2016).

Partial nitritation/anammox biofilms

In combined partial nitritation/anammox (PN/A) reactors,
NH3 is partially oxidized to NO2

− by AOB. The remainder
of the NH3 is then oxidized to N2 gas via NO2

− reduction by
anammox bacteria. NOB are undesirable in PN/A reactors,
and diverse strategies are employed to outselect these organ-
isms. PN/A reactors typically also harbor a diverse flanking
community, many of which are capable of heterotrophic deni-
trification (Lawson et al. 2017).

A distinguishing feature of PN/A systems is the presence of
multiple biological sinks for NO2

−. Biofilm-based PN/A sys-
tems are further distinguished by strong spatial segregation of
AOB (in oxic layers) and anammox and denitrifiers (in anox-
ic, usually deep, layers) (Hubaux et al. 2015; Laureni et al.
2016; Okabe et al. 2011). Crossfeeding within the biofilm and
capacity of certain denitrifiers to act as internal N2O sinks
likely differentiates N2O emissions in biofilms from
suspended growth PN/A processes.

The potential of PN/A systems to act as significant N2O
sources, particularly from biofilm or hybrid PN/A reactors, is
poorly understood. Results suggest that emissions depend
strongly on bulk O2 concentration (Harris et al. 2015), NO2

−

concentration (Van Hulle et al. 2012), NH3 oxidation activity
(Blum et al. 2018a; Domingo-Felez et al. 2014), nitrogen load-
ing (Yang et al. 2016), aeration regime (intermittent vs. contin-
uous aeration) (Blum et al. 2018a; Domingo-Felez et al. 2014;
Kampschreur et al. 2008; Ma 2018), presence of organic matter
(Jia et al. 2018), and biofilm thickness (Vlaeminck et al. 2010).

Intermittent aeration mirrors conditions recently shown to
promote N2O generation (Chandran et al. 2011; Kampschreur
et al. 2008, 2009; Yu et al. 2010), but has also been suggested

that appropriate intermittent aeration can facilitate control or
minimization of N2O emissions from PN/A processes (Castro-
Barros et al. 2015; Domingo-Felez et al. 2014; Su et al. 2017).

While sources of N2O in PN/A systems are still not well
understood, multiple studies have indicated it may derive pre-
dominantly from AOB. Ali et al. (2016) provided evidence
based that nitrifier denitrification and NH2OH pathways were
equally important to N2O formation in the oxic surface region
of granules from a PN/A reactor. However, ~ 30% of N2O
emissions in this system could be attributed to the anammox
dominated anoxic interior of granules due to either heterotro-
phic denitrification or a yet unidentified pathway. Harris et al.
(2015) showed that N2O site preference data from a suspended
growth PN/A reactor was inconsistent with current under-
standing of N2O production pathways and further suggested
that N2O emissions in this system could be due in part to an
unknown inorganic or anammox-associated N2O production
pathway. In general, biofilm-based PN/A processes appear to
emit less N2O than suspended nitrifying processes (Gilmore
et al. 2013). Further research is needed to better identify
sources of N2O in biofilm-based and hybrid biofilm
suspended growth PN/A systems and to quantitatively evalu-
ate how spatial structuring, biofilm thickness, and aggregate
architecture influence N2O emissions in these emerging low
energy N removal systems.

Conclusions

N2O formation is promoted when there are (1) lowDO values,
or DO spatially transitioning from high to low within the bio-
film; (2) conditions where the DO fluctuates temporally from
high to low values; (3) conditions with high reaction rates,
which lead to greater formation of intermediates (e.g.,
NH2OH and NO2

−) that promote N2O formation; and (4) lim-
iting electron donor for denitrification. The microbial basis of
N2O formation in biofilms and suspended growth systems are
similar, yet N2O emissions in biofilm systems depend greatly
on microbial stratification, the formation of substrate gradi-
ents, the exchange of intermediates within the biofilm, and
the type of biofilm reactor. This can lead to different patterns
and quantities of N2O emission for the same bulk environment
and make it more difficult to predict N2O emissions. Co-
diffusional andmembrane-aerated biofilmsmay have substan-
tially different behavior, due to the unique microbial and strat-
ifications and substrate profiles. In order to predict N2O emis-
sions from biofilm processes and develop strategies to mini-
mize them, it is important to understand the microbiological
and biochemical basis for N2O formation, the factors affecting
N2O formation in biofilms, as well as the impacts of reactor
configurations and operating modes. Future research should
address the pathways and kinetics of N2O emissions from
AOA, comammox bacteria, methane-oxidizing denitrifying
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bacteria, and others. It also is important to explore their abun-
dance in biofilms. Given the complexity of biofilms and bio-
film processes, empirical assessments of N2O emissions from
the broad range of biofilm reactors type and operating condi-
tions is needed, and application-specific recommendations to
minimize emissions should be developed.
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