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Abstract
The CRISPR/Cas9 system is a powerful genetic engineering technique that has beenwidely used in gene therapy, as well as in the
development of novel antimicrobials and transgenic insects. However, several challenges, including the lack of effective host
target genes and the off-target effects, limit the application of CRISPR/Cas9 in insects. To mitigate these difficulties, we
established a highly efficient virus-inducible CRISPR/Cas9 system in transgenic silkworms. This system includes the
baculovirus-inducible promoter 39K, which directs transcription of the gene encoding, the Cas9 protein, and the U6 promoter
which targets the sgATAD3A site of the ATPase family AAA domain-containing protein 3 (ATAD3A) gene. The double-positive
transgenic line sgATAD3A×39K-Cas9 (ATAD3A-KO) was obtained by hybridization; antiviral activity in this hybrid transgenic
line is induced only after Bombyx mori nucleopolyhedrovirus (BmNPV) infection. The BmNPV-inducible system significantly
reduced off-target effects and did not affect the economically important characteristics of the transgenic silkworms. Most
importantly, this novel system efficiently and consistently edited target genes, inhibiting BmNPV replication after the transgenic
silkworms were inoculated with occlusion bodies (OBs). The suppression of BmNPV by the virus-inducible system was
comparable to that of the stably expressed CRISPR/Cas9 system. Therefore, we successfully established a highly efficient
BmNPV-inducible ATAD3A-KO transgenic silkworm line, with improved gene targeting specificity and antiviral efficiency.
Our study thereby provides insights into the treatment of infectious diseases and into the control of insect pests.
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Introduction

The silkworm (Bombyx mori, B. mori) is an important model
lepidopteron with high economic values. B. mori
nucleopolyhedrovirus (BmNPV), a baculovirus family, is a
major si lkworm pathogen (Jiang and Xia 2014).
Baculoviruses are a diverse group of viruses with double-
stranded, circular, and super-spiral genomes, which vary in
size from 80 to 180 kb, each encoding 90–180 genes (Kelly
et al. 2007). Baculoviruses have a bi-directional life cycle:
occluded derived virus (ODV) is responsible for the systemic
infection of individual insects, and the budded virus (BV)
plays an important role in secondary infection (Blissard and
Rohrmann 1990; Kelly et al. 2007). Every year, BmNPV se-
verely impacts the sericulture industry in China, causing ma-
jor economic losses (Jiang and Xia 2014). Current strategies
used to combat BmNPV include the cultivation of antiviral
strains of B. mori via traditional breeding methods, and the
creation of transgenic B. mori strains that either overexpress
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antiviral protein or lack (or underexpress) the genes required
for BmNPV replication (Cheng et al. 2014; Jiang et al. 2012;
Jiang and Xia 2014; Yang et al. 2008).

In 2004, Isobe et al. found that the inhibition of the late
expression factor 1 (LEF-1) gene in BmNPV using RNA in-
terference (RNAi) effectively increased viral resistance in silk-
worms. Since that time, numerous studies have focused on
inhibiting the expression of key BmNPV genes transgenic
silkworms using double-stranded RNAs (dsRNAs), small in-
terfering RNAs (siRNAs), microRNA, and short hairpin
RNAs (shRNAs) (Jiang et al. 2013; Subbaiah et al. 2013;
Zhang et al. 2014a, b). Several proteins that effectively inhibit
viral replication via RNAi in transgenic silkworms have al-
ready been identified, including a receptor factor (B. mori
pattern recognition receptor family 2, BmPGRP2) and recog-
nition receptor (B. mori receptor expression-enhancing pro-
tein, BmREEP, and a nuclear hormone receptor 96,
BmNHR96) (Dong et al. 2015b, 2017a; Yang et al. 2017).
Several additional proteins showed strong antiviral activity
when extracted from silkworm larvae and the overexpressed,
including Bmlispase-1, B. mori serine protease-2 (BmSP-2),
B. mori Sprouty (BmSpry), BmAtlastin-n (in the dynamin
superfamily), and B. moriNADH-oxidoreductase-like protein
(BmNOX) (Cheng et al. 2014; Jiang et al. 2012; Liu et al.
2016; Yang et al. 2008). Overexpression of these proteins
might also enhance viral resistance in silkworms (Cheng et
al. 2014; Jiang et al. 2012; Liu et al. 2016; Yang et al. 2008).

However, RNAi also readily increases RNA accumulation,
which may be toxic to host cells, and the use of CRISPR/Cas9
might lead to off-target effects on host development, limiting
the application of these techniques sericulture (Dong et al.
2016; Zhang et al. 2014a). Therefore, there is an urgent need
to establish a CRISPR/Cas9 system that not only inhibits
BmNPV proliferation but also generates transgenic offspring
without deleterious effects. The ATPase family AAA domain-
containing protein 3 (ATAD3A) is a mitochondrial protein
comprising two N-terminal coiled-coil domains and a con-
served C-terminal ATPase domain (He et al. 2007; You et al.
2013). Previously, we demonstrated that BmNPV LEF-11 hi-
jacks host BmATAD3A to promote virus multiplication, and
that knocking down BmATAD3A inhibits BmNPV replication
in silkworms (Dong et al. 2017b). Thus, the host receptor
BmATAD3A is required for BmNPV replication and might
be a useful target of antiviral research in transgenic silkworms.

We previously established a highly efficient clustered reg-
ularly interspaced short palindromic repeats (CRISPR)-asso-
ciated protein 9 (CRISPR/Cas9) system to disrupt BmNPV
proliferation in vitro and in vivo (Dong et al. 2018, 2016). In
the present study, we aimed to increase the possible targets of
B. mori gene therapy and to test the use of a pathogen-
dependent host factor as a target gene in insect infectious
diseases research. To this end, we constructed a BmNPV-
inducible ATAD3A-KO transgenic line, carrying a modified

version of BmATAD3A to quickly inhibit viral infection. We
did not observe any off-target effects in the BmNPV-inducible
ATAD3A-KO transgenic line, nor were any developmental or
economic characteristics of this strain significantly different
from those of the stable expression system. Moreover, mortal-
ity and BmNPV gene expression analyses indicated that the
inducible ATAD3A-KO transgenic line had the same antiviral
abilities as the stable expression system. Thus, our novel
BmNPV-inducible CRISPR/Cas9 system, which knocks out
host BmATAD3A, effectively inhibits viral replication.
Therefore, this system may be potentially useful for the treat-
ment of infectious diseases in silkworm and for the control of
insect pests.

Materials and methods

Silkworm strains and viruses

The B. mori transgenic line IE1-Cas9 and the B. mori strain
Dazao (control strain) were used in this study (Dong et al.
2018). Silkworm larvae were orally inoculated with wild-
type (WT) BmNPV as previously described (Dong et al.
2018). Occlusion bodies (OBs) were harvested from the he-
molymph of infected silkworm larvae as previously described
(Dong et al. 2014). We counted OBs using a hemocytometer,
and then stored the harvested OBs at 4 °C.

Vector construction

We constructed pBac [IE1-Cas9-Ser-PA-3×P3 EGFP afm] ex-
pression cassettes to express the Cas9 protein as described
previously (Dong et al. 2018). In brief, we selected
t h e BmATAD3A (GenBank a c c e s s i on numbe r :
XM_022262303.1) gene as the editing site; this gene is locat-
ed at position nscaf1690 on B. mori chromosome 1.
sgATAD3A primer dimers were synthesized using forward
and reverse primers, then the primer dimers were ligated to
the pSL1180-U6 vector after BbsI digestion, and the
pSL1180-U6-sgATAD3A vector was obtained by sequencing
this vector (Dong et al. 2016; Horn and Wimmer 2000).
Finally, the U6-sgATAD3A was ligated to a pBac [3×P3
DsRed afm] vector to generate a red fluorescent protein trans-
genic vector for pBac [U6-sgATAD3A-3×P3 DsRed afm]
using the BglII restriction endonuclease (Sarkar et al. 2006;
Thomas et al. 2002). Meanwhile, the Hr3 enhancer and the
39K promoter of BmNPV were used to replace the IE1 pro-
moter of the pSL1180-IE1-Cas9-Ser-PA vector, followed by
the single digestion of pSL1180-Hr3-39k-Cas9-Ser-PA using
AscI restriction endonuclease (Dong et al. 2018, 2016). The
Hr3-39k-Cas9-Ser-PA fragment was ligated into the pBac
[3×P3 EGFP afm] vector to obtain the green fluorescent pro-
tein transgenic vector pBac [Hr3-39k-Cas9-Ser-PA-3×P3
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EGFP afm] (Dong et al. 2018, 2016; Kokoza et al. 2001;
Thomas et al. 2002). All primers used in this study are given
in Supplemental Table S1. All plasmids were confirmed with
sequencing.

Microinjection and screening

Transgenic silkworm IE1-Cas9 constructs were prepared as pre-
viously described (Dong et al. 2018). In brief, the transgenic
vectors pBac [Hr3-39K-Cas9-Ser-PA-3×P3 EGFP afm] and
pBac [U6-sgATAD3A-3×P3 DsRed afm] were mixed with the
helper plasmid pHA3PIG and injected into silkworm eggs as
previously described (Dong et al. 2018; Tamura et al. 2000).
The silkworm transgenic line uses the piggyBac transposon as
a vector and the fluorescent protein (DsRed or EGFP) as a mark-
er, under the control of an eye-specific promoter (Thomas et al.
2002). Therefore, G1-positive individuals were identified using
green and red fluorescence microscopy. The double-positive
individuals sgATAD3A×IE1-Cas9 and Hr3-39K-
Cas9×sgATAD3A (sgATAD3A×39K-Cas9) were obtained after
sgATAD3Awas hybridized with IE1-CasS9 and with Hr3-39K-
Cas9, respectively. The other three phenotypes of the
sgATAD3A(−)×Cas9(−) line expressed neither the Cas9 protein
nor the sgRNA target sequence; the sgATAD3A(−)×Cas9(+)
line expressed the Cas9 protein only; and the sgATAD3A(+
)×Cas9(−) line expressed the sgRNA target sequence only.
These three lines were used as negative controls.

Sequencing

The complete genomic DNA of the silkworm transgenic lines
sgATAD3A, sgATAD3A×IE1-Cas9, and sgATAD3A×39K-
Cas9 were extracted using DNA extraction kits (Promega,
Madison, Wisconsin, USA). The ATAD3A target site frag-
ment was amplified with PCR using specific primers
(Supplemental Table S1) and was ligated into a pEASY-T5
Zero cloning vector (TransGen Biotech, Haidian, Beijing,
China) for monoclonal sequencing using M13 primers
(Stahley and Stivers 2010) (Supplemental Table S1).

Off-target assays

To compare the off-target frequencies between the virus-
inducible and the stable expression CRISPR/Cas9 systems
in the silkworm genome, we predicted three possible off-
target sites of sgATAD3A using CRISPR design tools
(http://crispr.dbcls.jp/; (Naito et al. 2015)). We identified the
three sites with the highest off-target frequencies. These sites
were amplified with PCR, and the amplicons were ligated to
pEASY-T5 Zero cloning vectors (Stahley and Stivers 2010).
Vectors were sequenced with M13 primers (Supplemental
Table S1) and aligned with the correct target gene sequences.

Mortality analyses

BmNPV OBs were purified and stored in our laboratory as
previously described (Dong et al. 2018, 2014). Control silk-
worm larvae (strain Dazao) and transgenic silkworm larvae
(39K-Cas9×sgATAD3A and sgATAD3A) were reared under
standard conditions. After all larvae were grown to the fourth
instar, the transgenic lines were identified using fluorescence
microscopy, and then inoculated with identical doses of OBs.
Larval mortality was calculated 10 days after OB infection.
Three biological replicates were used per experimental group.
All infected larvae were maintained individually under the
same conditions.

Quantitative real-time PCR (qPCR) DNA replication
assay

All samples were collected at the corresponding times and
stored at − 80 °C. Genomic DNA extraction from silkworm
samples followed by qPCR was performed as previously de-
scribed (Dong et al. 2017b, 2015c). A standard curve based on
the cycle threshold (Ct) of serial dilution concentrations was
generated. The glycoprotein (GP41) copy number at different
time points of silkworm infection was calculated. The qPCR
cycling program was as follows: 95 °C for 30 s, followed by
40 cycles at 95 °C for 5 s and 60 °C for 20 s. Each qPCR
reaction volume contained 1 μM of each primer. Three bio-
logical replicates were analyzed per experimental group, and
each qPCR was repeated three times.

Reverse transcription PCR (RT-PCR)

Total RNAwas extracted from all experimental samples, and
cDNA was synthesized as previously described (Dong et al.
2016). All RT-PCR analyses were conducted with a SYBR
Select Master Mix Mixage reagent (Bio-Rad, Hercules, CA,
USA), using primers specific to the following genes:
BmATAD3A, immediate early 1 (IE-1), capsid protein
encoding gene (VP39), gp64, and polyhedrin (POLY)
(Supplemental Table S1). The B. mori gene sw22934 was
used as the reference gene. All RT-PCRs used the following
standard cycling conditions: 95 °C for 30 s, followed by 40 cy-
cles at 95 °C for 5 s and 60 °C for 20 s. Each RT-PCR reaction
volume contained 1 μM of each primer. Three biological rep-
licates were analyzed per experimental group, and each RT-
PCR was repeated three times.

Phenotypic analyses of transgenic individuals

After hybridization of the sgATAD3A and IE1-Cas9 (39K-
Cas9) lines, all transgenic lines were raised under standard
conditions until the fourth instar, and positive individuals were
screened using fluorescence microscopy. Transgenic
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individuals from the sgATAD3A and sgATAD3A×IE1-Cas9
(39K-Cas9) lines were weighted and photographed on the
first, third, and sixth day of the fifth instar (5L-1D, 5L-3D,
and 5L-6D, respectively). Survival was calculated over the
entire lifecycle, from larval hatching until moth death. Each
transgenic line was represented by 30 larvae. All assays were
performed three times.

Analysis of economic characteristics

T h i r t y c o c o o n s f r o m t h e t r a n s g e n i c l i n e s
sgATAD3A(−)×39K-Cas9(−), sgATAD3A(−)×39K-Cas9(+),
sgATAD3A(+)×39K-Cas9(−), and sgATAD3A (+)×39K-
Cas9(+) were randomly selected. For each cocoon, total vol-
ume and size were measured, and the shell rate was calculated.
Each transgenic line was assessed based on the average of
three independent replicates.

Statistical analysis

All experiments were performed three times. All data were
expressed as the mean ± SD of three independent experiments.
The statistical significance of differences between experimen-
tal groups was determined with Student’s t test in GraphPad
Prism 6 (http://www.graphpad.com) (GraphPad Software, Inc.
, San Diego, CA, USA).

Results

CRISPR/Cas9-mediated editing of the B. mori genome
in transgenic sgATAD3A×IE1-Cas9 larvae

The baculovirus delayed early-expression gene 39K (pp31)
encodes a phosphorylated DNA binding protein that is asso-
ciated with the virogenic stroma in the nuclei of infected cells
(Guarino et al. 1992). Previous studies have shown that, in
BmNPV, the promoter of the delayed early gene 39K drives
the transcription of foreign genes induced by baculovirus in-
fection (Cao et al. 2016). Previously, we obtained the 39K
promoter sequence from the BmNPV genome, and showed
that this promoter was activated after BmNPV infection
(Cao et al. 2016; Dong et al. 2016). To prevent the
ATAD3A-KO transgenic line from influencing larval devel-
opment, here we used the baculovirus-inducible promoter
39K to initiate Cas9 protein expression (Carson et al. 1988).
We targeted the BmATAD3A gene at position 252 bp of its
open reading frame. The 39K-Cas9-posit ive and
sgATAD3A-postive transgenic lines fluoresced green and
red, respectively, after transgenic injection with pBac [Hr3-
39K-Cas9-Ser-PA-3×P3 EGFP afm] and pBac [U6-
sgATAD3A-3×P3 DsRed afm] plasmids. The advantage of
constructing two parental transgenic lines was that neither of

these lines affected the development of B. mori unless the two
transgenic lines hybridized. Four different transgenic silk-
worm phenotypes were obtained via the hybridization of the
3 9K -C a s 9 a n d s gATAD3A t r a n s g e n i c l i n e s :
sgATAD3A(−)×39K-Cas9(−), sgATAD3A(−)×39K-Cas9(+),
sgATAD3A(+)×39K-Cas9(−), and sgATAD3A(+)×39K-
Cas9(+) (Fig. 1). Individuals positive for different transgenic
phenotypes were identified using fluorescence microscopy.
Only the sgATAD3A×39K-Cas9 transgenic line expressed
both the sgATAD3A target sequence and the Cas9 protein;
all other lines served as negative controls.

Establishment of a virus-inducible transgenic
CRISPR/Cas9 system

This virus-inducible CRISPR/Cas9 system did not induce Cas9
protein expression in the absence of viral infection, and had no
significant effects on larval development. The basic principle
underlying the activation of this system was the fact that the
transcriptional activator IE1 binds the transcriptional activation
element of the 39K promoter after BmNPVinfection (Carson et
al. 1988). This infection induces the 39K promoter to express
the Cas9 protein, which cuts and edits the target gene by bind-
ing to the target RNA sequences (Fig. 2a) (Dong et al. 2016).
When activated, this system inhibits viral proliferation by
editing key host gene (Dong et al. 2016).

We determined the sensitivity of the virus-inducible
CRISPR/Cas9 system to BmNPV infection using RT-PCR.
We measured the expression of the Cas9 gene in larvae inoc-
ulated with OBs at different times post infection and infected.
We found that the expression levels of the Cas9 gene 96-h
post-infection (h p.i.) were 2-, 2.4-, 4.3-, 17.5-, and 22.8-fold
higher when inoculated with 1 × 101, 1 × 102, 1 × 103, 1 × 104,
and 1 × 105 OBs/larva, respectively (Fig. 2b). When inoculat-
ed with 1 × 105 OBs/larva, Cas9 gene expression increased
1.8-, 1-, 73.6-, 157.5-, and 191.1-fold after 12, 24, 48, 72,
and 96 h p.i., respectively (Fig. 2c). These results indicated
that the virus-inducible CRISPR/Cas9 system was activated
rapidly, even at low concentration of BmNPV.

Gene editing efficiency of the inducible CRISPR/Cas9
system

To systematically compare the gene editing efficiency of the
virus-inducible system to that of the stable system, we first
determined the level ofCas9 gene expression in both systems.
We found that Cas9 was upregulated by the inducible system
at 48 h p.i., and was more strongly expressed in the inducible
system than the stable system by 72 h p.i. (Fig. 3a). In contrast,
Cas9 gene expression in the stable expression system
remained stable for most of the infection duration, decreasing
slightly during the later stages of infection.
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Sequenc i ng showed tha t t h e t a rge t s i t e s o f
sgATAD3A×IE1-Cas9 edited the BmATAD3A gene, with
an editing efficiency up to 100% (Supplemental Fig. S1).
Sequencing of the sgATAD3A×39K-Cas9 line identified
no obvious mutations, deletions, or insertions in the ab-
sence of BmNPV infection (Fig. 3b). In contrast, the
sgATAD3A×IE1-Cas9 line caused genetic modifications,
specifically a large deletion and insertion at the target site,
without BmNPV infection (Fig. 3b). Only the transgenic
line sgATAD3A×39K-Cas9 edited the B. mori genome af-
ter BmNPV infection. The most frequent deletions and in-
sertions were 698 bp and 466 bp along, respectively. Most
of the inserted sequences involved target site attachments,
whereas the deleted sequences were key domain sequences
of BmATAD3A (Fig. 3c). No gene editing was observed in
any of the transgenic lines used as negative controls.

To prevent off-target effects, we excluded the three top off-
target sites during sgRNA design. We used T cloning and
sequencing to determine whether these off-target sites were
non-specific editing sites in the transgenic sgATAD3A×39K-
Cas9 line. No off-target effects were detected in the three non-
specific editing sites of sgATAD3A (Fig. 3d). Thus, the virus-
inducible CRISPR/Cas9 lines only edited the target site after
BmNPV infection, and had no significant effects on non-
specific loci in silkworms.

Economic characteristics of virus-inducible
ATAD3A-KO transgenic silkworms

To determine the impact of the virus-inducible CRISPR/Cas9
system on silkworm development, we analyzed the develop-
ment of silkworm larvae and measured changes in larval
weight at different developmental stages. We found no signif-
icant differences in larval weight or developmental progres-
sion between the virus-inducible line sgATAD3A×39K-Cas9
and the normal line (sgATAD3A) at 5L-1D, 5L-3D, and 5L-
6D (Fig. 4a). However, development and growth in the
ATAD3A-KO transgenic line sgATAD3A×IE1-Cas9 were
significantly delayed relative to the control l ine
(sgATAD3A; Supplemental Fig. S2A). In addition, larval
weight was ten times greater in the normal l ine
(sgATAD3A), as compared to the ATAD3A-KO transgenic
line sgATAD3A×IE1-Cas9 at 5L-1D, 5L-3D, and 5L-6D
(Supplemental Fig. S2A).

Survival rates between the virus-inducible and normal lines
were not significantly different, and the life cycle of both lines
was about 32–38 days (Fig. 4b). The life cycle of the trans-
genic line sgATAD3A×IE1-Cas9 was 20 days longer than that
of the normal line (sgATAD3A); the ATAD3A-KO completed
metamorphosis in 55–60 days (Supplemental Fig. S2B). This
delay was caused by the knock out of the BmATAD3A gene

pBac[3P×3-EGFP]-39K-Cas9 pBac[3P×3-DsRed]-U6-sgATAD3A

X

Wild type
Cas9(-)/sgATAD3A(-)

Cas9 line
Cas9(+)/sgATAD3A(-)

sgATAD3A line
Cas9(-)/sgATAD3A(+)

Cas9/sgATAD3A line
Cas9(+)/sgATAD3A(+)

U6 sgRNA TTTTTT 3XP3 DsRed SV40

piggyBacR piggyBacL

39K Cas9 Ser-PA 3XP3 EGFP SV40

piggyBacR piggyBacL

Cas9 sgRNA

Cas9
sgRNA

sgRNACas9

Fig. 1 CRISPR/Cas9-mediated editing of the B. mori genome in
sgATAD3A×IE1-Cas9 transgenic individuals. Transgenic vector
construction of the pBac [IE1-Cas9-Ser-PA-3×P3 EGFP afm] and pBac
[U6-sgATAD3A-3×P3 DsRed afm] injections using the helper plasmid.

The G1 generations of the IE1-Cas9- and sgATAD3A-positive lines were
detected using fluorescence microscopy. The G2 generation
(sgATAD3A×IE1-Cas9 and sgATAD3A transgenic hybrid lines) was
generated by G1 hybridization
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during metamorphosis. Each transgenic line was represented
by 30 larvae, and three different larvae were assessed per line.
We identified no significant differences in economically im-
portant factors between the transgenic hybrid line and the
control line. In the transgenic hybrid pupae, whole cocoon
weight was 0.7–1.3 g, cocoon shell weight was 0.13–0.21 g,
and the cocoon shell rate was 13–22%. There were no signif-
icant differences in any of these measures between the virus-
inducible line sgATAD3A(+)×39K-Cas9(+) and any of the
normal lines (sgATAD3A(−)×39K-Cas9(+), sgATAD3A(+
)×39K-Cas9(−), and sgATAD3A(−)×39K-Cas9(−)) (Fig. 4c
and Supplemental Fig. S3). Thus, the BmNPV-inducible
Cas9 system effectively edited the target gene without any
significant effects on larval development or economically im-
portant characters.

Antiviral activity of the virus-inducible CRISPR/Cas9
system

The fourth instar larvae of the transgenic lines generated by
hybridizing the BmNPV-inducible line sgATAD3A×39K-
Cas9 with normal line sgATAD3A were infected with
BmNPV at a density of 1 × 106 OBs/larva. The survival rate

of the sgATAD3A×39K-Cas9 line was 85% up until 10 days
p.i., whereas the sgATAD3A line exhibited large-scale mor-
tality within 5–8 days after OB inoculation (Fig. 5a). Total
DNA was isolated from the sgATAD3A×39K-Cas9 and
sgATAD3A lines, and quantified with qPCR. qPCR analysis
showed that the copies of BmNPV DNA gradually increased
in the normal line sgATAD3A after OB inoculation, whereas
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Fig. 2 Establishment of a virus-
inducible transgenic CRISPR/
Cas9 system. a Schematic of the
virus-inducible CRISPR/Cas9
system. b RT-PCR analysis of
Cas9 gene transcription after
infection with different
concentrations of BmNPV. Total
RNA from each 39K-Cas9 larvae
was isolated 96 h p.i. with 1 × 101,
1 × 102, 1 × 103, 1 × 104, and 1 ×
105 OBs/larva. cRT-PCR analysis
of Cas9 gene transcription after
infection with BmNPVat a
density of 1 × 105 OBs/larva at 0,
12, 24, 48, 72, and 96 h p.i. Cas9
gene expression are shown as the
mean of three independent
replicates. NS, not significant.
(***P < 0.001)

�Fig. 3 Gene editing efficiency of the inducible CRISPR/Cas9 system. a
RT-PCR analysis ofCas9 gene transcription in the virus-inducible system
(sgATAD3A×39K-Cas9) and the stable expression system
(sgATAD3A×IE1-Cas9) after infection with BmNPVat a density of 1 ×
106 OBs/larva at 0, 12, 24, 48, 72, 96, and 120 h p.i. Cas9 gene
expression levels are shown as the mean of three independent replicates.
b–c The gene editing efficiency of the virus-inducible CRISPR/Cas9
system in transgenic larvae uninfected and infected with BmNPV. The
wild-type (WT) BmATAD3A gene sequence is shown above in black; the
target sgATAD3A sequence is shown in green. Also shown is a
representative chromatogram demonstrating the WT sequence targeted
by sgATAD3A-mediated genomic editing. The shaded area indicates
sequence the insertion or deletion sequence. The GenBank accession
number of the BmATAD3A sequence is XM_022262303.1. d Off-target
analysis of the virus-inducible CRISPR/Cas9 system in transgenic
silkworms. The most common off-target sites are shown in green, with
the corresponding chromosome location indicated. PAM representative
protospacer adjacent motif sequence
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in the virus-inducible line BmNPV copies increased signifi-
cantly between 0 and 48 h p.i., then gradually decreased, and
finally disappeared entirely 48 to 120 h after OB infection
(Fig . 5b) . The abundance of v i ra l DNA in the
sgATAD3A×39K-Cas9 line was about 1000-fold lower than
that of the normal line (Fig. 5b).

Total RNA was extracted from the sgATAD3A×39K-
Cas9 and sgATAD3A lines, and the expression levels of
several BmNPV genes (immediate early gene ie-1, early
gene gp64, late gene vp39, and very late gene poly)
were analyzed by RT-PCR. BmNPV ie-1, gp64, vp39,
and poly were expressed at very low levels in the
sgATAD3A×39K-Cas9 line after inoculation with 1 × 106

OBs/larva (Fig. 5c). In contrast, the expression of these
genes gradually increased in normal line sgATAD3A.

Discussion

Genomic editing based on the CRISPR/Cas9 system is a new
and effective genetic editing tool that has been widely used for
targeting, inactivating, and deleting genes for genome-wide
screenings and even for infectious disease gene therapy
(Dong et al. 2015a; Ebina et al. 2013; Kennedy et al. 2015;
Ma et al. 2015). However, the application of the CRISPR
system to insect pathogens is still relatively basic and limited
(Tsubota and Sezutsu 2017; Zhang et al. 2016). Here, we
constructed a virus-inducible CRISPR/Cas9 system in trans-
genic silkworms that not only effectively inhibited viral pro-
liferation but also reduced off-target effects and host toxicity.
In addition, this virus-inducible CRISPR/Cas9 system could
effectively edit both BmNPV genes and host factors. Our

sg
AT

AD
3A

sg
AT

AD
3A

×3
9K

-C
as

9

5L-3D larvae

1 cm 1 cm

5L-6D larvae

sg
AT

AD
3A

sg
AT

AD
3A

×3
9K

-C
as

9

sg
AT

AD
3A

sg
AT

AD
3A

×3
9K

-C
as

9

5L-1D larvae

1 cm

a

sg
ATA

D3A

sg
ATA

D3A
×3

9K
-C

as
9

0

1

2

3

W
ei

gh
to

f5
L-

6D
la

rv
ae

(g
)

sgATAD3A
sgATAD3A
×39K-Cas9

sg
ATA

D3A

sg
ATA

D3A
×3

9K
-C

as
9

0.0

0.5

1.0

1.5

W
ei

gh
to

f5
L-

3D
la

rv
ae

(g
) sgATAD3A

sgATAD3A
×39K-Cas9

sg
ATA

D3A

sg
ATA

D3A
×3

9K
-C

as
9

0.0

0.2

0.4

0.6

0.8

W
ei

gh
to

f5
L-

1D
la

rv
ae

(g
)

sgATAD3A
sgATAD3A
×39K-Cas9

0 5 10 15 20 25 30 35 40
0

25

50

75

100

Age (d)

Su
rv

iv
al

(%
)

sgATAD3A
sgATAD3A×39K-Cas9

b c

NSNS NS

sg
ATAD3A

(-)×
39

K-C
as

9(-
)

sg
ATAD3A

(-)×
39

K-C
as

9(+
)

sg
ATAD3A

(+)
×3

9K
-C

as
9(-

)

sg
ATAD3A

(+)
×3

9K
-C

as
9(+

)
0

5

10

15

20

25
 C

oc
oo

n 
 s

he
ll 

ra
te

 (%
)

sgATAD3A(-)×39K-Cas9(-)
sgATAD3A(-)×39K-Cas9(+)
sgATAD3A(+)×39K-Cas9(-)
sgATAD3A(+)×39K-Cas9(+)

Fig. 4 Economically important characteristics of virus-inducible
ATAD3A-KO transgenic silkworms. a Phenotypes and body weights of
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sgATAD3A×39K-Cas9 and sgATAD3Awere raised the fifth instar (5L)
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modified inducible CRISPR/Cas9 system may potentially be
useful for determining insect gene function, for designing bi-
ological controls, and for the modification of malaria vectors.

Previously, we used the CRISPR/Cas9 system to establish
the first transgenic cell line that completely inhibited BmNPV
DNA replication in insect cells (Dong et al. 2016). This sys-
tem has been successfully used to create antiviral transgenic
individuals by connecting the expression frames of sgRNA
and Cas9 or via the hybridization of sgRNA lines and Cas9
lines (Chen et al. 2017; Dong et al. 2018). To expand the range
of applications of transgenic antiviral compounds and to im-
prove transgenic antiviral ability, we targeted the gene of a
BmNPV replication-dependent host factor for the genetic
modification of transgenic antiviral lines. Although the
ATAD3A-KO lines effectively inhibited viral replication, the
development of these silkworms was adversely affected
(Supplemental Fig. S2). Here, we succeeded in preventing this
negative host impact by establishing a virus-inducible system
(Fig. 4a, b). We identified no significant differences in cocoon

shell rate between the virus-inducible transgenic and the nor-
mal silkworms, suggesting that this transgenic line might be
practical for silkworm breeding (Fig. 4c). Our study provides
a novel approach to the study of silkworm antivirals com-
pounds, and, combined with previous studies, will lead to
silkworm lines that more effectively inhibit viral replication.

The most important aspect of our virus-inducible transgen-
ic CRISPR/Cas9 systemwas that the systemwas not activated
in the absence of viral infection. The basic principle of this
system was that the Cas9 protein was not expressed under
normal conditions, so sgRNA was activated alone. The
virus-inducible transgenic CRISPR/Cas9 system was rapidly
activated, resulting in reduced BmNPV virulence and/or a
shorter course of infection. The system then edited target
host-dependent factors or key genes to inhibit viral replication
(Fig. 2a). This gene editing transgenic system had several
advantages compared to stable expression system: First, the
system did not cause cytotoxic effects due to long-term Cas9
protein expression. Second, this system did not affect host
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Fig. 5 Antiviral activity of the
virus-inducible CRISPR/Cas9
system. a Survival rate of the
transgenic lines
sgATAD3A×39K-Cas9 and
sgATAD3A after the inoculation
of the fourth instar larvae with
1 × 106 OBs/larva. Each
transgenic line was screened in
triplicate, with each replicate
including 30 larvae. Mortality rate
was determined 10 days after
inoculation. b GP41 expression,
as quantified with qPCR,
representing BmNPV DNA
replication in the transgenic lines
sgATAD3A×39K-Cas9 and
sgATAD3A at 0, 12, 24, 48, 72,
96, and 120 h post inoculation of
fourth instar larvae with BmNPV
at a density 1 × 106 OBs/larva. c
Relative expression levels of
BmNPV genes ie-1, gp64, vp39,
and poly in transgenic lines
sgATAD3A×39K-Cas9 and
sgATAD3A, as quantified with
qPCR. The expression level of
each gene at each time point is the
mean of three independent
replicates. NS, not significant.
***means are significantly
different (P < 0.001)
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development due to Cas9 protein and target gene expression
(Fig. 4a). Third, this system did not induce off-target effects
due to the long-term expression of Cas9 (Fig. 3c). Fourth, the
short-term activation of the Cas9 system was more efficient a
than stable expression system.

We plan to apply this inducible system in future studies
function of insect genes, pest control, and malaria transmis-
sion by activating the system at regular intervals (McLean and
Jacobs-Lorena 2016; Ricroch 2017; Taning et al. 2017;
Tsubota and Sezutsu 2017). This type of use relies on the
modification and optimization of the BmNPV-inducible pro-
moter 39K and its regulatory elements (Cao et al. 2016;
Mistretta and Guarino 2005; Regev et al. 2006). Our inducible
CRISPR/Cas9 system provides a framework for the study of
insect infectious diseases.We intend to apply the system to the
study of major pathogens (such as baculoviruses, retroviruses,
bacteria, fungi, and microsporidia) by screening the inducible
promoters and target genes of hosts and disease vectors
(Pelosse et al. 2017). More importantly, this virus-inducible
system provides new insights into the use of the CRISPR
system for gene therapy, agricultural production, and animal
model construction.

In conclusion, we developed a highly efficient virus-
inducible CRISPR/Cas9 system that increased the antiviral
ability of transgenic silkworms, while minimizing host toxic-
ity and off-target effects. This virus-inducible CRISPR/Cas9
system provides a novel approach for the breeding of disease-
resistant insect lines. We plan to optimize this inducible
CRISPR/Cas9 system for application to viral, fungal, and bac-
terial diseases of insects, as well as to those caused by
microsporidia. Here, we have also established a new insect
pathogen control system that may effectively increase the dis-
ease resistance of beneficial insects and reduce the spread of
harmful insects.
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