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Abstract
Flavonoid glycoside degradation can proceed through two alternative enzymatic pathways: one that is mediated by
monoglycosidases, and the other catalyzed by a diglycosidase. β-Diglycosidase performs the flavonoid deglycosylation in a
single reaction. The characterized β-diglycosidase activities recognize the following disaccharidic sugar moieties: β-
primeverose, acuminose, vicianose, and β-rutinose. The present paper reviews the biochemical characteristics and potential
industrial applications of microbial β-diglycosidases that break down plant diglycoconjugated flavonoids.
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Introduction

The major flavonoid glycosides found in plants or fruits are
quercetin 3-O-rutinoside (rutin), hesperetin 7-O-rutinoside
(hesperidin), kaempferol-3-O-rutinoside, and naringenin 7-
O-neohesperidoside (naringin) (Mazzaferro and Breccia
2011a). These compounds are involved in the bitter taste or
clouding in plant-based foods or beverages, respectively.

Flavonoid glycoside degradation can proceed through two
alternative enzymatic pathways: one that is mediated by
monoglycosidases, and the other catalyzed by a diglycosidase.
Monoglycosidases (e.g., EC 3.2.1.40: α-L-rhamnosidase), the
main catalysts for deglycosylation, firstly cleave the glycosid-
ic bond between the monosaccharide moiety and glucose.
Subsequently, a β-glucosidase hydrolyzes the link between
glucose and the aglycone. In contrast to this, β-diglycosidase
performs the flavonoid deglycosylation in a single reaction.
Manyβ-diglycosidases have been identified and characterized
from several plants (Imaseki and Yamamoto 1961; Yasuda and
Nakagawa 1994; Ogawa et al. 1997; Wirth et al. 2001; Lizotte
and Poulton 1988; Mizutani et al. 2002; Suzuki et al. 2002;

Baumgertel et al. 2003; Ahn et al. 2004, 2007; Nakanishi et al.
2005; Chuankhayan et al. 2005). To our knowledge, the crys-
tal structure of β-primeverosidase (EC 3.2.1.149) from plant
Camellia sinensis has been the only reported β-diglycosidase
crystal structure (Saino et al. 2014). There is only one previous
review about these enzymes that summarize the functional and
biotechnological insights into diglycosidases (Mazzaferro and
Breccia 2011a). The present paper reviews the biochemical
characteristics and potential industrial applications of β-
diglycosidases from microorganisms that break down plant
diglycoconjugated flavonoids.

Potential substrate for β-diglycosidases

Quercetin 3-O-β-rutinoside (rutin), keampferol 3-O-β-
rutinoside, hesperetin 7-O-β-rutinoside (hesperidin),
diosmetin 7-O-β-rutinoside (diosmin), naringenin 7-O-
neohesperidoside (naringin), and (S)-linalyl β-primeveroside
are the major diglycoconjugated flavonoids of some plants
(Fig. 1), mainly buckwheat and tea leaves, and fruits, such
as apple, grape, and citrus (Mazzaferro and Breccia 2011).
Hydroxynitriles, naphthoquinones, isoflavonoids, and terpe-
noids also consist of a diglycoside moiety. For instance, β-
rutinosidase (6-O-α-L-rhamnosyl-β-D-glucosidase; EC
3.2.1.168) cleavesβ-rutinose from rutin, hesperidin, and other
rutinose (6-O-α-L-rhamnopyranosyl-β-D-glucopyranose)-
containing glycoconjugates (Fig. 2).
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Microbial β-diglycosidases

The β-diglycosidases acting on glycoconjugated flavonoids
have been predominantly reported in plants. Recently, β-
diglycosidases were also described frommicroorganisms such
as fungi, bacteria, and archae (Narikawa et al. 2000;

Yamamoto et al. 2002; Tsuruhami et al. 2006; Nam et al.
2012; Šimčíková et al. 2015; Neher et al. 2016; Ishikawa et al.
2018). These diglycosidases hydrolyze β-rutinoside (6-O-α-L-
rhamnopyranosyl-β-D-glucopyranoside) or β-primeveroside
(6-O-β-D-xylopyranosyl-β-D-glucopyranoside). It was found
that Acremonium sp. SES201, Penicillium rugulosum

Fig. 1 Chemical structures of potential substrates for β-glycosidase
activity. a Quercetin-3-O-rutinoside (Rutin). b Kaempferol-3-O-
rutinoside. c Hesperetin-7-O-rutinoside (Hesperidin). d Diosmetin-7-O-

rutinoside (Diosmin). e Naringenin-7-O-neohesperidoside (Naringin). f
(S)-Linalyl β-primeveroside

rutin

β-rutinosidase

+ H2O

rutinose

＋

quercetin

Fig. 2 Reaction scheme of the
rutin hydrolysis catalyzed by β-
rutinosidase

8718 Appl Microbiol Biotechnol (2018) 102:8717–8723



IFO7242, and Aspergillus niger K2 produced β-rutinosidase
when 0.5% hesperidin, 2% rutin, 0.5% rutin, respectively, were
used as the sole carbon source (Mazzaferro et al. 2010, 2011b;
Narikawa et al. 2000; Šimčíková et al. 2015). It has also been
reported that the production of Aspergillus oryzae β-1,3-
exoglucanase (ExgA) was highest when A. oryzae was grown
with a carbon source containing flavonoids, such as quercetin
and rutin (Riou et al. 1998). Moreover, β-primeverosidase from
Aspergillus fumigatus AP-20 and Penicillium multicolor
IAM7153 are extracellular inducible enzymes that uses β-
primeveroside-containing substances as the carbon source
and inducer (Yamamoto et al. 2002; Tsuruhami et al. 2006).
At first, the β-rutinosidase (6-O-α-rhamnopyranosyl-β-
glucosidase)-encoding gene was identified from A. niger
K2 (Šimčíková et al. 2015). However, this gene was anno-
tated in GenBank as having a putative exo-β-1,3-glucanase-
encoding open reading frame. Proximately, the β-
rutinosidase-encoding gene was also reported in A. oryzae
RIB40 (Ishikawa et al. 2018). The β-rutinosidase from A.
oryzae showed high degree of sequence similarity to the β-
rutinosidase from A. niger K2 (70%) (Šimčíková et al.
2015) and the β-primeverosidase of Penicillium multicolor
TS-5 (58%) (Tsuruhami et al. 2006). Based on the amino
acid sequence similarity, the CAZy database (Lombard et al.
2014) classifies fungal β-diglycosidases into the GH5-
subfamily 23 (GH5_23) of the glycoside hydrolases
(Aspeborg et al. 2012). Twelve sequences of only fungal
origin have been deposited in the CAZy database in
GH5_23 section (Fig. 3). Meanwhile, sequences for
exo-β-1,3-glucanases, which are fungal cell wall modifying
enzymes, have been deposited in the GH5_9. The β-
rutinosidases from A. niger (AnRutA) and A. oryzae
(AoRut) showed low similarities with the exo-β-1,3-
glucanases from A. oryzae (ExgA and Exg1) and
Lentinula edodes (Exg1) (Tamano et al. 2007; Sakamoto
et al. 2005). A thermostable β-glucosidase/β-rutinosidase
from the archaea Pyrococcus furiosus (Nam et al. 2012)
involved in the production of quercetin from rutin belongs
to GH1, similar to the β-diglycosidases from plants.
Moreover, the gene encoding the GH55 family member 6-
O-α-L-rhamnopyranosyl-β-D-glucosidase was identified
f rom Act inoplanes missour iens i s 431T genome.
Biochemical analyses of the corresponding recombinant
protein purified from Escherichia coli showed specificity
for 7-O-rutinosylated flavonoids (Neher et al. 2016).
Exo-β-1,3-glucanases from fungi including the genera
Aspergillus and Penicillium have also been deposited in
the GH55 section of the database.

A. oryzae RIB40 and Oerskovia sp. Y1 produce
isoprimeverose-producing oligoxyloglucan hydrolase (EC
3.2.1.120), a unique β-diglycosidase, that recognizes
isoprimeverose (6-O-α-D-xylopyranosyl-β-D-glucopyranoside)
units from the non-reducing ends of oligoxyloglucans (Kato et al.

1985; Yaoi et al. 2007; Matsuzawa et al. 2016). The enzyme-
encoding genes have been identified (Yaoi and Miyazaki 2012;
Matsuzawa et al. 2016). Based on the amino acid sequence,
isoprimeverose-producing oligoxyloglucan hydrolase has been
classified as a member of the GH3 family.

Properties of microbial β-diglycosidases

Data from the studies cited in Table 1 show that the pH and
temperature optima of β-rutinosidase (α-rhamnosyl-β-gluco-
sidase) and β-primeverosidase from fungi ranged from 2.2–
5.0 to 45–70 °C, respectively. The β-rutinosidases from P.
rugulosum and A. niger, and β-primeverosidase from A.
fumigatus are extreme acidophiles (Narikawa et al. 2000;
Šimčíková et al. 2015; Yamamoto et al. 2002). Meanwhile,
the optimal pH of α-rhamnosyl-β-glucosidase from A.
missouriensis belonging to the GH55 family was 7.0 (Neher
et al. 2016). α-Rhamnosyl-β-glucosidase from Acremonium
sp. and isoprimeverose-producing oligoxyloglucan hydrolase
from A. oryzae are thermophilic enzymes (Mazzaferro et al.
2010, 2011b; Kato et al. 1985). Especially, β-glucosidase/β-
rutinosidase from archaea P. furiosus is an extremely thermo-
stable enzyme (Nam et al. 2012). However, the specific activ-
ity for rutin of β-glucosidase/β-rutinosidase from P. furiosus
was approximately 900- and 15,700-fold lower, respectively,
than those for isoquercitrin and p-nitrophenyl-β-D-glucoside.

Furthermore, β-rutinosidase hydrolyzes several rutinose-
containing glycoconjugates including flavonoids, such as hes-
peridin, rutin, kaempferol-3-O-rutinoside, and hesperidin
methylchalcone. However, the enzyme does not hydrolyze
neohesperidose (2-O-α-L-rhamnopyranosyl-β-D-glucopyra-
nose)-conjugated flavonoids, such as naringin. The β-
rutinosidases from P. rugulosum and Arthrobacter sp. show
specificity for 3-O-linked rutinosides such as rutin, a 3-O-
rutinosylated flavonol (Narikawa et al. 2000; Song-Joon et
al. 1990). The catalytic activity of β-rutinosidase from A.
niger was almost ten times higher for rutin hydrolysis than
that for hesperidin, a 7-O-rutinosylated flavanone
(Šimčíková et al. 2015). Meanwhile, among the three sub-
strates examined, the catalytic activity of β-rutinosidase from
A. oryzaewas highest for kaempferol-3-O-rutinoside, which is
a 3-O-rutinosylated flavonol, moderate for rutin, and lowest
for hesperidin (Ishikawa et al. 2018). In contrast to this, α-
rhamnosyl-β-glucosidase from Acremonium sp. and A.
missouriensis hydrolyzes 7-O-linked rutinosides only, such
as hesperidin, but not 3-O-linked rutinosides such as rutin
(Mazzaferro et al. 2010, 2011b Neher et al. 2016). However,
no activity of β-rutinosidases from A. missouriensis and A.
oryzae was determined toward diosmin, a 7-O-rutinosylated
flavone. This suggests that the structure of flavonoids also
determines enzyme specificity.
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The hydrolytic activity of the β-primeverosidase from A.
fumigatus on the p-nitrophenyl β-gentiobioside was greater
than that from P. multicolor (Yamamoto et al. 2002;
Tsuruhami et al. 2006). The substrate specificity of these fun-
gal enzymes also differed appreciably from that of tea β-
primeverosidase.

Potential industrial applications

In the citrus processing industry, the deglycosylation of flavo-
noids plays an important role in improving the product quality,

such as in the reduction of bitterness, clarification of juices,
and in enhancing the aroma in wine and tea (Günata et al.
1998; Hemingway et al. 1999; Wang et al. 2001; Ma et al.
2001; Genovés et al. 2005). This process is also used for
controlling aroma compounds, such as monoterpene alcohols,
in sweet potato shochu which is a traditional Japanese distilled
spirit (Sato et al. 2018). A simple enzymatic-spectrophotometric
method for hesperidin quantification in citrus-based foods was
developed by means of Acremonium sp. α-rhamnosyl-β-
glucosidase (Mazzaferro and Breccia 2012a).

Rutinose-containing compounds have been demonstrat-
ed to have interesting pharmaceutical and medicinal

0.050

GH1

GH55

GH3

Fungal
GH5_9

Fungal
GH5_23

Fig. 3 Phylogenetic trees among β-diglycosidases and exo-β-1,3-
glucanases classified as GH1, GH3, GH5_9, GH5_23, and GH55 in the
CAZy database. An amino acid sequence alignment was performed using
ClustalW (Thompson et al. 1994), and the phylogenetic tree was
constructed using molecular evolutionary genetics analysis software
version7.0 (Tamura et al. 2007). The accession numbers are as follows:
Acremonium sp. α-rhamnosyl-β-glucosidase (AMD11613.1),
Actinoplanes missouriensis α-rhamnosyl-β-glucosidase (BAL86042.1),
Aspergillus fumigatus ExgO (CAF32160.1), Aspergillus oryzae ExgA
(CAC07551.1), Aspergillus oryzae ExgO (BAB92972.1), Aspergillus
oryzae IpeA (BAE62006.1), Aspergillus oryzae β-rutinosidase
(BAE61018.1), Aspergillus nidulans AN1332.2 (EAA65515.1),
Aspergillus niger β-rutinosidase (CAK39791.1), Aspergillus niger

An06g02060 (CAK48049.1) , Aspergi l lus phoenicis ExgS
(BAB83607.1), Botrytis cinerea BofuT4P72000002001 (CCD33736.1),
Camellia sinensis β-primeverosidase (BAC78656.1), Dalbergia
nigrescens β-apiosyl-β-glucosidase (A3RF67.1), Fusarium fujikuroi
FFUJ_02196 (CCT65263.1), Fusarium fujikuroi FFUJ_03742
(CCT64988.1), Lentinula edodes Exg1 (BAD97445.1), Oerskovia sp.
IPase (BAM08953.1), Penicillium multicolor β-primeverosidase
(BAG70961.1), Penicillium rubens Pc13g14840 (CAP925533.1),
Penicillium sp. ExgP (BAH69264.1), Pyrococcus furiosus β-
glucosidase/β-rutinosidase (AAC25555.1), and Viburnum furcatum
furcatin hydrolase (BAD14925.1). The bar represents 0.05 amino acid
substitutions per site

8720 Appl Microbiol Biotechnol (2018) 102:8717–8723



Ta
bl
e
1

Pr
op
er
tie
s
of

β
-d
ig
ly
co
si
da
se
s
fr
om

m
ic
ro
or
ga
ni
sm

s

O
rg
an
is
m

E
nz
ym

e
E
C

nu
m
be
r

M
ol
ec
ul
ar
m
as
s

(k
D
a)

pH
op
t

To
pt

(°
C
)

pH
st
a

Ts
ta

(°
C
)

M
ai
n
su
bs
tr
at
e

A
cc
es
si
on
s

R
ef
er
en
ce

Fu
ng
i

A
cr
em

on
iu
m
sp
.

D
SM

24
69
7

α
-r
ha
m
no
sy
l-
β
-g
lu
co
si
da
se

3.
2.
1.
16
8
46

5.
0

70
he
sp
er
et
in

7-
O
-β
-r
ut
in
os
id
e

A
M
D
11
61
3.
1
M
az
za
fe
rr
o
et
al
.2
01
0;
20
11

A
sp
er
gi
llu

s
fu
m
ig
at
us

A
P2

0
β
-p
ri
m
ev
er
os
id
as
e-
lik

e
en
do
-m

an
ne
r

β
-g
ly
co
si
da
se

3.
2.
1.
14
9
47

2.
5–
3.
0
55

7.
0–
8.
0

p-
ni
tr
op
he
ny
l

β
-p
ri
m
ev
er
os
id
e

Y
am

am
ot
o
et
al
.2
00
2

A
sp
er
gi
llu

s
or
yz
ae

R
IB
40

β
-r
ut
in
os
id
as
e

3.
2.
1.
16
8
65
–7
5

4.
0

45
45

ka
em

pf
er
ol
-3
-O

-β
-r
ut
in
os
id
e
B
A
E
61
01
8.
1

Is
hi
ka
w
a
et
al
.2
01
8

A
sp
er
gi
llu

s
or
yz
ae

R
IB
40

is
op
ri
m
ev
er
os
e-
pr
od
uc
in
g

ol
ig
ox
yl
og
lu
ca
n
hy
dr
ol
as
e

3.
2.
1.
12
0
11
5

5.
0

60
5.
0–
7.
0

50
ol
ig
ox
yl
og
lu
ca
n

B
A
E
62
00
6.
1

K
at
o
et
al
.1
98
5;
M
at
su
za
w
a

et
al
.2
01
6

A
sp
er
gi
llu

s
ni
ge
r
K
2

β
-r
ut
in
os
id
as
e

3.
2.
1.
16
8
~
75

3.
0

50
qu
er
ce
tin

-3
-O

-β
-r
ut
in
os
id
e

C
A
K
39
79
1.
1

Ši
m
čí
ko
vá

et
al
.2

01
5

P
en
ic
ill
iu
m
m
ul
tic
ol
or

IA
M
71
53

β
-p
ri
m
ev
er
os
id
as
e-
lik

e
en
zy
m
e

3.
2.
1.
14
9
50

4.
5–
5.
5
55

p-
ni
tr
op
he
ny
l

β
-p
ri
m
ev
er
os
id
e

B
A
G
70
96
1.
1

Ts
ur
uh
am

ie
ta
l.
20
06

P
en
ic
ill
iu
m
ru
gu
lo
su
m

N
B
R
C
72
42

β
-r
ut
in
os
id
as
e

3.
2.
1.
16
8
65

2.
2

50
2.
0–
11
.0

40
qu
er
ce
tin

-3
-O

-β
-r
ut
in
os
id
e

N
ar
ik
aw

a
et
al
.2

00
0

B
ac
te
ri
a

A
ct
in
op
la
ne
s

m
is
so
ur
ie
ns
is
43
1T

α
-r
ha
m
no
sy
l-
β
-g
lu
co
si
da
se

3.
2.
1.
16
8
62

7.
0

55
50

he
sp
er
et
in

7-
O
-β
-r
ut
in
os
id
e

B
A
L
86
04
2.
1

N
eh
er

et
al
.2
01
6

A
rt
hr
ob
ac
to
r
sp
.

β
-r
ut
in
os
id
as
e

3.
2.
1.
16
8
42

qu
er
ce
tin

-3
-O

-β
-r
ut
in
os
id
e

S
on
g-
Jo
on

et
al
.1

99
0

O
er
sk
ov
ia

sp
.Y

1
is
op
ri
m
ev
er
os
e-
pr
od
uc
in
g

ol
ig
ox
yl
og
lu
ca
n
hy
dr
ol
as
e

3.
2.
1.
12
0
10
5

4.
5

55
3.
5–
7.
5

45
ol
ig
ox
yl
og
lu
ca
n

B
A
M
08
95
3.
1
Y
ao
ie
ta
l.
20
07
;2

01
2

A
rc
ha
ea

P
yr
oc
oc
cu
s
fu
ri
os
us

D
SM

Z
36
38

β
-g
lu
co
si
da
se
/β
-r
ut
in
os
id
as
e

3.
2.
1.
21

5.
0

95
p-
ni
tr
op
he
ny
lβ

-D
-g
lu
co
si
de

A
A
C
25
55
5

N
am

et
al
.2
01
2

Appl Microbiol Biotechnol (2018) 102:8717–8723 8721



applications (Robinson et al. 2004; Knaup et al. 2007).
Rutinose-containing flavonoids have been shown to be
absorbed in he intestines only after rhamnose hydrolysis
and catalyzed by human gut microflora (Nielsen et al.
2006). The transglycosylation potential of the fungal β-
rutinosidase has been explored. The biocatalyst has been
shown to have broad acceptor specificity toward aliphatic,
aromatic, and arylalkyl alcohols using α-rhamnosyl-β-
glucosidases from Acremonium sp. (Minig et al. 2011;
Mazzaferro et al. 2012b) and A. niger (Šimčíková et al.
2015; Bassanini et al. 2017). Bassanini et al. (2017) have
developed two-step two-enzymatic synthesis of coniferin
using the α-rhamnosyl-β-glucosidase and A. terreus α-L-
rhamnosidase. It has also been reported that rutinosylation
of various phenolic acids can increase their antiviral ac-
tivity against feline calicivirrus, more than the respective
aglycone (Katayama et al. 2013).

Conclusions

In conclusion, we present here the biochemical characteristics
and potential industrial applications of β-diglycosidases from
archaea, bacteria, and fungi that breakdown plant
diglycoconjugated flavonoids. Eukaryotic β-diglycosidases
are effective catalysts when food technology for aroma mod-
ulation and pharmaceutical and medicinal applications are
envisioned. Because of their retaining mechanism,
transglycosylation activity is to be expected. The synthetic
potential of β-diglycosidases from fungi and plants has also
been demonstrated, which can glycosylate alkylic, phenolic,
and arylalkyl alcohols and phenolic acids in vitro (Mazzaferro
et al. 2012b; Šimčíková et al. 2015; Katayama et al. 2013;
Bassanini et al. 2017).
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