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Abstract
Rhamnolipids are biosurfactants with an enormous potential to replace or complement classic surfactants in industrial applica-
tions. They consist of one or two L-rhamnose residues linked to one or two 3-hydroxyfatty acids of various chain lengths, which
can also contain unsaturated carbon-carbon bonds, yielding a wide variety of different structures each with its specific physico-
chemical properties. Since different applications of surfactants require specific tenside characteristics related to surface tension
reduction, emulsification, and foaming etc., rhamnolipids represent a platform molecule which harbors an enormous potential to
adopt tailor-made properties to meet a huge variety of demands of surfactants for food-, healthcare-, and biotechnological
applications. We are here giving an overview on current technology to synthesize tailor-made rhamnolipids based on the
biotechnological use of different enzymes responsible for rhamnolipid biosynthesis originating from different naturally
rhamnolipid-producing microorganism. Furthermore, we present future strategies to determine the number of L-rhamnose and
3-hydroxyfatty acids as well as their specific chain lengths and unsaturations to produce customized rhamnolipids perfectly tuned
for every application.
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Introduction

Biosurfactants possess outstanding characteristics compared to
customaryorBconventional^ tensides,which arenormally syn-
thesized by chemical processes and mainly based on petro-
chemical and thus fossil resources. In contrast to their conven-
tional counterparts, they are of almost exclusive microbiologi-
cal origin, they are produced from renewable substrates, show
lower toxicity, and are highly or even perfectly biocompatible
and biodegradable (Desai and Banat 1997; Van Hamme et al.
2006;Hirata et al. 2009;Limaet al. 2011; Johannet al. 2016). In
addition to their eco-friendly and sustainable characteristics,

examples exist which provide better foaming properties
and—most important for a broad application potential—they
especially have remarkable stabilities against extreme pH
values, temperatures, and salt concentrations in contrast to
many of the traditional surfactants (Pruthi and Cameotra
1997; Makkar and Cameotra 1998; Nitschke and Pastore
2006; Abdel-Mawgoud et al. 2008; Banat et al. 2010).

The term Bbiosurfactant^ denominates a large variety of dif-
ferent molecules with extremely diverse chemical structures
particularly produced by different microorganisms, e.g., the
lipopeptide surfactin from Bacillus subtilis (Arima et al. 1968;
Haddad et al. 2009; Dhali et al. 2017), the polymeric emulsan
from Acinetobacter calcoaceticus (Rosenberg and Ron 1997;
Johri et al. 2002; Chamanrokh et al. 2008), or more recently
experiencing greater attention the class of glycolipids like
mannosylerythritol lipids (MELs) from the genus Pseudozyma
(Rau et al. 2005; Fukuoka et al. 2007; Saika et al. 2018), treha-
lose lipids from Rhodococcus erythropolis (Peng et al. 2007;
Marqués et al. 2009; Luong et al. 2018), or sophorolipids pro-
duced by the yeasts of the genus Candida (Van Bogaert et al.
2011; Chandran and Das 2012; Konishi et al. 2018).

Furthermore, apart from aforementioned biosurfactants, an-
other particular glycolipid is of considerable biotechnological
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interest and has therefore been intensively investigated in the
past, which are designated the so-called rhamnolipids.
Rhamnolipids (RL) were first described nearly 70 years ago
by Jarvis and Johnson (1949) as an oily extract secreted by the
human-pathogen Pseudomonas aeruginosa. As a molecule
with surface-active properties, they possess the typical amphi-
philic molecule character represented in this class of either one
or two of the name giving L-rhamnose molecules as the hy-
drophilic part linked through a β-glycosidic bond to one or—
in most molecules—two 3-hydroxyfatty acids as the hydro-
phobic part (Fig. 1; Soberón-Chávez et al. 2005). Since the
nomenclature for different rhamnolipid species was inconsis-
tent in the past and different congeners remained unconsidered,
we here suggest novel terms and abbreviations to name (new)
molecules more precisely but also very easily based on their
number of rhamnose residues, their chain lengths, and by the
fact whether they contain saturated or unsaturated fatty acids.
Based on the number of L-rhamnose sugar residues, the
rhamnolipids are classified into mono- and di-rhamnolipids
and the number of fatty acids allows a further sub-classification

into so-called mono- and di-rhamno-di-lipids (mRdL and dRdL)
with two and mono- and di-rhamno-mono-lipids (mRmL and
dRmL), respectively, with only one fatty acid chain representing
the four major native rhamnolipid species (Syldatk et al. 1985a;
Abdel-Mawgoud et al. 2010). Within these species, various con-
geners have been identified varying in lengths of both 3-
hydroxyfatty acid chains typically ranging from C8 to C16 and
being a characteristic Bfingerprint^ mainly depending on the
genus of their bacterial producer. Thus, rhamnolipids possess a
basic structural diversity, which can then be further expanded by
introduction of one or more unsaturated carbon-carbon bonds in
one of the fatty acids or in both of them (Abalos et al. 2001;
Wittgens et al. 2018). Over the years of rhamnolipid research,
more than 60 different congeners have been described featuring
fundamentally different physicochemical properties and charac-
teristics, which offers a unique potential to selectively use indi-
vidual molecules in a variety of biotechnological and industrial
applications (Abdel-Mawgoud et al. 2010; Chong and Li 2017).

The biosynthesis of rhamnolipids requires consecutive
enzymatic reactions by using only two types of metabolites

Fig. 1 Chemical structures and biosynthesis of rhamnolipids. The
biosynthesis of rhamnolipids occurs in consecutive enzymatic reactions.
RhlA synthesizes HAAs by esterification of two 3-hydroxyfatty acids.
The rhamnosyltransferases RhlB and RhlC link an HAA molecule first
with one and subsequently with a second dTDP-L-rhamnose to generate
rhamnolipids. Based on the number of L-rhamnose residues,
rhamnolipids are separated into mono- and di-rhamnolipids. Typical

rhamnolipid species containing two 3-hydroxyfatty acids (mono-
rhamno-di-lipids and di-rhamno-di-lipids) can be processed by hydro-
lases to create mono-rhamno-mono-lipids and di-rhamno-mono-lipids
containing only one fatty acid chain. Unsaturated HAAs and
rhamnolipids are most probably synthesized by using unsaturated 3-
hydroxyfatty acids. The fatty acids chain lengths of rhamnolipids typical-
ly vary between C8 and C16
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originating from the central carbon metabolism (Fig. 1).
Initially, the acyltransferase RhlA catalyzes the esterifica-
tion of two 3-hydroxyacyl molecules and synthesizes 3-(3-
hydroxyalkanoyloxy)alcanoic acids (HAAs) as typical pre-
cursors. The origin of the 3-hydroxyfatty acids and whether
they are bound to the acyl carrier protein (ACP) or to coen-
zyme A (CoA) are controversially discussed. Zhu and Rock
(2008) described an in vitro HAA production using purified
RhlA and 3-hydroxydecanoyl-ACP indicating a preference
of RhlA for this intermediate from the fatty acid de novo
synthesis (Rehm et al. 2001), whereas no HAA formation
could be detected using 3-hydroxydecanoyl-CoA as sub-
strate. However, Zhang et al. (2012) described an involve-
ment of the β-oxidation in providing substrates for HAA
biosynthesis depending on the used carbon source and they
suggested a bypass route to recruit β-oxidation intermedi-
ates into the fatty acid de novo synthesis by an unknown β-
ketoacyl-ACP synthase. Most recently, Abdel-Mawgoud et
al. (2014) characterized 3-hydroxyacyl-CoAas the preferred
substrate for HAA production using isotope-labeled carbon
sources and rhlYZmutant strains. RhlYandRhlZ are respon-
sible for the conversion of trans-2-enoyl-CoA from the β-
oxidation to R-3-hydroxyacyl-CoA. They also postulated a
linkage between the fatty acid de novo synthesis and the β-
oxidation to transfer ACP bound fatty acids to CoA as the
central cofactor. The second key enzyme in rhamnolipid bio-
synthesis, the rhamnosyltransferase I (RhlB), synthesizes
mono-rhamnolipids by linking a dTDP-L-rhamnose de-
scending from glucose-6-phosphate (Olvera et al. 1999;
Rahim et al. 2000) with an HAA molecule (Ochsner et al.
1994a; Wittgens et al. 2017). Finally, di-rhamnolipids are
synthesized by the rhamnosyltransferase II (RhlC) by adding
a second molecule of dTDP-L-rhamnose to the preformed
mono-rhamnolipids (Rahim et al. 2001). The biosynthesis
of mono-rhamno-mono-lipids and di-rhamno-mono-lipids
representing a Bprocessed^ product lacking one of the fatty
acid residues of a complete molecule most probably occurs
by two specific but yet unknown α/β-hydrolases, which,
taking into account the chain lengths of the substrate esters,
reasonably have to bemembers of the esterase or even lipase
family of hydrolases each dedicated to processing of one
rhamnolipid species containing two fatty acid chains by re-
moving the second 3-hydroxyacyl (Wittgens et al. 2017).

Different rhamnolipids can already be produced biotechno-
logically using recombinant genes or biosynthetic operons in
the same host organism. Based on their structural diversity and
the principle possibility to be targets of enzymatic modifica-
tions, rhamnolipids are developing into a platform molecule
similar to the biologicals in the pharmaceutical industry. In the
near future, processes will be available to produce tailor-made
rhamnolipids and to freely choose their number of L-
rhamnose sugars in combination with the amount of 3-
hydroxyfatty acids, their chain lengths, and the degree of

saturation (or unsaturation) allowing to customize properties
for any type of specific applications. In this overview, we
describe current opportunities for the biosynthesis of specific
rhamnolipids using different microbial producer strains and
variations of rhl-genes and we discuss appearing future strat-
egies including genetic enzyme evolution, optimization of se-
lective purification technologies, and options for chemical and
enzymatic modification of rhamnolipids, which may play
promising roles to achieve real tailor-made rhamnolipids.

Rhamnolipids in industrial applications

Through the years, numerous applications were investigated
and suggested, in which rhamnolipids can replace or comple-
ment Bconventional^ surfactants or which only become pos-
sible through the use of rhamnolipids. Traditional applications
are especially their use in laundry or dishwashing detergents
and cleaning agents (Nguyen and Sabatini 2011). Because of
their abilities to form highly stable emulsions, they are also of
great interest for applications in cosmetics and food (Klekner
and Kosaric 1993; Velikonja and Kosaric 1993; Maier and
Soberón-Chávez 2000; Nitschke and Costa 2007;
Sinumvayo and Ishimwe 2015). Large-scale applications are
the so called microbial enhanced oil recovery (MEOR), where
the use of rhamnolipids can significantly increase the amount
of recovered oil (Zhang and Zhang 1993; Wang et al. 2007;
Al-Sulaimani et al. 2011; Sharma et al. 2018), and the biore-
mediation to remove crude oil, heavy metals, and other toxic
compounds from contaminated soils and waters (Nguyen et al.
2008; Van Hamme and Urban 2009; Wang and Mulligan
2009; Liu et al. 2018). In the agriculture, rhamnolipids can
be used as pesticides due to their antimicrobial properties or
they increase the plants’ nutrient uptake (Stacey et al. 2008;
Vatsa et al. 2010; Sha et al. 2011; Chen et al. 2017). Another
large field of application is the pharmaceutical industry or
biomedicine, where rhamnolipids can be used for example
to improve the treatment against bacteria, viruses, and fungi
or the wound healing (Irie et al. 2005; Remichkova et al. 2008;
Stipcević et al. 2006; Piljac et al. 2008; Chen et al. 2017).

Generally, all these applications pose different require-
ments to the tenside properties relating to the reduction of
surface tension, the ability to form highly stable aggregates,
foaming, emulsifying, thickening, and solubilizing etc. These
characteristics are strongly dependent on the chemical struc-
ture, in the case of rhamnolipids, on the numbers of L-
rhamnose and 3-hydroxyfatty acids and the chain lengths, so
that every rhamnolipid congener possesses different physico-
chemical and surface-active properties (Howe et al. 2006;
Kłosowska-Chomiczewska et al. 2017).

However, all proposed applications so far are based on the
usage of rhamnolipids from P. aeruginosa species comprising
a mixture of mono- and primary di-rhamnolipids with various
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congeners, since only rhamnolipids from this human-
pathogen were available in larger quantities in the past.
Therefore, an enlargement of the available rhamnolipid port-
folio, which means the production of tailor-made
rhamnolipids including specific species with defined chain
lengths of their fatty acids, will be a great advantage and will
open up unexpected fields of industrial applications for these
remarkable biosurfactants.

Tailor-made rhamnolipids—today’s
and tomorrow’s challenges

Rhamnolipid-producer strains and their specific chain
length

The human-pathogen organism Pseudomonas aeruginosa is
among the most potent and best characterized native
rhamnolipid producer and able to yield titers of 40 g/L
rhamnolipid in a bioreactor (Müller et al. 2010). One single
publication reported rhamnolipid titers of more than 100 g/L
by using the specific strain DSM7108 (Giani et al. 1997), but
this record was never reproduced successfully (Müller et al.
2011). While P. aeruginosa typically synthesizes a heteroge-
nous mixture of various rhamnolipids species containing fatty
acids with a predominant C10 short chain length (sc-RL), bac-
teria from the genus Burkholderia produce long-chain
rhamnolipids (lc-RL) with a predominant C14 species.
Among these bacteria are prominent human pathogens like
B. pseudomallei (Häußler et al. 1998, 2003) or species like
B. plantarii (Andrä et al. 2006; Hörmann et al. 2010) and B.
glumae (Manso Pajarron et al. 1993; Costa et al. 2011), which
are at least plant pathogens and for example cause wilt in
many economically important crops and panicle blight in rice
constituting an increasing global important problem (Jeong et
al. 2003; Ham et al. 2011). However, there are also examples
for naturally non or less pathogenic lc-RL producers like B.
thailandensis (Dubeau et al. 2009; Funston et al. 2016;
Elshikh et al. 2017) or B. kururiensis (Tavares et al. 2012).
However, all Burkholderia species described so far failed to
achieve productivities comparable with those of P. aeruginosa
and the highest titer reported was about 1 to 3 g/L (Costa et al.
2011; Díaz De Rienzo et al. 2016; Funston et al. 2016).

Handling known pathogens or at least bacteria with a con-
siderable but undefined pathogenic potential as it exists for
Bexotic^ isolates represents another principle disadvantage
of using wild-type organisms for the production of
rhamnolipids at an industrial scale, since safety risks and very
limited acceptance by customers prevent healthcare applica-
tions and the use in cosmetics and foods (Toribio et al. 2010;
Müller and Hausmann 2011). Also, non-pathogenic
rhamnolipid producer are a poor choice, since the rhamnolipid
biosynthesis in all native producer strains is strongly

genetically regulated by a complex regulatory network
consisting of the cell-density-dependent quorum sensing
(Ochsner et al. 1994b; Ochsner and Reiser 1995; Pearson et
al. 1997; Nickzad et al. 2015) and probably further signaling
mechanisms (Wilhelm et al. 2007; Rosenau et al. 2010;
Henkel et al. 2013), which severely hamper an easy and fo-
cused overproduction of rhamnolipids in wild-type strains
(Toribio et al. 2010). As a consequence, tremendous efforts
have been made to genetically optimize native rhamnolipid
producers (Grosso-Becerra et al. 2016) or to establish heterol-
ogous production of rhamnolipids employing different host
organism. The use of Escherichia coli proved to be rather
limited, because it provides the dTDP-L-rhamnose as precur-
sor for the rhamnolipid biosynthesis only in insufficient trace
amounts (Cabrera-Valladares et al. 2006). More successful
approaches were based on the use of Pseudomonas
fluorescence or Saccharomyces cerevisiae (Ochsner et al.
1995; Bahia et al. 2018); however, currently, the most prom-
ising host is Pseudomonas putida (Ochsner et al. 1995; Cha et
al. 2008;Wittgens et al. 2011; Cao et al. 2012; Tiso et al. 2016;
Beuker et al. 2016a). This non-pathogenic and genetically
perfectly accessible strain is meanwhile well established and
recombinant strains can produce rhamnolipids at concentra-
tions of up to 15 g/L (Beuker et al. 2016b). Using a heterolo-
gous host as a universal genetic and metabolic background
further provides the principle opportunity to introduce syn-
thetic and specific biosynthesis pathways for mono-
rhamnolipids by expressing the rhlAB operon or a mixture
of mono- and di-rhamnolipids by expressing a biosynthetic
rhlABC operon from plasmid constructs allowing to freely
choose and optimize appropriate expression levels for exam-
ple by introducing libraries of synthetic promoters (Wittgens
2013). Furthermore, P. putida provides a powerful and flexi-
ble metabolic and physiological background allowing the spe-
cific biosynthesis of both, sc-RL by expressing genes origi-
nating from P. aeruginosa as well as of lc-RL using rhl-genes
from B. glumae (Wittgens et al. 2018). Based on the possibil-
ity to produce rhamnolipids of different chain lengths in P.
putida as a platform production strain, it is an attractive option
to enlarge the portfolio of rhamnolipids by using synthetic
enzymes of other bacterial species (Fig. 2). An interesting
class which we want to call very short-chain rhamnolipids
(vsc-RL) has been described for Pseudomonas desmolyticum
containing a predominant species with C6-C8 fatty acids
(Jadhav et al. 2011), while some thermophilic bacteria of the
genus Thermus appear to be producers of rhamnolipids which
represent extreme counterparts at the opposite scale with very
long-chain lengths of rhamnolipids (vlc-RL) with fatty acids
up to C24 (Řezanka et al. 2011). Moreover, the increasing
availability of microbial genome information allows identifi-
cation of so far only putative rhamnolipid biosynthetic genes,
which may easily be characterized for their products in the
recombinant P. putida system without the need to establish
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cultivation or optimization of growth conditions of the bacterial
host to allow biochemical characterization of their products.

Enzyme design for specificity improvement

Current strategies for the production of rhamnolipids are
based on the expression of unmodified wild-type rhl-genes
and operons of them, which result in biosynthesis of
heterogenic mixtures of various rhamnolipid species and con-
geners. A breakthrough, however, and therefore a more than
desirable objective to obtain would be to establish tools to
optimize rhamnolipid production towards more homogenous
preparations already in the process and in the fermenter with
ideally only one specific congener of rhamnolipids (i.e., de-
fined chain lengths) being present in the culture medium. A

powerful technology to optimize biosynthetic enzymes and
pathways is the genetic modification of the respective genes
or operons by introducing random or semi-rational alterations
into their DNA sequences using methods of the so-called di-
rected or laboratory evolution (Arnold 1996; Martínez and
Schwaneberg 2013; Packer and Liu 2015; Reetz 2016). For
the biotechnology of rhamnolipids, the logical main target to
optimize is RhlA, because this acyltransferase has been shown
to be responsible for the chain length selectivity in the biosyn-
thesis of HAA by dimerization of two 3-hydoxyfatty acids and
thus RhlA defines the chain length of resulting rhamnolipids.
In hybrid rhlAB operons with genes from P. aeruginosa and B.
glumae exclusively, the origin of rhlA determined if the
resulting rhamnolipids contained short-chain or long-chain
3-hydroxyfatty acids (Wittgens et al. 2018).

Fig. 2 Strategies for the production of tailor-made rhamnolipids. Native
or modified rhl-genes from different organisms are introduced in various
combinations to determine the numbers of rhamnose residues and the
fatty acid chain lengths of the rhamnolipids (RL). Rhamnolipids are syn-
thesized using dTDP-L-rhamnose (Rha) and 3-hydroxyfatty acids (3h-
FA) for saturated or u-3h-FA for unsaturated rhamnolipids (u-RL).
Mono- and di-rhamno-di-lipids (mRdL and dRdL) can be further proc-
essed by specific hydrolases to generate mono- and di-rhamno-mono-

lipids (mRmL and dRmL). Single congeners of very-short-chain (vsc-)
to very-long-chain (vlc-) rhamnolipids can be obtained using optimized
Rhl enzymes or can be enriched by purification after their secretion. All
rhamnolipid congeners can be further customized by chemical modifica-
tions. The mRdL (native or chemical modified) can be taken up into the
cell to undergo a biological modification by a subsequent conversion to
di-RL. Therefore, numerous specialized rhamnolipids will be available
for every industrial application
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Optimization of the biosynthetic can in principle be done
by mutagenesis in pure random approaches to introduce undi-
rected DNA mutations or as more focused or directed ap-
proaches after bioinformatic identification and subsequent
manipulation of important enzyme regions or domains, which
are responsible for the selection and binding of fatty acids.
Both approaches include the alternation of single amino acids
or the replacement of entire domains to generate mutant var-
iant or chimeric enzymes with parts originating from different
organism. The aim of these efforts is to generate an acyltrans-
ferase, which has a much higher specificity for specific fatty
acid chain lengths to enrich the desired single predominant
rhamnolipid congeners to almost pure preparations already
during the fermentation or to shift the specificity of the opti-
mized biosynthetic pathway to a specific but so far uncommon
or even unrealized chain length in rhamnolipids.

Rhamnolipid modifying enzymes

One further demand when talking about true tailor-made
rhamnolipids and the development of molecules with presum-
ably completely new physicochemical properties is to create
an option allowing to freely define the number of fatty acid
chains in the rhamnolipid molecule. Apart from the typical
rhamnolipids containing two 3-hydroxyfatty acids (mono-
rhamno-di-lipids and di-rhamno-di-lipids), also mono-
rhamno-mono-lipids and di-rhamno-mono-lipids species have
been described containing only a single fatty acid chain (Fig.
1; Syldatk et al. 1985b; Abdel-Mawgoud et al. 2010). Using
resting cells of the strain P. aeruginosa DSM2874 or with
naphthalene as the carbon source, the amount of mono-
rhamno-mono-lipids and di-rhamno-mono-lipids could be in-
creased up to almost 80% of total rhamnolipid amount
(Syldatk et al. 1985a; Déziel et al. 1999). The formation of
these rare rhamnolipid species has been reasoned to occur
after the known route of rhamnolipid biosynthesis by the
Rhl enzymes through removal of one fatty acid chain by a
putative rhamnolipid processing hydrolase most probably be-
longing to the lipase/esterase enzyme family. The formation of
mono-rhamno-mono-lipids and di-rhamno-mono-lipids does
not occur as a side reaction by the rhamnosyltransferase I,
since RhlB only utilize HAAs, but no single 3-hydroxyfatty
acids for the biosynthesis of rhamnolipids, as it was shown in
experiments with a single rhlB expressing strain and HAAs
containing spend media (Wittgens et al. 2017). Due to the fact
that this processing step appeared only for mono-rhamno-
mono-lipids but not for di-rhamno-mono-lipids which could
not be found in P. putida after heterologous expression of rhl-
genes, it is reasonable to suspect that P. putida harbors only a
mono-RL processing hydrolase, whereas P. aeruginosa has at
least two of these enzymes, which process either mono-RL or
di-RL (Wittgens et al. 2017, 2018). The identification of
rhamnolipid processing hydrolases is currently carried out

by a systematic co-expression study with more than 40 can-
didate hydrolases identified in the genomes of P. putida and
P. aeruginosa followed by characterization of their influ-
ence on single-chain rhamnolipid formation (Wittgens et
al. unpublished). In the case of success, this would be a very
easy way to add novel molecules to the portfolio of
rhamnolipids and would probably also result in new appli-
cations for these novel surfactants (Fig. 2). The identifica-
tion of further rhamnolipid modifying enzymes is also of
importance, which may have similarities to the fungal
naringinase from Aspergillus sp., which can remove the L-
rhamnose residue from di- and mono-rhamnolipids and fi-
nally generates HAA and L-rhamnose (Trummler et al.
2003). The L-rhamnose is of special interest as a fine chem-
ical for cosmetics and food (Linhardt et al. 1989; Mixich et
al. 1990; Giani et al. 1997), while HAAs as amolecule close-
ly related to the rhamnolipids show surface-active properties
itself and thus also could be interesting for industrial appli-
cations (Déziel et al. 2003).

Rhamnolipid congener enrichment via purification

Apart from strategies to increase the biosynthesis of specific
rhamnolipid congeners, the production of tailor-made
rhamnolipids can also be achieved during the downstream
processing by enrichment of specific rhamnolipids using spe-
cial purification conditions (Fig. 2). While common purifica-
tion processes are targeted to recover as much rhamnolipids as
possible depending on the desired purity (Mixich et al. 1997;
Witek-Krowiak et al. 2011; Heyd et al. 2008; Müller et al.
2012), some technical opportunities were introduced for more
specific rhamnolipid purifications. Manso Pajarron et al.
(1993) used a crystallization process using n-hexane for a
specific purification of the Rhl-Rhl-C10-C10 di-rhamnolipids.
Most chromatographic separation processes from thin- or
thick-layer chromatography to HPLC are generally used for
the identification of single pure rhamnolipid species or con-
geners (Mata-Sandoval et al. 1999; Déziel et al. 2000;
Monteiro et al. 2007; Behrens et al. 2016). However, Tiso et
al. (2018) recently present a strategy for the purification of
rhamnolipids using a liquid chromatography on a larger scale,
which performs excellent especially for mono-rhamnolipids.
During the elution process using an increasing amount of eth-
anol, various fractions containing the mono-rhamnolipid con-
geners Rha-C8-C10, Rha-C10-C10, Rha-C10-C12, and Rha-C10-
C12:1, which successivly exited the chromatography column,
were collected. Some fractions contained one mono-
rhamnolipid congener in almost pure quality, and others were
highly enriched with a specific congener or contained mix-
tures of up to three of these congeners. Probably, this method
can also be adapted for the enrichment of other rhamnolipid
species and congeners, e.g., those with longer or single fatty
acid chains.
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Increased production of unsaturated rhamnolipids

Extending the repertoire of the fatty acids would create an
enormous increase in rhamnolipid diversity. This includes
mono- or polyunsaturated fatty acids which have been de-
scribed in one or both fatty acids of the final molecule
(Abalos et al. 2001; Abdel-Mawgoud et al. 2010; Wittgens
et al. 2018). Since unsaturated fatty acids are known to be
already present in the rhamnolipid precursors HAAs (Lépine
et al. 2002; Déziel et al. 2003), it can be assumed that the
unsaturated 3-hydroxyfatty acids serve as substrate for
RhlA, too (Figs. 1 and 2). Subsequently, the resulting unsatu-
rated HAAs (u-HAAs) are then—like their normal counter-
parts with saturated fatty acids—presumably used by the two
rhamnosyltransferases RhlB and RhlC for the biosynthesis of
unsaturated mono-rhamnolipids (u-mono-RL) and finally di-
rhamnolipids (u-di-RL). Under standard cultivation condi-
tions, unsaturated rhamnolipids represent only a minor frac-
tion of total rhamnolipid congeners (Déziel et al. 1999; Haba
et al. 2003; Costa et al. 2011), but it is to be expected that
especially unsaturated rhamnolipids offer novel surfactant
properties due to their unique structure in comparison to sat-
urated rhamnolipids. Consequently, the intracellular amount
of unsaturated 3-hydroxyfatty acids has to be increased to
finally earn a higher amount of unsaturated rhamnolipids (u-
RL). For realizing this idea, genetic and metabolic modifica-
tions could be done to ensure an improved expression of spe-
cific desaturases to shift the ratio between saturated and un-
saturated 3-hydroxyfatty acids. The implementation of excep-
tional cultivation conditions and/or special feeding strategies
may also contribute to increase the amount of available unsat-
urated fatty acids for the rhamnolipid production. Other pos-
sibilities to enrich the u-RL could be possibly achieved by an
extensive enzyme optimization of RhlA to improve its speci-
ficity towards unsaturated 3-hydroxyfatty acids or by adapting
the purification protocol to yield higher amounts of u-RL.

Chemical modification of rhamnolipids

Rhamnolipids can also be produced by chemical synthesis
using the concept of hydrophobically assisted switching phase
synthesis followed by further chemical modifications (Howe
et al. 2006), which reveals totally artificial rhamnolipids con-
taining a third rhamnose residue (tri-rhamnolipids) or a third
3-hydroxyfatty acid chain (mono- and di-rhamno-tri-lipids),
uncommon C4 or C18 fatty acids or an exchange of the
carboxy against a hydroxy group at the C1 atom of the former
3-hydroxyfatty acids. These changes in chemical structures
effect a dramatic change in the physicochemical characteris-
tics of the rhamnolipids with respect to the formation of ag-
gregates, bioactivity, and fluidity (Howe et al. 2006).While an
exclusive chemical synthesis is disproportionate complex and
expensive, biological synthesis of rhamnolipids followed by a

chemical modification appears to be very attractive to generate
highly customized rhamnolipids for specialized applications
(Fig. 2). Except attaching further rhamnose or fatty acid moi-
eties, such modifications could include the insertion or ex-
change of functional chemical groups to shift the ratio be-
tween the hydrophilic and hydrophobic molecule domain
and could open up totally unexpected properties. Based on
the findings that secreted HAAs and mono-RL can be taken
up by the cell again and follow the biosynthesis route towards
di-rhamnolipids, which was shown using HAA and mono-RL
containing spend media (Wittgens et al. 2017), a chemical
modification of these molecules followed by a subsequent
biosynthesis of mono- and/or-di-rhamnolipids will be further
possible.

Conclusion

Already today, the production of several rhamnolipid species
and congeners is possible through the use of different produc-
er strains or more preferable the heterologous expression of
their responsible genes to achieve a mixture of either short-
chain or long-chain rhamnolipids. By using variations of
rhamnolipid synthesizing enzymes, the specific production
of mono- and di-rhamnolipids is also possible.

The final steps towards real tailor-made rhamnolipids will
be the identification of rhamnolipid processing enzymes for
the targeted synthesis of mono- and di-rhamno-mono-lipids as
well as an enzyme and purification optimization to enrich
specific rhamnolipid congeners containing defined chain
length and unsaturations. Further strategies include the en-
largement of rhamnolipid portfolio with more chain lengths
(vsc- and vlc-RL) and potential chemical modifications.
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