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Abstract

Poly(lactic acid)-based antimicrobial materials received considerable attention as promising systems to control microbial growth.
The remarkable physicochemical properties of PLA such as renewability, biodegradability, and US Food and Drug
Administration (FDA) approval for clinical use open up interesting perspectives for application in food packaging and biomed-
ical materials. Nowadays, there is an increasing consumer demands for fresh, high-quality, and natural foods packaged with
environmentally friendly materials that prolong the shelf life. The incorporation of antimicrobial agents into PLA-based polymers
is likely to lead to the next generation of packaging materials. The development of antimicrobial PLA materials as a delivery
system or coating for biomedical devices is also advantageous in order to reduce possible dose-dependent side effects and limit
the phenomena of antibiotic resistance. This mini-review summarizes the most recent advances made in antimicrobial PLA-based
polymers including their preparation, biocidal action, and applications. It also highlights the potential of PLA systems as efficient
stabilizers-carriers of various kinds of antimicrobial additives including essential oils and other natural compounds, active

particles and nanoparticles, and conventional and synthetic molecules.
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Introduction

Microbial contamination is a great concern in several fields,
ranging from food packaging to medical devices (Lau and
Wong 2000; Darouiche 2004). Various kinds of polymers
are usually sterilized by means of either dry/wet heat or ion-
izing radiation (Kenawy et al. 2007). However, these materials
are able to be colonized by microbial cells (Sousa et al. 2011)
and give rise to infection if they are exposed to the atmosphere
or other contaminating environments. For instance, they can
come into contact with microorganisms usually present on
foods or wounds (Lau and Wong 2000). Therefore, there is a
definite need for new antimicrobial materials able to inhibit
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the microbial growth and to prevent the subsequent coloniza-
tion and proliferation (Nostro et al. 2010, 2012, 2013; Liu et
al. 2016; Scaffaro and Lopresti 2018).

In this context, poly(lactic acid) (PLA) can be considered
one of the most attractive biopolymers due to its physical
properties, renewability, biodegradability, and biocompatibil-
ity (Tawakkal et al. 2016; Scaffaro et al. 2017a). The great
advantages of PLA are due in part to its ability to degrade into
the naturally occurring lactic acid under physiological condi-
tions, but other exceptional qualities such as low immunoge-
nicity and good mechanical properties must also be consid-
ered (Llorens et al. 2015). Moreover, PLA can be processed
adopting a large number of techniques and it is commercially
available in a wide range of grades making it suitable for
several applications (Scaffaro et al. 2016, 2017a, c).

Over recent years, several additives, including natural com-
pounds, peptides, enzymes, metals, chelating agents, and an-
tibiotics, were incorporated into PLA polymeric matrix to
provide antimicrobial activity (Tawakkal et al. 2014). The
incorporation of antimicrobial additives into PLA is a prom-
ising way to overcome microbial proliferation (Scaffaro et al.
2018). The most common methods to prepare PLA-based an-
timicrobial materials can be divided in two main approaches:
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melt processing and wet processing, each one presenting its
own advantages and disadvantages. Melt processing has the
advantage to involve equipment commonly used to process
thermoplastic materials, thus ensuring easy scale up of the
production volumes and solventless environments. These fea-
tures reduce the overall environmental impact and the produc-
tion costs; furthermore, they minimize the presence of sol-
vents in the final device (Scaffaro et al. 2013). On the other
hand, high temperature (PLA requires melting and molding
temperature of 160—190 °C) can be a problem for those drugs
that undergo thermodegradation or in presence of highly vol-
atile compounds (Nostro et al. 2015). In these cases, wet pro-
cessing can be preferred since it is carried out at ambient
temperature (Scaffaro and Lopresti 2018). Furthermore, poly-
mer solutions used in wet processing can enhance the disper-
sion in case of active particles or insoluble drugs, i.e., dis-
persed as separated phase.

This review focuses on the recent advances (from 2015 to
date) on antimicrobial additives for PLA-based materials in-
cluding their preparation, biocidal action, and application,
thus updating previous reviews released on the same
(Jamshidian et al. 2010; Pawar et al. 2014; Tawakkal et al.
2014) or different polymer (Appendini and Hotchkiss 2002;
Kuorwel et al. 2011; Palza 2015; Huang et al. 2016). Among
the reported studies, some evaluated the antimicrobial activity
by the in vitro test in solid and liquid media; some others
investigated the efficacy in a food model. Conversely, the
antibiofilm efficacy and the in vivo assays received little at-
tention. The potential of PLA was particularly investigated for
use in antimicrobial food packaging and biomedical applica-
tions. The first section will be devoted to the essential oils
(EOs), their components, and other compounds of natural

origin that are the most investigated additives for PLA.
Another section will be dedicated to active particles and nano-
particles such as silver or zinc oxide. Finally, the last section
will focus on conventional and synthetic molecules added into
PLA polymer. Figure 1 reports the schematic representation of
the topic that will be discussed in the following sections.

Essential oils, their components, and other
compounds of natural origin

The EOs are complex mixtures of plant secondary metabolites
with high inhibitory potential against a wide spectrum of mi-
croorganisms. The most important limitations of their direct
use, namely high hydrophobicity and volatility, can be over-
come by their incorporation into polymeric materials. Table 1
reports the processing for the incorporation of different EOs
and other compounds of natural origin into PLA polymer such
as melt mixing (Chieng et al. 2015; Llana-Ruiz-Cabello et al.
2016; Rapa et al. 2016; Moustafa et al. 2017; Tawakkal et al.
2017), extrusion (Llana-Ruiz-Cabello et al. 2015; Moreno-
Vasquez et al. 2017; Wang et al. 2017), solvent casting
(Bonan et al. 2015; Qin et al. 2015; Ahmed et al. 2016a;
Javidi et al. 2016; Liu et al. 2016; Yahyaoui et al. 2016;
Yang and Song 2016; Ahmed et al. 2016b, c; George et al.
2017; Muller et al. 2017; Rezaeigolestani et al. 2017; Shavisi
et al. 2017; Arfat et al. 2018; Milovanovic et al. 2018; Niu et
al. 2018), and electrospinning (Jiang et al. 2015; Wen et al.
2016; Adomaviciute et al. 2017; Gomaa et al. 2017; Liu et al.
2017; Scaffaro et al. 2018). In some cases, the presence of
additives such as {3-cyclodextrin (3-CD) (Wen et al. 2016;
Wang et al. 2017), chitosan (CS), nanoparticles (Liu et al.
2017), cellulose nanocrystals (George et al. 2017), maleic

ANTIMICROBIAL ADDITIVES

COMPOUNDS OF NATURAL ORIGIN

CHs
HSC)\@OH
CH
CARVACROL s

ACTIVE PARTICLES AND NANOPARTICLES

"  20P

PoLY(LACTIC) ACID

CONVENTIONAL AND SYNTHETIC MOLECULES

o O

Fig. 1 Schematic representation of the topic of this review
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anhydride (Moreno-Vasquez et al. 2017), and nanoclays
(Moustafa et al. 2017) were proposed in order to achieve
higher thermal stability; reduce volatility of the active com-
pound, masking unpleasant odors in the case of food packag-
ing applications; and to control the release of drugs and
flavors. In other cases, additives such as graphene oxide
(GO) (Arfat et al. 2018) and kenaf (Tawakkal et al. 2017) were
used to enhance the tensile strength of the material. In other
circumstances, polymers such as tributyl o-acetyl citrate
(ATBC) (Rapa et al. 2016), trimethylene carbonate (Qin et
al. 2015), polyethylene glycol (PEG) (Chieng et al. 2015;
Ahmed et al. 2016a, b; Muller et al. 2017; Arfat et al. 2018;
Nepomuceno et al. 2018), poly(e-caprolactone) (PCL)
(Milovanovic et al. 2018), and cellulose acetate (Gomaa et
al. 2017) were used as plasticizers to improve the processabil-
ity and the ductility of the final material.

Different antimicrobial EOs such as cinnamon (Ahmed et
al. 2016a, b, c¢; Wen et al. 2016; Liu et al. 2017), garlic
(Ahmed et al. 2016a), clove (Ahmed et al. 2016a; Arfat et
al. 2018), copaiba (Bonan et al. 2015), epoxidized palm oil
(Chieng et al. 2015), lemongrass (Yang and Song 2016), rose-
mary, myrtle, thyme (Yahyaoui et al. 2016), and oregano
(Javidi et al. 2016; Liu et al. 2016; Llana-Ruiz-Cabello et al.
2016) or their major active constituents including carvacrol
(Scaffaro et al. 2018), cinnamaldehyde (Qin et al. 2015;
Muller et al. 2017; Villegas et al. 2017), terpinen-4-ol
(Nepomuceno et al. 2018), thymol (Tawakkal et al. 2017,
Milovanovic et al. 2018), and thymoquinone (Gomaa et al.
2017) were incorporated in PLA. Considering the high num-
ber of variables such as kind and amount of EO, processing
method, microbial strain, and antimicrobial test, it is very dif-
ficult to compare the different data.

Several papers documented the antimicrobial properties
of oregano essential oil (OEO) added to PLA (Liu et al.
2016; Javidi et al. 2016; Llana-Ruiz-Cabello et al. 2016).
Specifically, PLA/poly (trimethylene carbonate) films con-
taining OEO exhibited strong antioxidant and antimicrobi-
al activity against Escherichia coli and Listeria
monocytogenes (log reduction of 3.5-3.6) (Liu et al.
2016; Javidi et al. 2016; Llana-Ruiz-Cabello et al. 2016).
Javidi et al. (2016) reported the higher inhibition area of
PLA films containing 1.5 wt% OEO detected by direct
contact than that observed by vapor phase assay and
described the significant delay of bacterial growth (reduc-
tion of colony-forming units/g) on rainbow trout fillets.
Llana-Ruiz-Cabello et al. (2016) studied the greater anti-
microbial activity of PLA films containing OEO 5-10 wt%
against yeasts and molds and suggested a new active pack-
aging for use in ready-to-eat salads. Similarly, a significant
decrease in different microbial counts was observed in let-
tuce packaged in active ethylene-vinyl alcohol copolymer
(EVOH)-coated polypropylene (PP) films containing OEO
7.5 wt% (Muriel-Galet et al. 2013). Regarding the OEO
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constituents, composite PLA films containing kenaf fibers
(20 wt%) and thymol (30 wt%) significantly killed E. coli
on chicken slice samples by direct food contact and also
were effective against naturally occurring fungi by indirect
food contact (Tawakkal et al. 2017). The death rate of E.
coli in the presence of the PLA/kenaf/thymol was related to
the concentration of thymol in the formulation and was
higher than that detected for the PLA/thymol films. The
population of E. coli decreased upon increasing the thymol
concentration from 10 to 30 wt%, with a death rate of ca.
0.19/day. Recently, innovative supercritical fluid technolo-
gy was employed to impregnate PLA/PCL films with thy-
mol and thyme extract for potential use in packaging
against Bacillus subtilis and E. coli (Villegas et al. 2017;
Milovanovic et al. 2018) or to impregnate PLA films with
cinnamaldehyde against E. coli and Staphylococcus aureus
(Villegas et al. 2017). This technology exploits supercriti-
cal carbon dioxide allowing the addition of volatile com-
pounds avoiding the limitations of the conventional
methods such as the evaporation of the active substance
(Milovanovic et al. 2018).

Among the EOs, also cinnamon essential oil (CEO)
(Ahmed et al. 2016a, b, c; Wen et al. 2016; Liu et al. 2017)
or its major component cinnamaldehyde (Qin et al. 2015;
Muller et al. 2017; Villegas et al. 2017) incorporated into
PLA-based materials showed antimicrobial activity. Liu et
al. (2017) successfully encapsulated cinnamon essential oil
into CS nanoparticles subsequently added in a PLA solution
and electrospun together for active packaging applications.
The nanoparticles enhanced the EO stability and retained the
antimicrobial activity of the compound. Overall, 75% more
cinnamon essential oil was released from the fiber with the
highest concentration exhibiting a diffusion-swelling con-
trolled process. Muller et al. (2017) developed antibacterial
monolayer and bilayer films with PLA (NatureWorks®
Ingeo4060D)/cinnamaldehyde and starch by compression
molding of previously solvent casted films with a loading
efficiency of 87%. The authors studied the release kinetics
of the active compound into food simulants of differing polar-
ities finding that Fick’s model fitted to the experimental points
in each simulant. Occasionally, the inclusion of (3-CD stabi-
lized and improved the antimicrobial activity of PLA poly-
mers containing CEO or allyl isothiocyanate (AITC) (Wen et
al. 2016; Wang et al. 2017) despite the high polymer-
processing temperature. Ahmed et al. (2016b, ¢) documented
the efficacy of PLA (NatureWorks® Ingeo4043D)/CEO com-
posite films also in a real food system such as chicken sam-
ples. The efficacy of PLA/CEO films was measured by eval-
uation of general indicators of microbial quality by the poultry
industry such as total viable counts (TVC), lactic acid bacteria
(LAB), Pseudomonas spp., and total coliform. The TVC,
LAB, Pseudomonas, and total coliforms in the chicken sam-
ples wrapped with antimicrobial PLA/CEO films were less
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than 1.0 log colony-forming unit (CFU)/g during the entire
storage period (day O to day 20). The efficacy of PLA/CEO
films was also evaluated by performing a challenge test in
chicken sample inoculated with L. monocytogenes and
Salmonella enterica Typhimurium and storage at 4 °C for
17 days. The counts were reduced by 1.5 and 3 log cycles
for L. monocytogenes and S. enterica Typhimurium, respec-
tively. Additionally, a synergistic effect was observed between
high-pressure treatment and the PLA/CEO films on survival
of L. monocytogenes. CEO and clove oil-based PLA films
exhibited higher activity against Campylobacter jejuni (ap-
proximately 7 log reduction) compared to the garlic oil-
based films suggesting their use for preservation of poultry
meats (Ahmed et al. 2016a). In a recent paper, Arfat et al.
(2018) developed composite PLA (NatureWorks®
Ingeo4043D) films with excellent antibacterial activity against
S. aureus and E. coli by incorporating clove EO (CLO) (15—
30 wt%) and graphene oxide nanosheets (1 wt%). After 7 days
of incubation, about 7 log reductions of S. aureus and 6 log
reductions of E. coli were achieved for films containing 30%
CLO.

Other antimicrobial natural compounds such as plant ex-
tracts (Llana-Ruiz-Cabello et al. 2015), epigallocatechin gal-
late (Moreno-Vasquez et al. 2017), propolis (Rezaeigolestani
et al. 2017; Shavisi et al. 2017), and rosin (Moustafa et al.
2017; Niu et al. 2018) were used to develop PLA polymeric
materials for food packaging applications. Llana-Ruiz-
Cabello et al. (2015) demonstrated the inhibiting activity of
PLA (NatureWorks® Ingeo2003D) films containing
Proallium®, a commercial product based on Allium spp. ex-
tract, against Enterobacteriaceae, aerobic bacteria, yeasts, and
molds on ready-to-eat lettuce salads. Moreno-Vasquez et al.
(2017) prepared antimicrobial PLA (NatureWorks®
Ingeo4042D) films through extrusion incorporating a certain
amount of PLA grafted maleic anhydride (PLA-gr) as a
compatibilizing agent to increase the miscibility between neat
PLA and epigallocatechin gallate (EGCG). EGCG diffusion
from PLA films followed a Fickian behavior and after 7 days,
the release of EGCG for PLA-EGCG and PLA-gr—-EGCG
was 2.40 and 3.01 wt%, respectively. For the authors, this
result could indicate that the EGCG distribution in PLA-gr—
EGCG was more homogeneous than PLA-EGCG, such that
the surface contact between EGCG and deionized water was
higher. Also, propolis in association with EOs or nanoparticles
was successfully incorporated in PLA (FkuR kunststoffim
GmbH, 197,000 g/mol) materials. In particular, combinations
of propolis ethanolic extract (PEE) with Zataria multiflora
Bioss. essential oil (ZME 1% v/v) (Rezaeigolestani et al.
2017) or Ziziphora clinopodioides essential oil (ZEO 1—
2 wt%) (Shavisi et al. 2017), containing carvacrol and thymol
as the most abundant constituents, included into PLA polymer
showed higher antibacterial effects against Gram-positive and
Gram-negative bacteria than those obtained with each single

ZEO or PEE (Shavisi et al. 2017) or increased the shelf life in
vacuum-packed cooked sausages (Rezaeigolestani et al.
2017).

Interestingly, novel perspectives in biomedical area such as
drug release systems, treatment of periodontitis, and wound
healing were suggested by PLA materials containing PPE and
silver nanoparticles (Adomaviciute et al. 2017), copaiba oil
(Bonan et al. 2015), epoxidized palm oil (Chieng et al.
2015), or thymoquinone (Gomaa et al. 2017). Combination
of PPE and silver nanoparticles loaded in PLA
(NatureWorks® Inge06202D) provided efficient antimicrobi-
al protection and maintained viability of HaCaT cells indicat-
ing a possible application for wound healing (Adomaviciute et
al. 2017). Bonan et al. (2015) added polyvinylpyrrolidone
(PVP) in order to prepare PLA (NatureWorks®, 66,000
g/mol)/PVP electrospun blends containing copaiba oil. The
authors demonstrated that the EO increased the diameter of
the fibers, reduced the contact angle, and showed activity
against S. aureus (inhibition zone of 20.3-21.5 mm) suggest-
ing a potential use in controlled drug system. In addition,
plasticized PLA-based (NatureWorks® Ingeo4042D) nano-
composites filled with graphene nanoplatelets and containing
PEG and epoxidized palm oil exhibited potentiated antimicro-
bial activity (log reduction enhancing by adding the
graphene nanoplatelets) against E. coli, S. typhimurium, S.
aureus, and L. monocytogenes (Chieng et al. 2015). Gomaa
et al. (2017) proposed thymoquinone (TQ)-loaded PLA
(NatureWorks® Ingeo4043D)/cellulose acetate nanofibers
for wound dressing applications. The authors demonstrated
a loading efficiency of TQ in PLA ranging from 80 to
90.5% and the efficacy of this system to prevent bacterial
infection and to accelerate the rate of in vivo wound closure
reepithelialization.

Microbial biofilms represent a serious problem because
microorganisms embedded in a self-produced extracellular
polymeric substance are less susceptible to conventional treat-
ment (Fux et al. 2005). Although several publications focused
on PLA as a suitable matrix for the incorporation of antimi-
crobial compounds, there are limited reports on the effects of
PLA containing natural compounds against microbial biofilm.
As reported in Fig. 2, Scaffaro et al. (2018) studied the effica-
cy of PLA (NatureWorks® Ingeo2002D)/carvacrol
electrospun membranes against S. aureus and Candida
albicans up to 144 h and suggested the potential of nanofibers
as new tools for skin and wound polymicrobial infections. The
gradual release of carvacrol from PLA membranes (up to 90%
of carvacrol released after 144 h with respect of the nominal
CAR loaded in PLA) resulted in the antimicrobial activity for
all the investigated time and reduced the biofilm production of
S. aureus and C. albicans in single and mixed cultures (>
80%). Nepomuceno et al. (2018) proposed solution blow spin-
ning as a particular approach to prepare PLA/poly(ethylene
glycol) nanofibers containing terpinen-4-ol (up to 40 wt%)
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Fig. 2 Schematic representation of the preparation and characterization of antimicrobial PLA/CAR electrospun membranes

or chlorhexidine gluconate (up to 0.12 wt% used as control)
and demonstrated their antimicrobial and antibiofilm activity
(> 80-90%) against Aggregatibacter actinomycetemcomitans
for potential treatment of aggressive periodontitis.

Antimicrobial peptides are another broad class of naturally
occurring molecules that can be incorporated into PLA poly-
mer. In particular, nisin is a bacteriocin approved as a food
preservative because of'its negligible toxicity and antibacterial
effectiveness (Nostro et al. 2010; Scaffaro 2012). Jiang et al.
(2015) described the S. aureus inhibition by nisin loaded into
phosphorylated soybean protein isolate/PLA/zirconium diox-
ide nanofibrous membranes and suggested their use as a po-
tential material in drug delivery, food active packaging, and
wound dressing. Notably, PLA fortified with cellulose
nanocrystals and E1I4LKK (a 14 residue, magainin-class pep-
tide) or silver nanoparticles (control) were studied for their
inhibitory effects against microorganisms (log reduction > 8)
commonly encountered in the food industry (George et al.
2017).

Active particles and nanoparticles

The processing approaches for the preparation of antimicrobi-
al PLA-based polymer containing active particles and nano-
particles are reported in Table 2. For these systems, the particle
dispersion is a crucial parameter for the performances of the
material such as biocidal efficacy, mechanical properties, and
barrier properties. In order to improve filler dispersion in
solvent-based processing such as solvent casting (De Silva
et al. 2015; Huang et al. 2015; Chu et al. 2017; Li et al.
2017) and electrospinning (Quirds et al. 2015; Adomaviciute
et al. 2017), sonication of the polymeric solution is usually
proposed (Huang et al. 2015; Quirds et al. 2015;
Adomaviciute et al. 2017; Li et al. 2017). On the other hand,
improvement of the particles dispersion in melt processing

@ Springer

such as melt mixing (Tsou et al. 2017; Nootsuwan et al.
2018) and extrusion (Marra et al. 2016; Yang et al. 2016) is
generally achieved by using masterbatch of PLA and particles
(Marra et al. 2016) or by PLA functionalization (Yang et al.
2016).

Silver is known to have antibacterial effects since ancient
times (Silver and Phung 1996) and its use in antimicrobial
packaging is attracting intense interest in recent times. In this
context, silver nanoparticles were incorporated into PLA poly-
mer in order to provide antimicrobial efficacy (Adomaviciute
et al. 2017; Chu et al. 2017; Li et al. 2017; Tsou et al. 2017;
Nootsuwan et al. 2018). Li et al. (2017) described PLA
(NatureWorks®, 280 kDa) nanocomposite films with different
amounts of nanosilver (0.5 wt%) and nanotitanium dioxide
(1-5 wt%) particles and demonstrated their good antimicrobi-
al activity (CFU reduction >4.5) toward E. coli and L.
monocytogenes. The author also studied the migration of the
nanoparticles into different media. For Ti nanoparticles, the
maximum migration ratios for 3% (w/v) aqueous acetic acid
were 2.19, 2.36, 3.12, and 3.5 pug/kg for PLA/Ti1%, PLA/
Til%/Ag, PLA/Ti5%, and PLA/Ti5%/Ag, respectively. For
50% (v/v) aqueous ethanol, the maximum migration ratio
amounts were 0.593, 0.72, 0.80, and 0.99 ug/kg. For the
50% (v/v) aqueous ethanol, the 3% (w/v) aqueous acetic acid
shows a higher amount of Ti migration. This result was ex-
plained by dissolution experiments, which show that an acidic
solution could more easily dissolve Ti or TiO,, compared to an
organic solution. Tsou et al. (2017) added nanosilver-doped
multiwall carbon nanotube (MWCNT-Ag) as active PLA
(Cargill-Dow Biopolymer 4032D) filler to avoid the use of
organic solvents, to improve tensile strength, thermostability,
and antimicrobial activity in order to obtain novel materials
for biomedical applications (Tsou et al. 2017). In a recent
study, Nootsuwan et al. (2018) developed biodegradable hy-
brid materials between PLA- (NatureWorks® Ingeo2003D)
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Ingeo3251D) grafted with glycidyl methacrylate (Yang et al.
2016). The effectiveness of the reactive melt grafting and the
high value of disintegration rate of the composites after
10 days revealed the potential to prevent the hazard of micro-
bial contamination from post-harvest phases to the final users.

Conventional and synthetic molecules

The local treatment of microbial infections is clinically advan-
tageous as it could reduce systemic drug administration and
then avoid widespread harmful effects. The development of
antimicrobial delivery systems based on localized antibiotic
release at the site of infection is claimed as a way to limit
antibiotic resistant strains, to prevent the appearance of bio-
film and avoid secondary infection (Luo et al. 2017).

As reported in Table 3, PLA compounding with conven-
tional and synthetic drugs is often carried out by incorporation
of the drug during electrospinning (Llorens et al. 2015; Jiang
et al. 2016; Moslem et al. 2016; Luo et al. 2017; Shahi et al.
2017). Electrospinning process permits the fabrication of non-
woven mats composed of continuous fibers ranging from mi-
cro to nanometer diameters. The remarkable physicochemical
properties of nanofibers such as high levels of flexibility, po-
rosity, gas permeation, and surface-to-volume ratio make them
ideal materials to be applied in the biomedical field. Another
interesting approach is 3D printing that focuses on the on-
demand production of anti-infective and chemotherapeutic
filaments that can be used to create discs, beads, catheters,
or any medical construct using a 3D printing system
(Weisman et al. 2015; Hall Barrientos et al. 2017) and solvent
casting(Weisman et al. 2015). Solvent casting approach was
adopted for preparing both dense and porous antimicrobial
films by eventually, addition of PEG into PLA as a water-
soluble porogen agent (Concilio et al. 2015; Chitrattha and
Phaechamud 2016). Moslem et al. (2016) reported that
electrospun membranes of chitosan/PLA (Sigma-Aldrich,
59,800 g/mol)/imipenem were effective against the growth
of E. coli (inhibition zone of 1014 mm), allowed good pro-
liferation of the fibroblast cells, and maintained up to 1 week
the released imipenem. The system containing imipenem was
indicated as a novel biocompatible and antibacterial scaffold
used for wound and burns dressing. PLA matrix (Sigma-
Aldrich, GF45989881) loaded and electrospun with
levofloxacin or irgasan (triclosan) and collagen type I were
examined. PLA systems were effective in inhibiting the
growth of E. coli and S. aureus (inhibition zone equal to
21 mm for levofloxacin and 10 mm for irgasan) except
PLA-collagen-levofloxacin which showed a regrowth of bac-
teria after 48 h (Hall Barrientos et al. 2017). Weisman et al.
(2015) proposed a new class of bioactive 3D printing fila-
ments using gentamicin sulfate (GS) for bone infection treat-
ment and methotrexate (MTX) for inhibition of osteosarcoma.
The author found that both molecules retained the

antibacterial activity (inhibition zone 12.9-21.35 mm for
GS) and the cancer growth-inhibiting cytostatic activity (inhi-
bition of 65% of osteosarcoma cells proliferation for MTX)
throughout the manufacturing process despite the heat re-
quired for this method. Moreover, the composite showed su-
perior combination of strength, versatility, and enhanced drug
delivery. Chitrattha and Phaechamud (2016) also documented
the efficacy of PLA (NatureWorks® Ingeo2002D) film loaded
with gentamicin sulfate against a wide variety of Gram-
positive and Gram-negative microorganisms (inhibition zone
of 27.17-35.67 mm) whereas PLA with metronidazole
inhibited only Bacteroides fragilis (inhibition zone of 54—
55 mm). They sustained the antimicrobial activity for a week
indicating that PEG 400 filled in PLA enhanced the drug
release of films. The authors explained this result considering
the porous structure of the films and the high water solubility
of PEG likely able to enhance the diffusivity of water and drug
into the drug-loaded films. Scaffaro et al. (2017b) prepared
antimicrobial PLA (NatureWorks® Ingeo2002D) sheets con-
taining ciprofloxacin (CFX), chosen as model molecule since
its melting temperature is higher than that of PLA processing
temperature. The incorporation of graphene nanoplatelets
(GnPs) improved the stiffness of the system and affected the
release of ciprofloxacin without hindering the antimicrobial
activity (inhibition zone of 42 mm for CFX and 35 mm for
CFX/GnPs). In particular, the presence of GnPs reduced the
burst release effect thus suggesting the potential ability of GnP
for controlled drug release applications (Scaffaro et al. 2017b).
PLA-based materials containing chitosan were also carriers
for tetracycline with activity against S. aureus (inhibition zone
of 11-35 mm) (Jiang et al. 2016). The concentration of S.
aureus decreased rapidly (absorbance values from 0.9 to
0.04) with increasing Tet content (20%) at first, and then de-
creased slightly at Tet content beyond 20% (absorbance
values from 0.04 to 0.02).

Microbial infections associated with medical devices rep-
resent a significant public health challenge (Darouiche 2004).
The presence of biofilm-forming microorganisms increases
this problem (Fux et al. 2005). Antibiotic-containing fibers
hold great potential as an antibacterial and antibiofilm implant
coating. Innovative biodegradable PLA-based films, contain-
ing different percentages of antimicrobial azo dyes, showed
qualitative colorimetric biofilm inhibition against S. aureus
and C. albicans and were indicated for biomedical and anti-
microbial active packaging applications (Concilio et al. 2015).
Shahi et al. (2017) deposited antibiotic-containing PLA
(NatureWorks® Ingeo4060D) nanofibers on titanium dental
implants. The authors first studied the in vitro antimicrobial
properties against a multispecies peri-implantitis-relevant bio-
film such as Porphyromonas gingivalis, Fusobacterium
nucleatum, Prevotella intermedia, and Aggregatibacter
actinomycetemcomita, and then evaluated its effects on a
pre-clinical animal model.
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PLA electrospun microfibers filled with triclosan
(TCS), ketoprofen (KTP), or their combination to obtain
multifunctional scaffolds with anti-inflammatory and bac-
tericide activities against E. coli and M. luteus were pre-
pared (Llorens et al. 2015). Specifically, the authors stud-
ied the influence of different ratios between L- and D-
lactide units on the polymer matrix crystallinity and on
the release behavior (NatureWorks® Ingeo4032D and
Ingeo2002D). In particular, release of TCS and KTP was
found to be dependent on the stereoregularity of the poly-
mer matrix and also on the intermolecular interactions
potentially established in dual drug-loaded scaffolds.
More in detail, PLA 2002D microfibers showed the
highest release percentages, probably as a consequence
of the decrease in trapping efficiency caused by their low-
er molecular orientation and less dense molecular arrange-
ment if compared with PLA 4032D. In fact, TCS and
KTP from PLA 2002D scaffolds after 8 h of exposure to
PBS medium rose to 40 and 30%, respectively, while
these percentages decreased to 30 and 5% for a similar
exposure time when PLA 4032D (Fig. 3). Furthermore, a
decrease of the release percentage and the release rate for
both drugs was detected in the binary system. This feature
demonstrates the potential interest of the studied binary
system since the intrinsic cytotoxicity of TCS could be
suppressed while the bactericide activity could be main-
tained (growth inhibition of 80-95%).

Luo et al. (2017) proposed a novel no cytotoxic system
consisting of electrospun PLA (NatureWorks® Ingeo2002D)
fiber with sustained antibacterial properties (inhibition zone
equal to 35 mm) filled with uncoated or encapsulated chlor-
hexidine (0.5 and 1% wt/wt). The encapsulation of

Time (min)

Time (min)

chlorhexidine spheres by polyelectrolytes had a fundamental
influence on the chlorhexidine release kinetics in H,O lower-
ing the diffusion of the drug. The use for the treatment of
persistent infections in medicine and dentistry was suggested.

Conclusion and future perspectives

PLA-based antimicrobial systems received considerable atten-
tion in both academic and industrial research. This mini-
review summarizes the recent advances made in antimicrobial
PLA-based polymers and highlights the potential of PLA sys-
tems as efficient stabilizers—carriers of various kinds of
molecules.

Nowadays, there is an increasing consumer demands for
fresh, high-quality, and natural foods packaged in environ-
mentally friendly materials that prolong the shelf life. The
physicochemical properties of PLA coupled to beneficial
properties of incorporated molecules open up interesting per-
spectives and are likely to lead to the next generation of food
packaging materials.

The antimicrobial PLA materials offer novel perspectives
also in biomedical area such as drug release systems, wound
healing, or coating for medical devices. The antimicrobial-
releasing systems can be advantageous to reduce possible
dose-dependent side effects and limit the phenomena of anti-
biotic resistance.

Despite the substantial progress on PLA polymers, further
studies on their antibiofilm activity and in vivo studies are
needed in order to design promising effective antimicrobial
systems. A better understanding of this information will pave
the way toward more applications in the near future.

@ Springer
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