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The LuxS/AI-2 system of Streptococcus suis

Yang Wang1
& Yuxin Wang1

& Liyun Sun1
& Daniel Grenier2 & Li Yi2,3

Received: 29 January 2018 /Revised: 10 June 2018 /Accepted: 11 June 2018 /Published online: 25 June 2018
# Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
Quorum sensing (QS) is an important protective mechanism that allows bacteria to adapt to its environment. A limited number of
signal molecules play the key role of transmitting information in this mechanism. Signals are transmitted between individual
bacterium through QS systems, resulting in the expression of specific genes. QS plays an important role in a variety of bacterial
processes, including drug resistance, biofilm formation, motility, adherence, and virulence.Most Gram-positive and Gram-negative
bacteria possess QS systems, mainly the LuxS/AI-2-mediated QS system. Evidence has been brought that LuxS/AI-2 system
controls major virulence determinants in Streptococcus suis and, as such, the ability of this bacterial species to cause infections in
humans and pigs. Understanding the S. suis LuxS/AI-2 system may open up novel avenues for decreasing the drug resistance and
infectivity of S. suis. This article focuses on the progress made to date on the S. suis LuxS/AI-2-mediated QS system.
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Introduction

Quorum sensing (QS) is a cell-to-cell communication mecha-
nism that mediates coordinated adaptation of bacteria by regu-
lating the expression of numerous genes. QS has two distinct
characteristics. The first relates to its complexity, which is
reflected by the wide variety of signaling molecules exhibiting
various functions and by the different types of communication
between different QS systems. The second is the diversity of QS
systems in terms of distribution, signaling molecules, and mech-
anisms as well as induction and transport of signaling molecules
(Grandclement et al. 2016; Hawver et al. 2016;Ma et al. 2017a).
QS systems are currently divided into different classes: the
LuxR-LuxI systems of Gram-negative bacteria, the auto-
inducing peptide (AIP) of Gram-positive bacteria, and the

LuxS/AI-2 system found in both Gram-positive and Gram-
negative bacteria. Many studies have shown that QS systems
are responsible for group behavior, cell luminescence, antibiotic
resistance, plasmid transfer, virulence factor gene expression,
and biofilm formation (Asif and Acharya 2012; Kalia et al.
2015; Miller et al. 2015; Singh et al. 2016). Streptococcus suis
is a zoonotic pathogen that is mainly responsible for septicemia,
meningitis, pneumonia, arthritis, and even sudden death in
humans and pigs worldwide (Segura et al. 2016). S. suis can
be divided into 33 serotypes, of which serotype 2 (S. suis 2) is
the most pathogenic and the most harmful to the swine industry,
especially in East and Southeast Asian countries such as
Thailand, Vietnam, and China (Hatrongjit et al. 2015;
Wertheim et al. 2009; Yu et al. 2006). To date, S. suis has spread
to more than 30 countries and regions around the world (Feng et
al. 2014). According to reports, there weremore than 1600 cases
of human-infected S. suis in the world, and the vast majority of
the patients were from Southeast Asia (Chatzopoulou et al.
2015). Consequently, S. suis is a constant threat to the health
of humans and pigs. The LuxS/AI-2 QS system is believed to be
involved in the virulence and drug resistance of S. suis.

QS mechanism

Bacteria possessing a QS system are capable of producing and
releasing signaling molecules known as autoinducers (AIs),
which increase from concentration as a function of cell density
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(Rémy et al. 2016; Tan et al. 2017). Bacteria can monitor vari-
ations in the concentrations of autoinducers to track changes in
cell numbers and to collectively alter the global pattern of gene
expression. QS signaling molecules include acyl-homoserine
lactones (AHLs), AIP, autoinducer-2 (AI-2), diffusible signal
factors (DSFs), fatty acids, and partial ester compounds. Many
Gram-negative bacteria rely on the secretion of AHLs to com-
municate and coordinate group behavior, such as the production
of extracellular enzymes and toxins (Williams 2007), biofilm
formation (Alagely et al. 2011; Kim et al. 2014; Parsek and
Greenberg 2005; Shih and Huang 2002), antibiotic resistance
(Bainton et al. 1992), and bacterial motility (Eberl et al. 1996).
The structure of AIP in Gram-positive bacteria differs according
to the species (Malone et al. 2007; Novick and Muir 1999). It
cannot be transported on its own across the cell wall and gener-
ally requires anATP-binding-cassette (ABC) transport system or
other membrane channel proteins for translocation outside the
cell. The binary signal system of bacteria can regulate the tran-
scriptional expression of target genes through a complex signal
transduction process (Zollmann et al. 2015). The LuxS/AI-2-
mediated QS system mediates interspecies and intraspecies in-
formation exchanges between Gram-positive and Gram-
negative bacteria (He et al. 2015; Thompson et al. 2015).

LuxS

The luxS gene is highly conserved in bacteria. For in-
stance, a comparative sequence analysis of luxS in
Streptococcus mutans and Streptococcus pyogenes showed
that the two genes share 84% identity and 92% similarity
(Merritt et al. 2003). High identity and similarity of the
above luxS genes were also found with those from
Streptococcus pneumoniae , Lactococcus lact is ,
Clostridium perfringens , Neisseria meningitidis ,
Escherichia coli, and Haemophilus influenza (Merritt et
al. 2003).

The LuxS protein is a homodimeric metallo-enzyme that
contains two identical tetrahedral metal-binding sites. The
core of each metal binding site contains a divalent zinc ion
with two histidines, a cysteine and a water molecule, which
structure is similar to active sites identified in some amidases
and peptidases (Hilgers and Ludwig 2001). The LuxS system
is involved in the synthesis of autoinducer AI-2, which is a
furanosyl borate diester (Sperandio et al. 2003).

Structure and activity of LuxS in S. suis

Analysis of the three-dimensional crystal structure of S. suis
LuxS revealed the presence of four LuxS monomers in each
asymmetric unit (PDB ID 4XCH) (Fig. 1). The LuxSmonomers
consist of four antiparallel β-sheets and four antiparallel alpha

helices in the order H1-S1-S2-H2-S3-S4-H3-H4 (Wang et al.
2015). Moreover, ion coupled plasma mass spectrometry has
shown that Zn2+ is the main component of the active center of
S. suisLuxS. This is consistent with the study by Ruzheinikov et
al. (2001), who investigated the Bacillus subtilis LuxS. In a
previous study, Zhu et al. (2003) determined the activity of
LuxS by measuring the release of homocysteine using
Ellman’s reagent. They found that the ligand environment of
LuxS metalloproteinase is similar to the envelopellase of poly-
peptides; LuxS in the form of Fe2+ rapidly deactivates under
aerobic conditions. However, the LuxS protein composed of
Zn2+ or Co2+ is very stable, and the catalytic ability of Co-
LuxS was the same as that of Fe-LuxS and 10 times stronger
than that of Zn-LuxS. Rajan et al. (2005) also reported the pres-
ence of Fe2+ in the LuxS of Bacillus subtilis. These results
suggest that different bacterial LuxS proteins may have different
metal ions and that this may impact their catalytic efficiency. A
bioinformatic analysis has revealed that there are possible evo-
lutionarymutations at amino acid positions 80 and 87, which are
located near the substrate binding site (Wang et al. 2015). These
two amino acid mutations have a marked effect on the binding
of the substrate, the catalytic activity of the enzyme, the produc-
tion of AI-2 by Streptococcus spp., and the ability to form
biofilms. In vitro and in vivo tests have shown that the absence
of mutations in these two amino acids can inhibit the production
of AI-2 and the formation of biofilm (Wang et al. 2011).

Metabolism

LuxS is not only involved in the production of the AI-2 signal-
ingmolecule but also plays an important role in central bacterial
metabolism and is part of the activated methyl cycle (Trappetti
et al. 2017). LuxS is mainly responsible for the hydrolysis of S-
adenosine homocysteine to S-adenosylmethionine (SAMe).
SAMe is a ubiquitous biomolecule that serves primarily as a
methyl donor. It is the main route by which bacteria recycle

Fig. 1 LuxS protein crystal structure of S. suis2 HA9801. Four different
colors represent different LuxS monomer proteins; Zn2+ ions are
represented by gray spheres
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methyl groups and is key to polyamine formation and vitamin
synthesis by bacteria (Bonhoure et al. 2015). A mutation or
deletion of luxS results in the loss of SAMe function and the
inhibition of AI-2 synthesis, indicating that QS activity will
likely be affected if the luxS mutation causes a change in the
relevant phenotype. The induction of luxS can also lead to
changes in the extracellular concentrations of other metabolites.
A recombinant LuxS assay showed that the extracellular con-
centration of S-ribosyl homocysteine (SAMewith a LuxS func-
tion) is significantly higher in the culture supernatants of LuxS-
deficient strains than in the wild-type strain (Challan Belval et
al. 2006). Based on the above results, it is possible that numer-
ous SAMe pathway intermediates inside and outside LuxS mu-
tants are modified.

LuxS/AI-2 system

LuxS plays a fundamental role in LuxS/AI-2-mediated QS sys-
tem, while AI-2 is a by-product of bacterial methyl metabolism
and balances the metabolism in activated methyl cycles (AMC)
(Yang and Defoirdt 2015). In this process, the methyl group is
removed from SAMe and is converted into thioglucoside ho-
mocysteine (SAH), which represents a toxic metabolite. SAH
is subsequently converted by a 5′-methylthioadenosine/S-
adenosyl homocysteine nucleosidase (Pfs) into adenine and
thioglycoside-type homocysteine (SRH). SRH is then convert-
ed into 4,5-dihydroxy-2,3-pentanedione (DPD) and homocys-
teine acid (HCY) by LuxS (Malladi et al. 2011; Tavender et al.
2008). Bassler et al. studied luminescence inVibrio harveyi and
found that S-glycosylated homocystease is encoded by luxS
(Bassler et al. 2010). LuxS catalyzes the cleavage of the
thioether linkage of SRH to produce HCY and DPD. DPD is
formed by self-cyclization, yielding AI-2 (Fig. 2) (Han and Lu
2009c; Ma et al. 2015; Miller et al. 2004; Winzer et al. 2003).
As the bacterial density increases, AI-2-mediated QS is activat-
ed, LuxO phosphorylation ceases, and LuxO and LuxR act
together to transcribe the luxCDABE operon, causing the bac-
teria to emit light. There are currently more than 55 known luxS
homologs, but only a few of the molecular structures of AI-2
have been clearly determined. Han et al. and Cao et al. analyzed
the S. suis genome and showed that luxS can produce AI-2
signaling molecules (Cao et al. 2011; Han and Lu 2009a).

Gene expression levels of LuxS/AI-2 system
in S. suis

The absence of luxS leads to changes in the gene expression
and phenotype of bacteria, and the LuxS protein directly
regulates the gene expression of bacteria and the functions
of various proteins, including enzymes involved in biofilm
formation, bacteriocin synthesis, cell competence, and acid

resistance. Hasona et al. (2007) used gene chips to analyze
the decreased expression of LuxS protein in Streptococcus
mutans, and found that the expression of 81 genes related to
cell competence, including chaperones, proteases, cell enve-
lope synthetases, DNA repair, and replication enzymes, was
upregulated. On the other hand, the downregulation of 35
genes involved in ribosomal proteins, and biosynthetic en-
zymes of amino acids and proteins was also observed.
Sztajer et al. (2008), through a global transcriptome analysis
of a luxS null mutant of S. mutans, found that the expressions
of 585 genes were still affected after adding chemically pure
DPD to the medium. It suggested that the LuxS enzyme plays
an important role in the methyl transfer metabolism.

The Pfs enzyme converts S-adenosylhomocysteine into S-
ribosylhomocysteine and adenine and plays an important role
in bacterial metabolism and synthesis of AI-2 (Cao et al. 2011;
Han and Lu 2009a). AI-2 activity and the transcription of pfs
reach their highest levels in the late logarithmic growth phase
of S. suis 2 while the transcription of luxS is higher during the
stationary phase. On the other hand, the transcription of pfs and
the production of AI-2 remain the same while the transcription
of luxS and the production of AI-2 do not (Han and Lu 2009b).
The differences in transcription between the S. suis wild-type
and the luxS deletion mutant (ΔluxS) strains were determined
using an Agilent microarray. The results showed that 312 genes
are differentially expressed in wild-type cells, of which 144
were upregulated and 168 were downregulated. By introducing
DPD into the ΔluxS strain, 79 genes were differentially
expressed. Of these, 29 were related to the production of S.
suis virulence factors and the uptake of iron were regulated
by the LuxS/AI-2-mediated QS system (Cao et al. 2011). We
also constructed a S. suis luxS+ overexpressing strain and
showed by real-time PCR that the expression of luxS increases
throughout all the growth phases, while the level of pfs expres-
sion remains unchanged. Overexpressing luxS did not increase
the level of pfs expression or AI-2 production. The overex-
pressing strain formed more biofilms, which increased with
the incubation time. However, the bacteria grew more than
the wild-type strain, indicating that the production of AI-2 is
not correlated with the transcription of luxS. Although the ex-
pression of luxS is constitutive, the transcription of pfs is pos-
sibly correlated with AI-2 production in S. suis (Wang et al.
2013). These results suggest that the production of AI-2 is
controlled by the interaction between luxS and pfs and increases
only when LuxS does not increase the production of AI-2.

Characteristics of LuxS/AI-2 system in S. suis

The LuxS/AI-2 system impacts on various biological prop-
erties of bacteria. It is considered as one of the most impor-
tant global regulatory networks in bacteria; the regulation of
the expression of the corresponding genes is modulated as

Appl Microbiol Biotechnol (2018) 102:7231–7238 7233



the bacterial concentrations change. In general, regulating
gene expression often causes a variety of phenotypic chang-
es. Many physiological functions of bacteria have been
found to be regulated by the LuxS/AI-2 system, including
bacterial luminescence, antibiotic susceptibility, plasmid
transfer, virulence, gene expression, and biofilm formation
(Ma et al. 2015; Wang et al. 2017). In S. suis, current re-
search is mainly focused on the impacts of the LuxS/AI-2-
mediated QS system on the regulation of the biological char-
acteristics described below.

Bacterial growth By observing the growth curves and the
morphological changes of bacterial mutants and wild-type
cells, physiological changes displayed by the mutants can be
more intuitively understood. The growth rate of a ΔluxS S.
suis mutant was found to be lower than that of the wild-type
strain. The logarithmic growth phase of the ΔluxS S. suis
mutant lagged behind that of the wild-type strain, and the
growth rate of the mutant was lower than that of the wild-
type strain. The wild-type strain reached the quiescent period
90 min ahead of the ΔluxS strain. Light microscopy showed
that cells of the ΔluxS strain aggregate and that the length of
the bacterial chains was shorter than that of the wild-type
strain. Electron microscopy revealed that the thickness of the
capsule of theΔluxSmutant was thinner than that of the wild-
type strain (Cao et al. 2011).

Cell adhesion The first steps in the infection of a host cell by a
pathogen are usually adhesion and then colonization. By using
site-specific integration, isogenic mutations were generated in
luxS, and the resulting Lactobacillus acidophilus mutants re-
sulted in a 58% reduction in adhesion to Caco-2 cells (Buck et
al. 2009). The same phenomena also appear in Actinobacillus
pleuropneumoniae (Li et al. 2011) and Lactobacillus
plantarum (Jia et al. 2018).

Comparative analysis of adhesion of the S. suis wild-type
strain and the ΔluxS mutant may provide insight regarding
regulation of adherence by the LuxS/AI-2 system. The ability
of the luxS mutant to adhere to human epithelial laryngeal
carcinoma cells and human umbilical vein endothelial cells
was found to be lower than that of the wild-type strain.
Moreover, low concentrations of exogenous AI-2 added to
the S. suiswild-type strain and luxSmutant increased adhesion
to the host cells, while high concentrations of AI-2 decreased
adhesion, with 4 and 6 μM AI-2 being the most efficient at
improving adhesion (Yang et al. 2014).

Biofilm formation Biofilms are produced by bacteria and em-
bed the entire bacterial population. Biofilms have a significant
effect on bacterial virulence and drug resistance. In recent
years, studies have found that QS systems and two-
component regulatory systems play an important regulatory
role in the formation and development of bacterial biofilms

Fig. 2 The synthetic pathway of AI-2 molecules in bacteria. S-
adenosylmethionine (SAM), the major methyl donor in metabolic pro-
cesses, is responsible for the production of AI-2. SAM transfers methyl
groups to methyl acceptors with the aid of methyltransferases to produce
S-adenosylhomocysteine (SAH). SAH is hydrolyzed to S-ribose homo-
cysteine (SRH) with the involvement of the nucleoside Pfs with a con-
comitant release of adenine. The thioether bond of SRH is cleaved under
the action of the LuxS protein and produces homocysteine and 4,5-

dihydroxy-2,3-pentanedione (DPD). It is reported that AI-2 is the result
of DPD self-cycling reaction, involving least two reactions. SAM can also
form the main triamine spermidine by decarboxylation with diamine and
putrescine. The reaction is also accompanied by the release of the toxic
by-product 5′-thiomethyladenosine (MTA), which is then modified by
Pfs, producing adenine and 5′-thiomethylribose (MTR). The exact export
mechanism of AI-2 is unknown
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(Christiaen et al. 2014; O'Loughlin et al. 2013). Among them,
the LuxS/AI-2-mediated QS system has attracted more and
more attention due to its widespread existence in Gram-
positive and Gram-negative bacteria.

The ability of S. suis to form biofilm was significantly
increased when low amount of AI-2 was added to the growth
medium, while the addition of high concentrations of AI-2
suppressed the ability to form biofilm. The addition of 2 μM
AI-2 significantly increased biofilm formation at 24 h but had
no effect at 48 h (Yang et al. 2014). These results showed that
the ability of S. suis to form biofilm is enhanced by the over-
expression of AI-2 and the incubation time (Wang et al. 2013).

Hemolytic activity Hemolysis can cause anemia, sepsis, and
other symptoms. As such, bacterial hemolytic activity is an
important indicator of pathogenicity. Pecharki et al. (2008)
found that the hemolytic activity of a Streptococcus
intermedius luxS mutant was five times lower than that of
the wild-type strain. Supplementing the culture medium with
the AI-2 precursor 4,5-dihydroxy-2,3-pentanedione restored
the hemolytic activity of the mutant. In our study, it was found
that the maximum dilution ratio of culture supernatant re-
quired to lyse 50% of erythrocytes is 1:16, 1:2, and 1:16 for
the wild-type,ΔluxS, and luxS complement strains of S. suis 2
HA9801, respectively. This suggests that luxS can modulate
the hemolytic ability of bacteria (Wang et al. 2011).

Bacterial virulence Virulence factor gene expression by bacte-
rial pathogens is required to cause infections. Virulence gene
expression must be precisely regulated if pathogens are to
infect a host and cause a disease. LuxS has been reported to
play a critical role in regulating both bacterial virulence and
interspecies QS in a broad variety of bacteria (Jones et al.
2010; Li et al. 2011; Ma et al. 2017b). The expression of the
virulence genes gdh, cps, mrp, gapdh, sly, fbps, and ef was
found to be 0.66-, 0.61-, 0.45-, 0.48-, 0.29-, 0.57-, and 0.38-
fold lower, respectively, in theΔluxSmutant strain than in the
wild-type strain of S. suis. Zebrafish infection experiments
have shown that the virulence of ΔluxS strain is 10 times
lower than that of the wild-type strain and that complemented
strains showed a partially restored level of virulence (Wang et
al. 2011). Experiments in a pig model have also shown that the
number of ΔluxS bacteria infecting the pig lung, brain, and
joints is significantly lower than that of the wild-type strain
(Cao et al. 2011).

Stress responsesBacterial stress responses, referring to chang-
es in the physiology and biochemistry of bacteria, are caused
by variations in their normal living environment (Pham et al.
2017); it may also cause morphologic changes of the bacteria
(Oh et al. 2015). The stress response is a spontaneous adapta-
tion of the bacteria to the external environment. A previous
study showed that inactivation of the luxS gene results in a

wide range of phenotypic changes, including an increase in
tolerance to H2O2 (Cao et al. 2011). Similar results were also
observed in our laboratory (unpublished data). Under oxida-
tive stress conditions, the wild-type strain of S. suis treated
with H2O2 exhibited sensitivity to H2O2, whereas the ΔluxS
was more resistant to H2O2. On the other hand, the acid resis-
tance assay showed that the inactivation of the luxS gene re-
sults in a rapid decrease in the number of S. suis cells.
Similarly, in the presence of an iron chelator, the growth of
ΔluxS was significantly decreased (unpublished data).

Future prospects

Given the ongoing increase in the antibiotic resistance of bac-
terial pathogens and the important role played by the LuxS/
AI-2 system in intercellular communication, metabolism, and
virulence, a novel antibacterial strategy based on interference
with the LuxS/AI-2-mediated QS system can be proposed. A
better knowledge of the mechanisms of bacterial regulation
and the regulation of AI-2 uptake is essential in order to be
able to control bacteria through inhibition of pathogen signal-
ing. More specifically, in-depth studies are required to identify
the genes involved in the uptake of AI-2 by S. suis, the genes
associated with AI-2, the target proteins of S. suis that are
regulated by AI-2, the downstream target proteins regulated
following AI-2 binding to the receptor protein, and the regu-
lation of the QS signaling pathway. These issues need to be
urgently addressed. Gene chip technology is a widely used
DNA analytical approach for detecting gene transcription
levels through nucleic acid hybridization. Many studies have
used this approach to identify a large number of genes affected
by LuxS and AI-2 in S. suis. Investigations by our group to
identify the S. suis AI-2 receptor are ongoing. It is planned to
construct a random S. suismutant library using the transposon
Tn917 and find the gene-mediated downstream regulatory
network of AI-2 and its receptor through gene chip analysis
and proteomics. With the deepening research on QS systems,
researchers have developed a variety of quorum sensing in-
hibitors (QSIs), including both natural and synthetic agents.
These QSIs can be divided into three categories: (1) non-
peptide small-molecule substances such as garlic extract,
thiolactones, and AI-2 analogues; (2) peptides such as leader
peptide for oligopeptide signal molecules (AgrD); and (3)
proteins such as QS degrading enzymes. These inhibitors
can block QS by inhibiting signal production, blocking signal
receptors or disrupting QS signals, and also providing an al-
ternative way of controlling microbial pathogenesis (Pan and
Ren 2009). In addition, the advantage of using QSI is not only
to prevent bacterial growth but also to avoid the production of
bacterial resistant strains (Saurav et al. 2017). Consequently,
QSIs inhibitors appear to have good prospects for the preven-
tion and control of pathogens.
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