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Abstract
Acetic acid bacteria (AAB) are widely used in acetic acid fermentation due to their remarkable ability to oxidize ethanol and high
tolerance against acetic acid. In Acetobacter pasteurianus, nucleotide excision repair protein UvrAwas up-regulated 2.1 times by
acetic acid when compared with that without acetic acid. To study the effects of UvrA on A. pasteurianus acetic acid tolerance,
uvrA knockout strain AC2005-ΔuvrA, uvrA overexpression strain AC2005 (pMV24-uvrA), and the control strain AC2005
(pMV24), were constructed. One percent initial acetic acid was almost lethal to AC2005-ΔuvrA. However, the biomass of the
UvrA overexpression strain was higher than that of the control under acetic acid concentrations. After 6% acetic acid shock for 20
and 40min, the survival ratios of AC2005 (pMV24-uvrA) were 2 and 0.12%, respectively; however, they were 1.5 and 0.06% for
the control strain AC2005 (pMV24). UvrA overexpression enhanced the acetification rate by 21.7% when compared with the
control. The enzymes involved in ethanol oxidation and acetic acid tolerance were up-regulated during acetic acid fermentation
due to the overexpression of UvrA. Therefore, in A. pasteurianus, UvrA could be induced by acetic acid and is related with the
acetic acid tolerance by protecting the genome against acetic acid to ensure the protein expression and metabolism.
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Introduction

Acetic acid is a highly important organic acid that is widely
used in chemistry, medicine, and food industry. Acetic acid
has an inhibitory effect on some microorganism growth and
metabolism when its concentration reaches 5 g/L. Acetic acid
bacteria (AAB) are gram-negative, aerobic bacteria belonging
to the Acetobacteraceae family. The remarkable ability of
AAB to oxidize ethanol and high tolerance to acetic acid
makes it widely used in the acetic acid fermentation industry
(Hattori et al. 2011; Sengun and Karabiyikli 2011). In addition
to acetic acid, AAB are important functional microorganisms
in the production of different vinegars, including traditional

Chinese cereal vinegars that are generally produced through
solid-state fermentation, traditional European fruit vinegars
produced through liquid-surface fermentation, and the vinegar
produced in liquid-submerged fermentation with pure strains
of AAB (Solieri and Giudici 2009; Nie et al. 2015).

A high acetic acid tolerance of AAB is crucial for industrial
acetic acid and vinegar production. According to previous
reports, the acetic acid tolerance mechanism of AAB is mainly
related to (i) ethanol oxidation by membrane-bound alcohol
dehydrogenase (ADH) (Trcek et al. 2007; Trcek et al. 2006)—
the high ADH activity in the Gluconacetobacter cells and
high acetic acid stability of the enzyme enable these species
to grow and stay metabolically active at 10% acetic acid
(Trcek et al. 2006); (ii) tricarboxylic acid (TCA) cycle involv-
ing citrate synthase (CS) and aconitase (Fukaya et al. 1990);
(iii) the acetic acid assimilation by transferase of acetyl coen-
zyme AarC (Mullins et al. 2008); (iv) the ATP-binding cas-
sette (ABC) transporter playing a role in pumping the acetic
acid out of the AAB (Nakano and Fukaya 2008), (v) press
tolerance proteins induced by acetic acid, such as molecular
chaperones DnaK and GroEL, to ensure proper protein fold-
ing in adverse environments—co-overexpression of GrpE
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with DnaK/J in Acetobacter pasteurianus resulted in an im-
proved growth under different pressure conditions (Ishikawa
et al. 2010; Okamoto-Kainuma et al. 2004); (vi) changes in
cell morphology and membrane composition and the pellicle
(capsular polysaccharides) formation (Trcek et al. 2007); and
(vii) the metabolism of some amino acids (Akiko et al. 2002;
Ishikawa et al. 2010; Okamoto-Kainuma et al. 2004).

The weak electrolytes and lipophilic properties of acetic
acid can cause the reduction of intracellular pH, and the low
intracellular pH will result in the release of DNA purines and
pyrimidines and causes damage to the genome (Hahn et al.
1999; Van de Guchte et al., 2002). Saccharomyces cerevisiae
could lead to chromosomal DNA breakdown into fragments
when treated with acetic acid (Ribeiro et al. 2006). For micro-
organisms, DNA repair is a highly complex phenomenon, and
one of the processes is nucleotide excision repair (NER)
(Kuper and Kisker 2012; Van Houten et al. 2005). Several
proteins, including excinuclease UvrA, B, C, D, and RecA,
have been proven to be important for strain tolerance against
acidic conditions (Grinholc et al. 2015; Sancar and Rupp
1983). Among them, UvrA, which belongs to the NER path-
way, is involved in DNA repair of prokaryotic microorgan-
isms and is the first induced protein of the NERmechanism in
bacteria (Doolittle et al. 1986; Kuper and Kisker 2012; Van
Houten et al. 2005; Verhoeven et al. 2002). In Lactobacillus
helveticus UvrA contributed to acid and oxidative tolerance
(Cappa et al. 2005).

In our previous research, the proteome of A. pasteurianus
under the conditions of acetic acid being present and absent
was analyzed (Zheng et al. 2017). Especially, we wish to find
a probable extra mechanism for acetic acid tolerance of AAB
besides the mechanisms mentioned above. Fortunately, the
expression of excision repair protein UvrA was found im-
proved by acetic acid. And then, the uvrA gene
(APA01_RS07300) was knocked out and overexpressed in
A. pasteurianus to study the effect on acetic acid tolerance
and acetic acid fermentation collaboratively with other pro-
teins responsible for acetic acid tolerance. Therefore, a rational
strategy could be proposed to improve acetic acid
fermentation.

Materials and methods

Strains and plasmids

A. pasteurianus AC2005 was registered in the Chinese
General Microbiological Culture Collection Center (num-
bered CGMCC 3089). Escherichia coli JM109 was used for
construction of recombinant vectors.

The plasmid pMD18-T (Takara) was used for cloning and
sequencing analysis. Plasmid pMV24 (Apr, lacZ), given as a
gift by the Mizkan Group Corporation, Japan, was used for

overexpression of uvrA in A. pasteurianus (Fukaya et al.
1989). A suicide plasmid pSUP202 was used to construct
the replacement vector pSUP202-uvrA::Km. E. coli HB101
containing plasmid pRK2013 was used as assistance to
knockout the gene of A. pasteurianus AC2005 (Wei et al.
2014).

Media and culture conditions

Strains of E. coli were grown at 37 °C on Luria–Bertani (LB)
medium. A. pasteurianus AC2005 was cultured in YPG me-
dium (1% yeast extract, 1% peptone, and 3% glucose) at
30 °C. GYEA medium (3% glucose, 1.5% yeast extract,
3.5% ethanol, 2% CaCO3, 1.7% agar) was used for DNA
manipulation of A. pasteurianus AC2005.

GY medium (3% glucose, 1.5% yeast extract) and GYA
medium (3% glucose, 1.5% yeast extract, and acetic acid were
added to proper concentrations) were used for proteome assay
and for analyzing acetic acid inhibition on cell growth. Acetic
acid shock experiments were performed in GYAmedium con-
taining 4 or 6% acetic acid conditions to analyze the survival
of A. pasteurianus under high acetic acid concentration stress.

The acetic acid fermentation was performed with GPAE
medium (2% glucose, 2% peptone, 1% acetic acid, and 8%
ethanol). The A. pasteurianus AC2005 seed medium was
GYE medium (3% glucose, 1.5% yeast extract, and 3.5%
ethanol). The acetic acid fermentation was implemented in a
5-L self-inspiriting fermenter (Nanjing Huike Bioengineering
Equipment Corporation, Nanjing, China). The strains were
grown for 24 h at 30 °C in the GYE medium and then were
transferred into the GPAE medium with 10% inoculum and
grown at 30 °C and 0.15 vvm.

uvrA disruption and overexpression in A.
pasteurianus

The deletions of uvrA from the chromosome of A.
pasteurianus AC2005 were performed using the reported
strategy with minor modifications (Wei et al. 2014; Zhu et
al. 2011). Two fragments for the homologous recombination
and the kanamycin resistance gene were obtained by polymer-
ase chain reaction (PCR) using the primers uvrA-1/2 and kan-
1/2. The PCR products were digested and ligated to the sui-
cide plasmid pSUP202, yielding the gene replacement vector
pSUP202-uvrA::Km. It was then transferred into A.
pasteurianus AC2005 by triparental mating using E. coli
JM109 bearing the respective vector as the donor and E. coli
HB101 bearing the plasmid pRK2013 as the helper strain. The
positive strains can grow on YGEA medium containing kana-
mycin and produce a transparent zone by producing acetic
acid. The gene disruption was confirmed by PCR using the
primers of uvrA-1/2 and kan-3/4.
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The gene uvrAwith the promoter sequence was amplified
using A. pasteurianus AC2005 genomic DNA as a template,
and the primers uvrA-3/4 were used for PCR. The pMV24
plasmid was used for constructing the uvrA overexpression
vector pMV24-uvrA. The control strain A. pasteurianus
AC2005 (pMV24) and the overexpression strain A.
pasteurianus AC2005 (pMV24-uvrA) were constructed by
electroporation with the plasmid pMV24 and plasmid
pMV24-uvrA, respectively. Primers used in this study are
listed in Table 1. DNAmanipulation was performed according
to standard protocols (Sambrook and Russell 2016).

Detection of gene transcription

For quantitative real-time PCR (RT-PCR) experiments, strains
were cultured at different acetic acid concentrations (0, 1, and
2%), and the cells were collected when the OD610 nm (optical
density under 610 nm) reached about 0.6.

Total RNA was isolated using RNAplus Kit (TaKaRa
Biotechnology, Dalian, China) by following the manufac-
turer’s procedure. Total RNA was treated with DNase I for
30 min at 37 °C to remove residual DNA. RNA samples were
reverse-transcribed with RevertAid™ First Strand cDNA
Synthesis Kit (Takara Biotechnology, Dalian, China) accord-
ing to the manufacturer’s instructions. Subsequently, the quan-
titative gene analysis was performed on an ABI StepOnePlus
Real-Time PCR System (StepOnePlus, Applied Biosystems,
USA) using the oligonucleotides listed in Table 1. The 16S
rRNA gene was used as the internal standard. The 2Ct method
was applied to analyze the data.

Acetic acid tolerance analysis

The acetic acid tolerance of strains AC2005 (pMV24),
AC2005-ΔuvrA, and AC2005 (pMV24-uvrA) that expressed
UvrA in different levels was analyzed by comparing their OD
at 610 nm after 48-h cultivation under different initial acetic
acid concentrations with 10% inoculum.

To test the tolerance of the strains toward higher acetic acid
stresses, shock experiments were performed. Strains were
grown overnight at 30 °C in GY medium and then were dilut-
ed with fresh GY medium at a ratio of 1:100 to grow to a
mid-exponential phase (reaching an OD610 mm of 0.6).
Acetic acid was added to final concentrations of 2, 4, and
6% (v/v). After 20 and 40 min of incubation at 30 °C, cells
were added into an Oxford cup and grew on GYEA medium,
and the survival of cells was observed. Viable bacteria were
determined by spread plating serial dilutions onto the GYEA
medium.

Genome integrality analysis

For genome damage analysis, overnight cultures of AC2005
(pMV24), AC2005-ΔuvrA, and AC2005 (pMV24-uvrA)
were diluted 10-fold into fresh YPG medium and grown to
mid-exponential phase (when the OD610 nm reached about
0.6). Then, cells were harvested and resuspended into 10 mL
of GY medium and GYA media with acetic acid concentra-
tions (v/v) of 2, 4, and 6% to incubate for 40 min at 30 °C.
Furthermore, genomic DNA was isolated with a TIANamp
Bacteria DNA Kit (TIANGEN, Beijing, China). DNA strand

Table 1 Primers used in this
study Primer Sequence(5′–3′) Purpose

uvrA-1 TGCACTGCAGTCTGTTTCTCCTTATGCG uvrA amplification

uvrA-2 CATGCCATGGTTAGAAAAACTCATCGAGCAT uvrA amplification

Kan-1 CATGCCATGGGCGAGGTATGTAGGCGGTGCT Kmr amplification

Kan-2 CATGCCATGGTTAGAAAAACTCATCGAGCAT Kmr amplification

Kan-3 CGGAATTCATGAGCCATATTCAACGG Kmr amplification

Kan-4 TGCTCTAGATTAGAAAAACTCATCGAGC Kmr amplification

uvrA-3 CGGAATTCGGGGCCATTTTTATTGCG uvrA amplification

uvrA-4 GCTCTAGATTATAGATATTCACTTAGAAAAGGC uvrA amplification

16s-F TCCTACGGGAGGCAGCAGT RT-PCR

16s-R CCTACACGCCCTTTACGC RT-PCR

U-F AATTAGACCGTGGAGTGCG RT-PCR for uvrA

U-R CAGAAAGAGCCTGTTGAGC RT-PCR for uvrA

adh-F CCAAAACGCACCTGGTCTAT RT-PCR for adh

adh-R TCTTCCAGACCGTTTCCATC RT-PCR for adh

cs-F TTTCACGTTTGACCCAGGTT RT-PCR for cs

cs-R GCAGCAGCGTATGGTTTGTAAG RT-PCR for cs

dnaK-F CCGTTCTGAAGGGTGATGTTA RT-PCR for dnak

dnaK-R TCGAAGTTACCCAGCAGCTT RT-PCR for dnak
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breaks were also demonstrated at the single-cell level by ter-
minal deoxynucleotidyl transferase dUTP nick-end labeling
(TUNEL) assay with the In Situ Cell Death Detection Kit,
fluorescein, from Roche Molecular Biochemicals
(Mannheim, Germany) (Gavrieli et al. 1992; Trcek et al.
2006). The integrality of the genomic DNAwas analyzed by
1.0% agarose gel electrophoresis (40 V, 60min) by comparing
the trailing (Gavrieli et al. 1992; Poorbagher et al. 2016).

Effect of UvrA expression on acetic acid fermentation

To test the effect of UvrA on acetic acid fermentation, acetic
acid fermentations were performed in a 5-L fermenter as men-
tioned above. The growth and the acetic acid were monitored,
and the relative transcription of uvrA, adh, cs, and dnaK was
mainly detected.

Analytical methods

The cell growth was monitored based on the OD value by a
spectrophotometer (UVmini-1240, Shimadzu, Kyoto, Japan)
at 610 nm. The acidity of the broth was titrated by 0.1 M
NaOH with phenolphthalein as an indicator. All experiments
were performed in triplicate. The results were expressed as
mean values with standard error. Analysis of the differences
between the categories was calculated with a confidence in-
terval of 95% with SPSS (least significant differences)
analysis.

Results

Effect of acetic acid on cell growth and protein
expression

The growths of A. pasteurianus AC2005 under different con-
centrations of acetic acid added at initial time were compared
at 48 h. As shown in Fig. 1a, the cell growth reduced with the
increase of acetic acid. When the initial acetic acid concentra-
tion was above 3%, the time for doubling of initial OD was
more than 80 h (data not shown).

To further study the effect of acetic acid on cells, the dif-
ferential protein expressions of A. pasteurianus AC2005 un-
der 0 and 1% acetic acid concentrations were analyzed by
using the proteome assay (Zheng et al. 2017). The major up-
regulated proteins were related with energy production and
conversion, amino acid transport and metabolism, carbohy-
drate transport and metabolism, and ribosomal structure
(Zheng et al. 2017). That differential protein expression is
consistent with previous reports (Wang et al. 2015; Xia et al.
2016). Interestingly, three of the proteins, excinuclease ABC
subunit A (UvrA) (GI:258541116), NAD-dependent DNA li-
gase (NAD-DNA ligase) (GI:918718363), and DNA

recombination/repair protein (RecA) (GI:256632226), in-
volved in DNA recombination and repair were up-regulated
when compared with those without acetic acid. RecA and
NAD-DNA ligase were up-regulated 1.8 times and 1.5 times,
respectively. Especially, UvrA was up-regulated 2.1 times.
However, its relation with acetic acid tolerance of AAB was
rarely studied. Thus, we analyzed the relative transcription of
uvrA under acetic acid stress by RT-PCR. As shown in Fig. 1b,
the relative transcriptions of uvrA increased with the increase
of acetic acid concentrations. Furthermore, the analysis of
genome integrality by agarose gel electrophoresis showed that
the diffusion increased with the increase of acetic acid (the
same as the Fig. 3b). Those results indicated that acetic acid
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Fig. 1 Effect of acetic acid on cell growth and uvrA transcription. a Cell
growth of the wild strain of A. pasteurianusAC2005. Cells were cultured
in GY (0% acetic acid) and GYA medium (1, 2, 3, and 4% acetic acid),
respectively, for 48 h. b Transcription levels of uvrA induced by acetic
acid. The cells were harvested when OD610 nm reached about 0.6
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could affect the genome integrality, and some proteins related
to DNA repair, such as UvrA, were up-regulated under acetic
acid conditions, together with other proteins related to acetic
acid tolerance.

Effect of UvrA on acetic acid tolerance and genomic
DNA integrality

To analyze the effects of UvrA on A. pasteurianus acetic acid
tolerance, three strains, uvrA knockout strain AC2005-ΔuvrA,
uvrA overexpression strain AC2005 (pMV24-uvrA), and the
control strain AC2005 (pMV24), were constructed according
to the method described above. Strains were grown in GYA
media supplemented with different acetic acid concentrations to
compare the effect of UvrA on cell growth. As shown in Fig. 2a,
all strains grew similarly at 0% (P < 0.05) without acetic acid
press; however, the knockout strains hardly grew when the con-
centration of acetic acid was more than 1%. Whereas, the bio-
mass of AC2005 (pMV24-uvrA) was 20.6 and 31.7% higher
than that of the control under 1 and 2% acetic acid, respectively.
The growth of the control and AC2005-ΔuvrAwas almost sup-
pressed by 3% acetic acid concentration even after 72 h of cul-
tivation, but the biomass of AC2005 (pMV24-uvrA) increased
by 66.1% (data not shown). Then, uvrA transcriptions were com-
pared under acetic acid concentration of 0, 1, and 2%, since three
stains hardly grow when the initial acetic acid concentration was
more than 2%. As shown in Fig. 2b, uvrA transcription was
positively correlated with the growth of strains under acetic acid
conditions. Thus, strain AC2005 (pMV24-uvrA) showed a better
cell growth under acetic acid stress than the control due to the
overexpression of UvrA.

Furthermore, acetic acid shock experiments were performed
to determine the effect of UvrA overexpression on the acetic acid
tolerance. As shown in Fig. 3a, the viable cells decreasedwith the
increase of acetic acid concentration and treatment period. The
knockout strain hardly grew after the 40-min acetic acid shock
and showed a clearly decreased tolerance to acetic acid than those
of the control. The viable cells of UvrA overexpression strain are
more than those of the control strain exposed in the same condi-
tions. The decrease of survival ratio with the acetic acid concen-
tration and treatment period reflected the toxicity of acetic acid to
cells (shown in Fig. 3b). With 6% acetic acid shock for 20 and
40 min, the survival ratio of overexpression strain AC2005
(pMV24-uvrA) was 2 and 0.12%, respectively. However, it
was 1.5 and 0.06% for the control strain AC2005 (pMV24).

The DNA could be damaged by acids to result in the break-
age of a DNA strand and the decrease of the genome length.
DNA damage analysis is an important method in screening
chemicals and other factors for potential genotoxic and cyto-
toxic effects, which could be detected by agarose gel electro-
phoresis (Drouin et al. 1996). In this study, the TUNEL apo-
ptosis detection kit (FITC) and the agarose gel electrophoresis
were used to analyze the qualitative DNA damage caused by

acetic acid (Ribeiro et al. 2006). As shown in Fig. 4a, b, the
number of FITC-positive cells that indicated the DNA damage
caused by acetic acid and the diffusion of DNA samples in-
creased with the increase of acetic acid concentrations. When
the concentration of acetic acid is 6%, FITC-positive cells of
AC2005 (pMV24), AC2005-ΔuvrA, and AC2005 (pMV24-
uvrA) were 7.00-, 9.23-, and 4.30-folds higher than those
without acetic acid, respectively. Clearly, UvrA overexpres-
sion would help to protect the integrality of the genome, and
knockout of uvrA resulted in serious damage. Especially,
strain AC2005 (pMV24-uvrA) showed an improved acetic
acid tolerance and genome integrality because of the overex-
pression of UvrA with its own promoter, which was induced
by acetic acid.

0 1 2 3 4
0.0

0.3

0.6

0.9

1.2

1.5

Acetic acid concentration (%)

dddd d

b
a

b

O
D

6
1
0

 AC2005 (pMV24)    AC2005- uvrA    AC2005 (pMV24-uvrA)

a b

c

d
e

d

f

d

a

0 1 2
0

5

10

15

20

25

30

35

40

 AC2005 (pMV24)    AC2005- uvrA    AC2005 (pMV24-uvrA)

Acetic acid concentration (%)

)se
mit(

le
vel

n
oit

pircs
nart

e
vitale

R

b

Fig. 2 Effect of UvrA expressions on cell growth. a Cell growth. Cells
were cultured in GY and GYA media for 48 h. b Transcription of uvrA.
The cells were harvested when OD610 nm reached about 0.6. Cells of
AC2005-ΔuvrA under 1 and 2% acetic acid conditions were collected
after 24 h of cultivation since it hardly grew
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All these results demonstrated that the overexpression of
UvrA could increase the acetic acid tolerance of A. pasteurianus
and knockout of uvrA will result in sensitivity to acetic acid.
Briefly, acetic acid can cause DNA damage to inhibit A.
pasteurianus growth, and UvrA that relates to the nucleotide
excision repair process is responsible for acetic acid tolerance
by protecting the genome from acetic acid damage.

Effect of UvrA on acetic acid fermentation

Acetic acid fermentations were performed with three strains.
The time curves are shown in Fig. 5a. The cell growth and
acetic acid production of knockout strain were almost
inhibited due to the toxicity of 1% initial acetic acid concen-
tration, while the growth and the acetic acid production of
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Fig. 3 Effect of UvrA expressions on acetic acid tolerance. a The
bacterial colony after acetic acid shock of 2, 4, and 6%, respectively.
The cells were treated with GYA media containing 2, 4, and 6% acetic
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overexpression strain were significantly higher than those of
the control strain (P < 0.05) after 9 h. For AC2005 (pMV24-
uvrA), the highest acidity (8.5 g/100 mL) was obtained at 47 h
of fermentation that was shorter than the control strain by 7 h.

The average acetification rate of AC2005 (pMV24-uvrA) was
1.57 g/(L h), which was 21.7% high when compared with the
control (1.29 g/(L h)).

To confirm the reason for improved acetic acid fermenta-
tion, relative transcriptions of genes adh, uvrA, cs, and dnaK
encoding the proteins ADH, UvrA, CS, and DnaK, respective-
ly, which have been proved responsible for ethanol oxidation
and acetic acid tolerance in AAB, were analyzed. As shown in
Fig. 5b, the relative transcription of uvrA, adh, cs, and dnaK in
AC2005 (pMV24-uvrA) were 9-, 3.7-, 3.6-, and 1.5-folds
higher, respectively, than those of the control strain due to
the overexpression of UvrA. Thus, UvrA not only improved
the acetic acid tolerance of A. pasteurianus by reducing the
genome damage caused by acetic acid, but also enhanced the
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expression of proteins related to ethanol oxidation and acetic
acid tolerance to improve acetic acid fermentation.

Discussion

The destruction to bacteria by acetic acid is caused by inten-
sifying the intracellular acidic environment and causing an
uncoupling effect acting as a lipotrope (Yin et al. 2017). The
remarkable acetic acid tolerance is an essential character to
AAB, especially for acetic acid fermentation. The mechanism
of this important property has been widely studied. However,
few reports analyzed the acetic acid tolerance mechanism of
AAB, considering the nucleotide repair. In general, the ge-
nome of all organisms is stable to ensure the metabolism and
reproduction. Physical and chemical mutagens induce DNA
lesions and reduce its molecular weight, besides stress condi-
tions such as heat and peroxide (Brennan et al. 2000; Drouin et
al. 1996; Greer and Zamenhof 1962). An intracellular acidic
environment would cause the loss of more DNA purines and
pyrimidines than the relative neutral environment (Cotter and
Hill 2003). To resist these damages, some mechanisms are
generated in the organism. The NER is one of the most com-
mon mechanisms to maintain the completeness of DNA. This
repair system essentially repairs all DNA lesions and plays a
backup role for other repair systems (De Laat et al. 1999;
Sancar and Tang 1993). It is related to acid, heat, oxidation
tolerances, etc. (Cappa et al. 2005; Yamamoto et al. 1996;
Zheng et al. 2015). UvrA is the initial protein and is mainly
involved in the original DNA damage detection and

identification (Kuper and Kisker 2012; Van Houten et al.
2005). Furthermore, the overexpression of UvrA from A.
pasteurianus could increase the tolerance of E. coli to acetic
acid, heat, and peroxide (Zheng et al. 2015).

In this research, we demonstrated that acetic acid destroyed
bacteria by affecting the genome integrality, and A.
pasteurianus could reduce this negative effect on genomes
by its DNA repair mechanism including nucleotide repair
excinuclease UvrA. Moreover, the genome damage of A.
pasteurianus increases with the increase of acetic acid accom-
panied with growth delay. A. pasteurianus could repair ge-
nome damage caused by the up-regulated expression of
UvrA. In A. pasteurianus, UvrA was induced by acetic acid
and the relative transcription level of uvrA increased with the
increase of acetic acid to protect the genomic DNA by acetic
acid. Overexpression of UvrA inA. pasteurianus protected the
genomic DNA to a certain extent, while uvrA knockout result-
ed in the exacerbation of genome damage. A concentration of
1% acetic acid was almost lethal to uvrA knockout strain
AC2005-ΔuvrA. As a result of the increase of genome inte-
grality due to the overexpression of UvrA, some enzymes
involved in ethanol oxidation, TCA cycle, and molecular
chaperone were up-regulated to improve acetic acid fermen-
tation (shown in Fig. 6).
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