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Abstract
D-Allose is a rare monosaccharide, which rarely appears in the natural environment. D-Allose has an 80% sweetness relative to
table sugar but is ultra-low calorie and non-toxic and is thus an ideal candidate to take the place of table sugar in food products. It
displays unique health benefits and physiological functions in various fields, including food systems, clinical treatment, and the
health care fields. However, it is difficult to produce chemically. The biotechnological production of D-allose has become a
research hotspot in recent years. Therefore, an overview of recent studies on the physiological functions, applications, and
biotechnological production of D-allose is presented. In this review, the physiological functions of D-allose are introduced in
detail. In addition, the different types of D-allose-producing enzymes are compared for their enzymatic properties and for the
biotechnological production of D-allose. To date, very little information is available on the molecular modification and food-
grade expression of D-allose-producing enzymes, representing a very large research space yet to be explored.
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Introduction

Recently, an increasing number of people have begun suffer-
ing from health problems connected to excessive weight gain,
such as obesity, hyperlipidemia, hyperglycemia, and hyper-
tension, as a result of unwholesome dietary habits and the
ingestion of high-fat and high-sucrose-containing food.
Therefore, many researchers in sweetener industry have fo-
cused on low-calorie sugars that are good sucrose substitutes.
Rare sugars are monosaccharides and monosaccharide deriv-
atives that exist more sparsely in the natural world than com-
mon sugars, which were defined by the International Society
of Rare Sugars (ISRS) (Izumori 2002). The majority of mono-
saccharides are rare sugars; only seven monosaccharides are
common sugars existing abundantly in the natural environ-
ment according to the definition, such as D-glucose and D-

fructose, which are well known. Although rare sugars are
present in small quantities, they have great potential in the
food and pharmaceutical industries because of their distinct
physiological functions. The physiological effects of many
rare sugars have been extensively studied, including D-form
and L-form rare sugars and some sugar alcohols. For example,
D-allulose, a precursor of D-allose, possesses some beneficial
activities, such as anti-hyperglycemic (Hayashi et al. 2010),
anti-inflammatory (Moller and Berger 2003), and anti-
hyperlipidemic functions (Matsuo et al. 2001), and its physi-
ological effects have been reviewed (Mu et al. 2012; Zhang
et al. 2016).

D-Allose, an important D-form rare sugar, has 80% sweet-
ness compared with table sugar (sucrose) but is ultra-low cal-
orie and an ideal table sugar substitute (Mooradian et al.
2017). This rare sugar has been verified to exert plenty of
beneficial physiological functions, including anti-tumor
(Noguchi et al. 2016), anti-cancer (Noguchi et al. 2016),
anti-inflammatory (Shinohara et al. 2016), cryoprotective
(Sui et al. 2007), anti-osteoporotic (Noguchi et al. 2013),
anti-hypertensive (Kimura et al. 2005), neuroprotective (Gao
et al. 2013), and immunosuppressant (Hossain et al. 2000)
functions. Moreover, it exhibits anti-oxidative properties by
modulating the generation of reactive oxygen species (ROS)
(Ishihara et al. 2011).
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D-Allose can be synthesized by chemical methods.
However, these methods have many disadvantages.
Recently, the enzymatic production of D-allose has drawn
the attention of many researchers. So far, three main types of
D-allose-producing enzymes have been studied, including L-
rhamnose isomerase (EC 5.3.1.14), ribose-5-phosphate isom-
erase (EC 5.3.1.6), and galactose-6-phosphate isomerase (EC
5.3.1.26). In 2006, Prof. Izumori from the Rare Sugar
Research Centre (Kagawa University, Japan) established the
Izumori-ring strategy for the effective biological production of
all hexoses (Izumori 2006). According to this strategy, D-
allose could be converted from D-allulose, and D-allulose
could be obtained from the epimerization of D-fructose, an
inexpensive and widely available common sugar, using ketose
3-epimerase (EC 5.1.3.31). In this review, recent advances in
the biochemical properties, physiological effects, applications,
and biotechnological production of D-allose are reviewed
from different points of view.

Synopsis of D-allose

Physicochemical properties

D-Allose (C-3 epimer of D-glucose) is an aldohexose and an
ultra-low calorie rare monosaccharide. The molecular formu-
la, molecular weight, and melting temperature of D-allose
(CAS number 2595-97-3, 7283-09-2) are C6H12O6,
180.16 g mol−1, and 128 °C, respectively. It has a high solu-
bility in water and is practically insoluble in alcohol. The
ordinary state of high-purity D-allose is a non-toxic, odorless,
white solid powder (Iga et al. 2010). In a dimethyl sulfoxide
solution, D-allose exists in four ring structures, including α-D-
allose-1,4-furanose, β-D-allose-1,4-furanose, α-D-allose-1,5-
pyranose, and β-D-allose-1,5-pyranose, with proportions of
3.5:5:14:77.5, respectively (Angyal 1994; Köpper and
Freimund 2003). However, in the aqueous phase, the D-allose
molecule exists in the conformation of anα β-D-pyranose ring
in 4C1 (Kozakai et al. 2015).

Existing sources

D-Allose is scarcely encountered in nature and has been found
only in minute amounts in plants. It has been extracted from
Protea rubropilosa beard (Perold et al. 1973), Veronica
filiformis (Chari et al. 1981), Mentzelia (Jensen et al. 1981),
potato leaves (Weckwerth et al. 2004), and the African shrub
Protea rubropilosa (O’Neil et al. 2006). Recently, researchers
isolated D-allose from Indian seagrasses used as a therapeutic
(Kannan et al. 2012) and from Acalypha hispida leaves
(Sithara et al. 2017) with ultra-low ratios (3.67% and 4.45%,
respectively).

Chemical synthesis

Chemical methods have been used for the production of D-
allose. The first approach utilized for the preparation of D-
allose was ribose conversion via the reduction reaction of
cyanohydrin with sodium amalgam (Phelps and Bates
1934). D-Allose was prepared and isolated from the mixture
obtained from 3-ketosucose after reduction with nickel
(Bernaerts et al. 1963). D-Allose was obtained from D-glucose
by a C-3 epimerization reaction using molybdenum as a cat-
alyst (US Patent No. 5433793, 1995). This reaction involved
complex steps including decolorization, deionization, and
separation (Herber et al. 1995). However, these chemical
methods show many disadvantages, such as low productivity,
complex reaction steps, bad selectivity, unwanted by-prod-
ucts, and chemical pollution. Therefore, the enzymatic synthe-
sis is most commonly used for the production of D-allose.

Physiological functions

Anti-cancer and anti-tumor effectiveness

Inhibiting cancer and tumors is the most important physiolog-
ical effect of D-allose. Some researchers have focused on the
potential inhibitory functions of D-allose for cancer and tu-
mors. To date, D-allose has been found to inhibit the prolifer-
ation and metastasis of various types of carcinoma cells, such
as human ovarian (SUI et al. 2005a), hepatocellular
(Yamaguchi et al. 2008; Yokohira et al. 2008), pancreas
(Malm et al. 2015), prostate (Jeong et al. 2011; Naha et al.
2008), head and neck (Indo et al. 2014), leukemia (Hirata et al.
2009), cervical, and skin cells (Sui et al. 2005b).

In 2008, an anti-proliferative mechanism was partially re-
vealed using p27kip1, a detector of the cell cycle transition,
where D-allose showed an obvious induction of the expression
of thioredoxin-interacting protein (TXNIP) (Yamaguchi et al.
2008). Subsequently, this result was confirmed by experi-
ments in vitro and in vivo using head and neck cancer cell
lines (Hoshikawa et al. 2010). More recently, Noguchi et al.
further investigated the possible anti-cancer mechanism of D-
allose. Cancer cells deregulate growth, which demands a great
deal of glucose as a major energy source. Over-expression of
several glucose transporters (GLUTs) facilitates the transport
of glucose into cancer cells. D-Allose can up-regulate the ex-
pression of TXNIP. Inversely, the TXNIP can down-regulate
the over-expression of GLUT1 in various cancer cells. Hence,
D-allose suppresses the proliferation of various carcinoma
cells. Furthermore, D-allose was also shown to prohibit cancer
cells from absorbing glucose in this investigation (Noguchi
et al. 2016).

Recent research showed that D-allose displays a more dis-
tinct anti-cancer effect in combination with other anti-
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carcinogens than it does by itself. D-Allose, as a radiant sen-
sitizer, promotes the efficacy of radiation for cancer cell apo-
ptosis by inducing TXNIP and enhancing the level of intra-
cellular ROS (Hoshikawa et al. 2011). The combined therapy
of D-allose and docetaxel is more effective with a lower tox-
icity (Indo et al. 2014). The combination of D-allose and
oxaliplatin manifested a synergistic anti-tumor activity
(Malm et al. 2015). Together, D-allose has considerable appli-
cation prospects in the clinical treatment of tumors.

Antioxidant properties

It was reported that D-allose exhibits the anti-oxidative activity
in ischemia–reperfusion (I/R) damage. In 2003, Murata et al.
first reported that D-allose, but not D-glucose, has the capacity to
clear ROS (Murata et al. 2003). In recent studies, rat experi-
ments indicated that D-allose significantly attenuates brain dam-
age and induces neuroprotection by suppressing oxidative
DNA damage resulting from the assault of ROS (Nakamura
et al. 2011). Synchronously, the antioxidant mechanism of D-
allose was partially explained. D-Glucose induces ATP synthe-
sis to facilitate the production of ROS in cells. However, D-
allose suppresses ROS production by means of competition
with D-glucose in the mitochondria (Ishihara et al. 2011).

Anti-inflammatory effects

According to previous reports that D-allose reduces I/R injury
by its antioxidant properties, Gao et al. proposed the hypothe-
sis that D-allose may exert neuroprotection by restraining cere-
bral I/R damage due to its anti-inflammatory effect (Gao et al.
2011), and this hypothesis was subsequently proven to be true
in rat experiments (Gao et al. 2013). Recently, some experi-
mental results further suggested that D-allose notably decreases
brain pro-inflammatory cytokines, which helps provide neuro-
protection in cerebral I/R injury (Shinohara et al. 2016) and
prevents nonalcoholic steatohepatitis by prohibiting progres-
sive inflammation (Yamamoto et al. 2017). The regulatory
mechanism by which D-allose protects the blood brain barrier
(BBB) from I/R injury, though regulating the peroxisome
proliferator-activated receptor γ (PPARγ) that mediates the
anti-inflammatory response, was clarified (Huang et al. 2016).

Other health benefits

In addition to these beneficial functions of D-allose, other health
benefits have been investigated. In rat experiments, D-allose
supplementation could suppress high blood pressure induced
by high salt (Kimura et al. 2005). Researchers have discovered
that D-allose has the same cryoprotective function as trehalose
on cell survival during freezing (Sui et al. 2007; Yue et al.
2016). D-Allose, as an immunosuppressant, could improve al-
lograft survival and reduce tissue injury (Hossain et al. 2000;

Tanaka and Sakamoto 2011). Thus, D-allose has promising
prospects for applications in food systems, clinical treatment,
and the health care fields. All prominent physiological func-
tions of D-allose are shown in Fig. 1.

Applications

Application in food systems

D-Allose is an ultra-low calorie monosaccharide and has 80%
of the sweetness of table sugar (Mooradian et al. 2017). The
acute and sub-chronic toxicity trials in rats demonstrate that D-
allose is a non-toxic monosaccharide (Iga et al. 2010). These
beneficial physiological properties and safety profile make it
possible to apply in the food industry. D-Allose, as a table
sugar substitute, is an ideal food additive and is conducive
for losing weight. Furthermore, D-allose, as a reducing sugar,
can participate in Maillard reactions, which may improve the
color, flavor, and taste of foods. Experiments illustrated that
α-lactalbumin was glycosylated by D-allose in Maillard reac-
tions with a faster reaction rate and with greater covalent
linking compared with D-fructose or D-glucose (Sun et al.
2006). Thus, D-allose displays a promising future for applica-
tion in food systems.

Application in clinical treatment

Because D-allose exhibits many remarkable physiological
functions as described above, D-allose, as a pharmaceutical
agent, has an enormous potential for clinical application, such
as in the clinical therapy of cancer and tumors, inflammation,
stroke (Gao et al. 2013), hypertension, and obesity diseases. D-
Allose has been used in surgery and organ transplantation to
increase the probability of success and decrease tissue damage
(US Patent No. 5620960, 1997), due to its anti-oxidative,
immunosuppressant, and cryoprotective effects (Kashiwagi
et al. 2016; Sui et al. 2007; Tanaka and Sakamoto 2011). D-
Allose, as an antioxidant, treats various diseases resulting
from oxidative stress (Ishihara et al. 2011; Nakamura et al.
2011). D-Allose ameliorates nephrotoxicity induced by cis-
platin (an antineoplastic agent) due to its anti-inflammatory
effects (Miyawaki et al. 2012).

Application in health care

D-Allose has been used in health care because of its prominent
physiological functions. It significantly enhances the effect of
metronidazole on trichomonad parasites, which reduces the
dosage of metronidazole and prevents the parasite from pro-
ducing drug resistance (Harada et al. 2012). D-Allose can re-
press the growth of the nematode Caenorhabditis elegans
(Sakoguchi et al. 2016). D-Allose may prevent osteoporosis
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by inhibiting osteoclast differentiation (Noguchi et al. 2013).
Moreover, it can trigger self-protection in rice by regulating
the generation of ROS (Kano et al. 2013).

Various enzymes for D-allose production

L-Rhamnose isomerase

L-Rhamnose isomerase (L-RI, EC 5.3.1.14) reversibly catalyzes
the isomerization reaction of L-rhamnose and L-rhamnulose and
the additional isomerization between D-allulose and D-allose be-
cause of its extensive substrate specificity (Xu et al. 2016). To
date, L-RIs catalyzing D-allose have been characterized from
Clostridium stercorarium ATCC 35414 (Seo et al. 2017),
Caldicellulosiruptor obsidiansis OB47 (Chen et al. 2017),
Thermobacillus composti KWC4 (Xu et al. 2017), Bacillus
subtilis WB600 (Bai et al. 2015), Dictyoglomus turgidum
DSMZ 6724 (Kim et al. 2013), Mesorhizobium loti (Takata
et al. 2011), Caldicellulosiruptor saccharolyticus ATCC 43494
(Lin et al. 2011), Thermoanaerobacterium saccharolyticum
NTOU1 (Lin et al. 2010), Thermotoga maritima ATCC 43589

(Park et al. 2010), Bacillus pallidusY25 (Poonperm et al. 2007),
and Pseudomonas stutzeri (Leang et al. 2004).

L-RI, as the most important enzyme, is widely studied in
the biological production of D-allose. L-RIs are metal-
requiring enzymes and are vitally stimulated by Mn2+ or
Co2+. The reaction temperature of L-RI is high, with a range
of 60–85 °C, and the optimal pH is weakly alkaline or neutral,
with a range of 7.0–9.0 (Xu et al. 2016). Conditions of tem-
peratures too high or alkaline pH easily lead to the Maillard
reaction and by-products, which are a disadvantage for the
production and isolation of D-allose. In order to produce D-
allose efficiently, the production condition should be opti-
mized.Most of the L-RIs display an excellent thermal stability,
which is good for the production of D-allose. The kinetic pa-
rameters of various L-RIs have been studied abundantly for D-
allulose but not for D-allose. The different properties of L-RIs
are compared in Table 1.

D-Ribose-5-phosphate isomerase

D-Ribose-5-phosphate isomerase (RPI, EC 5.3.1.6) univer-
sally exists in almost all microorganisms and takes part in

Fig. 1 Recent researches on
excellent physiological functions
of D-allose, including anti-cancer,
anti-oxidative, anti-inflammatory,
anti-hypertensive, antianti-
hypertensive, antiosteoporotic,
neuroprotective, cryoprotective,
and immunosuppressant effects
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the Calvin cycle and the pentose phosphate pathway
(Zhang et al. 2003). It reversibly catalyzes the conversion
between D-ribose 5-phosphate and D-ribulose 5-phosphate.
The production of D-allose using the RPI from Clostridium
thermocellum was the first to be reported (Park et al.
2007a). Later, other RPIs were successively identified
from different strains, including Clostridium difficile
ATCC BAA-1382D-5, Thermotoga maritima ATCC
43589D-5 (Yeom et al. 2010), and Thermotoga lettingae
TMO (Feng et al. 2013). The RPI from T. maritima ATCC
43589D-5 exhibits a remarkable thermal stability and a
high-specific activity toward D-allulose. It is a good candi-
date for the industrial production of D-allose. The compar-
ison of various properties of RPIs is shown in Table 1.

Other D-allose-producing enzymes

D-Galactose-6-phosphate isomerase (GaPI, EC 5.3.1.26),
reversibly isomerizing D-galactose-6-phosphate and D-
tagatose-6-phosphate, takes part in the metabolism path-
way of D-tagatose. Before now, only one GPI from
Lactococcus lactis, a D-allose-producing enzyme, had been
characterized (Park et al. 2007b). The GPI from L. lactis
shows a low optimal temperature and catalytic efficiency
toward D-allose. Glucose-6-phosphate isomerase (GlPI,
EC 5.3.1.9) from Pyrococcus furiosus has the highest op-
timal temperature, thermal stability, and specific activity
on D-allulose, compared with reported D-allose-producing
enzymes, and is a promising candidate for the production
of D-allose (Yoon et al. 2009). In addition, the activities of
mannose-6-phosphate isomerase (EC 5.3.1.8) toward D-
allulose are too low for its use in the production of D-allose
(Yeom et al. 2009). The properties of all D-allose-produc-
ing enzymes are compared in Table 1.

Biological production of D-allose

The precursor for synthesizing D-allose, D-allulose, is an
expensive rare sugar. Because of the production cost, an
economical method in which D-allose is produced using a
cheap sugar, such as D-glucose or D-fructose, as the starting
material by serial conversion steps involving D-glucose

isomerase, ketose 3-epimerase, and L-RI, has been pre-
ferred (Fig. 2). After the isomerization reaction of D-allose
and D-allulose, D-allose is isolated readily from the reaction
mixture by a moving-bed chromatograph separation sys-
tem and ethanol crystallization (Menavuvu et al. 2006;
Morimoto et al. 2006).

D-Allose is effectively produced from D-allulose using
L-RI from P. stutzeri cross-linked with glutaraldehyde.
This immobilized L-RI produces D-allose from 100 g L−1

D-allulose with a conversion rate of 25%, but it concur-
rently produces 8% D-altrose as a by-product (Menavuvu
et al. 2006). Meanwhile, this L-RI immobilized on
chitopearl beads was used for the large-scale production
of D-allose with an approximately 30% turnover rate in a
continuous reaction system, and 1.65 kg D-allose crystals
with 100% purity was acquired after separation and puri-
fication (Morimoto et al. 2006). The L-RI from B. pallidus
Y25 produces D-allose from D-allulose with a yield rate of
35%, but its thermal stability is not good (Poonperm et al.
2007). Two thermostable L-RIs from C. saccharolyticus
ATCC 43494 (Lin et al. 2011) and T. saccharolyticum
NTOU1 (Lin et al. 2010) produce D-allose from D-allulose
with a transformation proportion of 33% and 29%, respec-
tively. The L-RI from B. subtilis WB600 produces D-
allose from D-allulose with the highest conversion rate
of 37.5%, compared with other D-allose-producing en-
zymes (Bai et al. 2015). Recently, two novel source L-
RIs from C. stercorarium ATCC 35414 (Seo et al. 2017)
and T. composti KWC4 (Xu et al. 2017) have been report-
ed, which readily produce 199 g L−1 and 23 g L−1

D-
allose from D-allulose with turnover ratios of 33% and
23%, respectively. To summarize, L-RI is a primary en-
zyme source for the efficient production of D-allose, and
most of the L-RIs exhibit an enormous potential for indus-
trial production.

The RPI from C. thermocellum produces 165 g L−1
D-

allose from D-allulose after a 6-h reaction with a turnover
ratio of 33% (Park et al. 2007a). Subsequently, the con-
version yield was increased by 7% using a site-directed
mutant of the C. thermocellum RPI (Yeom et al. 2011).
The RPI from T. lettingae TMO generates approximately
32% D-allose from 1.8 g L−1

D-allulose. Moreover,
28 g L−1

D-allose is produced from 100 g L−1
D-allulose

Fig. 2 Enzymatic route for the
conversion of D-glucose to D-
allose using various enzymes
including D-glucose isomerase
(D-GI), D-tagatose 3-epimerase
(D-TE), L-RI, RPI, GaPI, and
GlPI
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using 2 g of dry recombinant cells harboring RPI from
T. lettingae TMO (Feng et al. 2013). The RPIs convert
D-allulose to D-allose without a detectable by-product, in-
dicating that RPI is an ideal biocatalyst for large-scale
industrial production.

The GaPI from L. lactis availably isomerizes D-allulose
to D-allose, but a large quantity of D-allose is concurrently
formed as a by-product. The GaPI from L. lactis produces
25 g L−1

D-allose from 100 g L−1
D-allulose, with

13 g L−1
D-altrose after a 12-h reaction (Park et al.

2007b). The GlPI from P. furiosus can covert D-allulose
to D-allose, and the conversion reaches equilibrium with
the proportion of 66 (D-allulose):32 (D-allose):2 (D-
altrose) after 12 h (Yoon et al. 2009). GaPI and GlPI
show a non-negligible potential in the production of D-
allose. The biological production of D-allose using vari-
ous D-allose-producing enzymes is summarized in
Table 2.

Prospective

D-Allose shows many prominent physiological functions,
in particular, anti-cancer effects, although the anti-cancer
mechanism has only been partially studied. More experi-
ments are urgently needed to explain the entire detailed
mechanism of the anti-cancer effects. It is promising that
the physiological functions of D-allose are expanded by
investigation into the mechanism of the health benefits.
Although these physiological functions of D-allose have
been widely studied in rat experiments, no systematic
study concerning the metabolism pathway, physiological
effect, toxicity, or safety in the human body has been pub-
lished yet. Therefore, it is necessary to conduct human
trials to yield practical instructions, including uptake dos-
age, metabolism, food applications, therapeutic effects,
and untoward effects.

All D-allose-producing enzymes exhibit weakly alkaline
optimal pH values and metal-dependent properties, which
are disadvantageous conditions for the industrial production
of D-allose. To adapt for industrial production, the weak-acid-
tolerant and non-metal-dependent enzymes should be scanned
by molecular modification based on the reported three-
dimensional structure of D-allose-producing enzymes.
Furthermore, the conversion ratio and the catalytic efficiency
on D-allose can be enhanced by random and site-directed mu-
tagenesis. To solve the food safety issues that exist for the
application of D-allose, the secretion and expression of D-
allose-producing enzymes in a food-grade host, such as
B. subtilis, L. lactis, Saccharomyces cerevisiae, and Pichia
pastoris, should be imminently investigated in the future
(Panghal et al. 2017). Ta
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