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Abstract
Punicic acid (PuA; 18: 3Δ9cis,11trans,13cis) is an unusual 18-carbon fatty acid bearing three conjugated double bonds. It has been
shown to exhibit a myriad of beneficial bioactivities including anti-cancer, anti-diabetes, anti-obesity, antioxidant, and anti-
inflammatory properties. Pomegranate (Punica granatum) seed oil contains approximately 80% PuA and is currently the major
natural source of this remarkable fatty acid.While both PuA and pomegranate seed oil have been used as functional ingredients in
foods and cosmetics for some time, their value in pharmaceutical/medical and industrial applications are presently under further
exploration. Unfortunately, the availability of PuA is severely limited by the low yield and unstable supply of pomegranate seeds.
In addition, efforts to produce PuA in transgenic crops have been limited by a relatively low content of PuA in the resulting seed
oil. The production of PuA in engineered microorganisms with modern fermentation technology is therefore a promising and
emergingmethod with the potential to resolve this predicament. In this paper, we provide a comprehensive review of this unusual
fatty acid, covering topics ranging from its natural sources, biosynthesis, extraction and analysis, bioactivity, health benefits, and
industrial applications, to recent efforts and future perspectives on the production of PuA in engineered plants and
microorganisms.
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Introduction

Conjugated linolenic acids (CLNA) are polyunsaturated fatty
acids bearing three conjugated double bonds (alternating

single and double bonds). The most common positional and
geometric CLNA isomers in seed oil include punicic acid
(PuA; 18: 3Δ9cis,11trans,13cis), α-eleostearic acid (18:
3Δ9cis,11trans,13trans), calendic acid (18: 3Δ 8trans,10trans,12cis),
jacaric acid (18: 3Δ 8cis,10trans,12cis), and catalpic acid
(18:3Δ9trans,11trans,13cis) (Fig. 1a; Smith 1971). PuA has drawn
considerable interest over the past two decades as researchers
continuously unravel its extensive array of beneficial proper-
ties. Among others, it has been shown to exhibit anti-cancer,
anti-diabetes, anti-obesity, hypolipidemic, and anti-
inflammatory activities through various in vitro and in vivo
animal studies (Suzuki et al. 2001; Arao et al. 2004; Kohno
et al. 2004; Koba et al. 2007; Boussetta et al. 2009;
Grossmann et al. 2010; Costantini et al. 2014; Wang et al.
2014; Yuan et al. 2014; Aruna et al. 2016). While the seeds
of pomegranate (Punica granatum, Fig. 1b) are the major
natural source of PuA, this plant is not suitable for large-
scale agronomic production due to its low yield, low seed oil
production, and restricted cultivation to sub-tropical and trop-
ical climates (Takagi and Itabashi 1981; Joh et al. 1995).
Consequently, due to its beneficial bioactivities and limited
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availability, efforts are ongoing to generate a biotechnological
platform for PuA production through the metabolic engineer-
ing of plants and microorganisms (Mietkiewska et al. 2014a,
b; Garaiova et al. 2017). Although there is increasing interest
in PuA production and utilization, a comprehensive review
about PuA-related research is lacking. Here we describe recent
advances in PuA research, focusing on its bioactivities, natural
sources, extraction, and biotechnological production in plants
and microorganisms.

Natural sources, biosynthesis, extraction,
and analysis of punicic acid

PuA is naturally present as a component of triacylglycerol
(TAG), which is a storage lipid making up the major constit-
uent of vegetable oil, in the seeds of some terrestrial plant
species. The most abundant natural source of this fatty acid

is by far pomegranate (P. granatum), which is a member of the
Punicaceae family (recently re-classified within the
Lythraceae family). Pomegranate contains up to 80% PuA
and less than 4% other CLNAs in its seed oil (Takagi and
Itabashi 1981), the content of which depends on genotype
and ranges from 12 to 20% of the seed weight (Özgül-Yücel
2005; Khoddami et al. 2014). While pomegranate is certainly
the major source of PuA, seed oils from several species of the
Cucurbitaceae family also contain relatively high amounts of
this fatty acid, and include Ecballium elaterium (22%),
Fevillea trilobata (30%), Trichosanthes anguina (43%),
T. bracteata (42%), T. nervifolia (52%), T. kirilowii (40%),
and Momordica balsamina (50%) (Chisholm and Hopkins
1964; Tulloch and Bergter 1979; Gaydou et al. 1987;
Lakshminarayana et al. 1988; Joh et al. 1995).

To accumulate PuA in seed oil, these plant species have
evolved a unique mechanism for both synthesizing this fatty
acid and channeling it from phospholipids to TAG. TAG

Fig. 1 a Structures of conjugated
linolenic acids commonly found
in seed oil. Fatty acid structures
were drawn using ChemDraw
Prime (PerkinElmer Informatics).
b Pomegranate (Punica
granatum) (Photograph by
Roman Holic)
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biosynthesis begins with fatty acid biosynthesis inside the
plastid. The de novo synthesized fatty acids, mostly in the
form of palmitic (16:0), stearic (18:0), and oleic acid
(18:1Δ9cis), are then converted to acyl-Coenzyme A (CoA)
through the action of acyl-CoA synthetase (ACS) before being
exported out of the plastid for TAG assembly (Ohlrogge and
Jaworski 2003; Harwood 2005; Chapman and Ohlrogge
2012). In plants producing oils enriched in conjugated fatty
acids, the nascent fatty acids at the level of phosphatidylcho-
line (PC) undergo further modifications such as desaturation
and conjugation on the ER (Cahoon et al. 1999). Oleic acid in
the sn-2 position of PC is first desaturated to linoleic acid
(18:2Δ9cis,12cis) and α-linolenic acid (18:3Δ9cis,12cis,15cis) via
the sequential catalytic action of fatty acid desaturase (FAD) 2
and FAD3, respectively (Browse et al. 1993; Vrinten et al.
2005). The subsequent formation of conjugated fatty acids is
then catalyzed by fatty acid conjugases (FADXs), which are
divergent forms of FAD2 (Hornung et al. 2002; Iwabuchi et al.
2003; Mietkiewska et al. 2014a). In the developing seeds of
T. kirilowii and P. granatum, FADXs catalyze the conversion
of theΔ12cis double bond of linoleic acid toΔ11trans andΔ13cis

double bonds to form PuA (Hornung et al. 2002; Iwabuchi
et al. 2003). Similarly, FADXs in tung tree (Aleurites fordii)
and Momordica charantia catalyze the conversion of the
Δ12cis double bond of linoleic acid to Δ11trans and Δ13trans

double bonds to produce α-eleostearic acid (Cahoon et al.
1999; Dyer et al. 2002). In the case of calendic acid, FADX
from Calendula officinalis catalyzes the conversion of the
Δ9cis double bond of linoleic acid toΔ8trans andΔ10trans dou-
ble bonds (Cahoon et al. 2001; Qiu et al. 2001). The formation
of conjugated double bonds catalyzed by FADXs resulting in
the production of PuA and other C18 conjugated fatty acids,
such as α-eleostearic and calendic acid, are depicted in Fig. 2.

Following the synthesis of conjugated fatty acids on PC,
they can then be incorporated into TAG via several distinct
acyl-editing routes (Fig. 2) (Chen et al. 2015; Bates 2016).
TAG assembly occurs on the ER and involves the sequential
acylation of sn-glycerol-3-phosphate (G3P) to yield TAG.
This process is known as the Kennedy pathway and is cata-
lyzed by three acyl-CoA dependent acyltransferases, includ-
ing sn-glycerol-3-phosphate acyltransferase (GPAT),
lysophosphatidic acid acyltransferase (LPAAT), and diacyl-
glycerol acyltransferase (DGAT) (Snyder et al. 2009).
Phosphatidic acid phosphatase (PAP) catalyzes the removal
of the phosphate group from the glycerol backbone prior to
the final acylation step. Fatty acids, including those that are
modified, may also be channeled from PC to TAG directly
through the catalytic action of phospholipid:diacylglycerol
acyltransferase (PDAT; Kim et al. 2011; van Erp et al. 2011;
Pan et al. 2013). In addition, fatty acids modified on the sn-2
position of PC can enter the acyl-CoA pool via a reverse
reaction catalyzed by lysophosphatidylcholine acyltransferase
(LPCAT) (Stymne and Stobart 1984; Lager et al. 2013; Pan

et al. 2015) or combined action of phospholipase A2 (PLA2)
and long chain acyl-CoA synthetase (LACS; Lands 1960).
T h e s u b s e q u e n t a c y l a t i o n o f t h e r e s u l t i n g
lysophosphatidylcholine (LPC) with an unmodified acyl-
CoA through the forward action of LPCAT regenerates PC
for further modifications. Exchange of the acyl groups be-
tween the sn-1 and sn-2 positions of PC may also occur
through the catalytic action of glycerophosphocholine acyl-
transferase (GPCAT) and lysophosphatidylcholine
transacylase (LPCT) (Lager et al. 2015). Furthermore, PC-
modified fatty acids can also be incorporated into TAG
through a sn-1,2-diacylglycerol (DAG) intermediate. In this
instance, de novo synthesized DAG can be converted into PC
through the catalytic action of CDP-choline:1,2-diacyl-sn-
gycerol cholinephosphotransferase (CPT) (Slack et al. 1983;
Slack et al. 1985), and converted back to DAG and/or phos-
phatidic acid (PA) once the acyl chains on PC have been
modified via the catalytic action of phospholipase C and/or
D, respectively (Chapman and Ohlrogge 2012; Bates et al.
2013). Finally, phosphatidylcholine: diacylglycerol
cholinephosphotransferase (PDCT) also catalyzes the conver-
sion between PC and DAG (Lu et al. 2009; Wickramarathna
et al. 2015; see Fig. 2 for a schematic diagram of TAG
biosynthesis in plants producing conjugated fatty acids).

The commercial production of PuA largely relies on the
extraction of seed oils from producer plants. Various extrac-
tion procedures, including cold pressing (Khoddami et al.
2014), solvent extraction with stirring (Abbasi et al. 2008),
Soxhlet extraction (Abbasi et al. 2008; Habibnia et al. 2012),
microwave irradiation or ultrasonic irradiation solvent extrac-
tion (Abbasi et al. 2008), supercritical CO2 extraction (Abbasi
et al. 2008; Liu et al. 2009; Sargolzaei andMoghaddam 2013),
and superheated solvent extraction (Eikani et al. 2012) have
been used to extract pomegranate seed oil. In general, the oil
yield largely depends on the efficiencies of the different ex-
traction methods. The lowest yields of 1~4% (dry weight,
extraction efficiency < 22%) and 6.9% (dry weight, extraction
efficiency 54%) are obtained from supercritical CO2 extrac-
tion and cold pressing, respectively, whereas the highest yield
of 22.18% (dry weight, extraction efficiency 124%) is obtain-
ed using superheated solvent extraction (Eikani et al. 2012).
Although cold pressing results in low yield, this method pro-
vides an environmentally friendly process for pomegranate
seed oil extraction, and the resulting oils display enhanced
physico-chemical properties including lower atherogenicity
and higher thrombogenicity compared to oils extracted using
organic solvents (Khoddami et al. 2014). Superheated solvent
extraction provides a higher extraction efficiency and yields
oil with a similar fatty acid profile to that obtained using the
cold pressing approach (Eikani et al. 2012). Supercritical CO2

extraction, on the other hand, yields oils with a similar fatty
acid profile to those extracted using solvents, but results in an
extracted oil with a higher tocopherol content (Liu et al. 2009).
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Since the conjugated fatty acids derived from plant seed
oils are usually composed of different positional and geomet-
ric isomers (Özgül-Yücel 2005), a reliable method for the
separation and characterization of each conjugated fatty acid
isomer is necessary. Gas chromatography (GC)-based
methods are the most commonly used for the separation,
quantification, and identification of PuA and other conjugated
fatty acids from plant seed oils (Joh et al. 1995; Cahoon et al.
1999; Cahoon et al. 2001; Hornung et al. 2002; Cahoon et al.
2006; Mietkiewska et al. 2014b; Garaiova et al. 2017). These
methods, however, only provide information regarding the
C = C double-bond location rather than the bond configura-
tion (i.e., cis versus trans) (Cao et al. 2007). Thus, they cannot
be used to separate PuA from its CLNA isomers, which dis-
play very minor positional and geometrical differences in their
structures. For example, GC in conjunction with acetonitrile
chemical ionization tandem MS was successfully used to

determine both the position and configuration of the double
bonds of conjugated linoleic acid (CLA) isomers (Michaud
et al. 2003), However, when the same technique was applied
to PuA and other CLNAs, only the double-bond position, but
not configuration, could be obtained (Lawrence and Brenna
2006). To fully characterize the double-bond position and
configuration of CLNA isomers, additional separation or char-
acterization methods are required. These methods include thin
layer chromatography (TLC) (Sita Devi 2003), capillary elec-
trophoresis (Bohlin et al. 2003), gas liquid chromatography
(Takagi and Itabashi 1981), silver ion impregnated high-
performance liquid chromatography (Ag+-HPLC) (Cao et al.
2006; Chen et al. 2007), and NMR spectroscopy (Cao et al.
2006; Cao et al. 2007; Sassano et al. 2009), all of which have
been successfully applied to separate PuA from other CLNA
isomers and thus provide alternative approaches for geomet-
rical identification.

Fig 2 Schematic representation of triacylglycerol (TAG) biosynthesis
and acyl-editing in plants producing oils containing conjugated fatty
acids. Fatty acid modification, such as desaturation and conjugation, oc-
curs on the sn-2 position of phosphatidylcholine (PC). In major oil crops,
linoleic acid (18:2Δ9cis,12cis) andα-linolenic acid (18:3Δ9cis,12cis,15cis) are
synthesized from oleic acid (18:1Δ9cis) via the sequential catalytic action
of fatty acid desaturase (FAD) 2 and FAD3. In plant species producing
conjugated fatty acids, the formation of conjugated fatty acids is catalyzed
by fatty acid conjugases (FADXs), which are a divergent form of FAD2,
using linoleic acid or α-linolenic acid as substrates. ACS, acyl-CoA syn-
thetase; CPT, choline phosphotransferase; DAG, sn-1,2-diacylglycerol;
DGAT, diacylglycerol acyltransferase; FA, fatty acid; FAE, fatty acid

elongase; GPAT, sn-glycerol-3-phosphate acyltransferase; GPC,
glycerophosphocholine;GPCAT, glycerophosphocholine acyltransferase;
G3P, sn-glycerol 3- phosphate; LPA, lysophosphatidic acid; LPAAT, acyl-
C oA : l y s o p h o s p h a t i d i c a c i d a c y l t r a n s f e r a s e ; L PC ,
lysophosphatidylcoline; LPCAT, lysophosphatidylcholine acyltransfer-
ase; LPCT, lysophosphatidylcholine transacylase; PA, phosphatidic acid;
PAP, phosphatidic acid phosphatase; PDAT, phospholipid:diacyglycerol
acyltransferase; PDCT, phosphatidylcholine: diacylglycerol
cholinephosphotransferase; PLA2, phospholipase A2; PLC, phospholi-
pase C;PLD, phospholipase D; TAG, triacylglycerol. Fatty acid structures
were drawn using ChemDraw Prime (PerkinElmer Informatics)
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Bioactivity, health benefits, and potential
industrial uses of punicic acid

PuA has been reported to exhibit a host of beneficial thera-
peutic benefits (Fig. 3; reviewed by Shabbir et al. 2017, Yuan
et al. 2014; AlMatar et al. 2017). As cancer remains to be the
leading cause of death in developed countries, there is a need
for a safe and acceptable bioactive oil that could be used in
prevention and treatment. In the case of prostate cancer, pome-
granate seed oil has been shown to suppress the proliferation
of a number of different prostate cancer cell lines, including
LNCaP, PC-3, and DU-145 (Albrecht et al. 2004). Although
the other components of the pomegranate fruit (namely ellagic
acid, caffeic acid, and luteolin) also have anti-cancer activity
against human prostate cancer cells (Lansky et al. 2005a),
PuA has been demonstrated to have anti-cancer activity on
its own and act synergistically with the other bioactives in
pomegranate (Lansky et al. 2005a). Indeed, combining PuA,
caffeic acid, and luteolin in equal amounts (3 μg/mL) was
reported to synergistically inhibit the invasive properties of
PC-3 prostate cancer cells (Lansky et al. 2005b). PuA has also
been shown to reduce the growth of LNCaP cells through
effects on antiandrogenic and proapototic signals (Gasmi
and Sanderson 2010). In another study involving a mouse
(Mus musculus) model injected with human prostate cancer
cells, PuA in combination with other pomegranate phyto-
chemicals (luteolin and ellagic acid) inhibited the progression
of tumor growth, migration, and chemotaxis towards
CXCL12, a chemokine involved in metastasis (Wang et al.
2014).

PuA (Grossmann et al. 2010) and a PuA-enriched pome-
granate seed oil fraction (Costantini et al. 2014) were also
found to inhibit the proliferation of triple negative (MDA-
MB-231) and estrogen receptor positive (MCF-7) breast can-
cer cells. These studies suggest that PuA induced apoptosis

and mitochondrial membrane potential disruption, possibly
through mechanisms related to lipid peroxidation and protein
kinase C pathways (Grossmann et al. 2010) or through a re-
duction of inflammatory mediators (Costantini et al. 2014).
There is also evidence for a beneficial effect of PuA or pome-
granate seed oil and PuA against other forms of cancer, in-
cluding bladder carcinoma (Wang et al. 2013), colon adeno-
carcinoma (Kohno et al. 2004; Costantini et al. 2014), skin
cancer (Hora et al. 2003), liver cancer (Costantini et al. 2014),
and leukemia (Suzuki et al. 2001).

PuA has also been found to have potentially beneficial
effects on diabetes/insulin intolerance in various animal
models (reviewed by Shabbir et al. 2017). For example, an
obese rat strain with type II diabetes (Otsuka Long Evans
Tokushima Fatty rats) fed with PuA exhibited reduced hepatic
TAG compared to the control group (Arao et al. 2004). In this
study, the mechanism of TAG reduction was partly attributed
to the inhibition of a Δ9 desaturase. Similarly, in rats with
streptozotocin-induced type II diabetes, the addition of pome-
granate seed extract to their diet lowered their fasting blood
glucose levels, thus reducing the incidence of obesity and
insulin resistance (Das et al. 2001). However, in the same
model, feeding PuA increased insulin secretion but did not
change blood glucose levels (Nekooeian et al. 2014). It has
been suggested that PuA may serve as an agonist of peroxi-
some proliferator-activated receptors (PPAR), which are pres-
ent in adipose tissue and are common drug targets of anti-
diabetic agents (Anusree et al. 2015). Pomegranate seed oil
has also been shown to prevent obesity induced by a high-fat
diet and enhance insulin sensitivity in mice (Vroegrijk et al.
2011), consequently reducing the tendency to acquire type II
diabetes (McFarlin et al. 2009). Supplementation with PuA
has also been shown to reduce the effects of diabetes in mouse
models through its antioxidant and anti-inflammatory activi-
ties (Saha and Ghosh 2012). In vitro studies have suggested
some other mechanisms behind PuA activity. For example,
incubation with PuA stimulated adiponectin secretion and up-
regulated GLUT4 expression and translocation in adipocytes,
which is possibly mediated by the high binding affinity of
PuA to PPARγ (Anusree et al. 2014). Furthermore, mitochon-
drial dysfunction is observed in insulin resistant states such as
diabetes, and PuA treatment improved glucose uptake and
prevented changes in mitochondrial proteins associated with
dysfunction in 3T3-L1 adipocytes (Anusree et al. 2015). More
recent data from this group found that in this in vitro model,
PuA prevented the deleterious effects of TNF-α on leptin and
insulin receptor substrate production (Anusree et al. 2017).
Despite these promising results, not all animal studies have
found beneficial effects of feeding PuA/pomegranate seed oil
(reviewed by Banihani et al. 2013) and further research is
needed.

PuA may also have beneficial effects on a number of car-
diometabolic risk factors. In several mice models, feeding

Fig. 3 Beneficial bioactivities of punicic acid found through studies
involving in vitro and in vivo animal models (see section Bioactivity,
health benefits and potential industrial uses of punicic acid for details)
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PuA reduced adipose tissue accumulation and suppressed ad-
ipogenesis (reviewed by Shabbir et al. 2017). For example,
mice supplemented with PuA have been shown to display
decreased body fat mass, possibly through the stimulation of
carnitine-palmitoyl transferase in adipose tissues (Koba et al.
2007), while mice supplemented with PuA exhibited reduced
perirenal and epididymal adipose tissues and decreased hepat-
ic TAG accumulation (Yuan et al. 2009). Consistent with this,
supplementation with pomegranate seed oil has been shown to
lower TAG in the plasma lipids of hypercholesterolemic rats
(Elbandy and Ashoush 2012). PuA has also been shown to
display anti-inflammatory activity in mice and sheep
(reviewed by Shabbir et al. 2017, Yuan et al. 2015). In a rat
model with 2, 4, 6-trinitrobenzenesulfonic acid-induced coli-
tis, feeding PuA relieved colon inflammation by inhibiting
TNFα-induced priming of NADPH oxidase, an enzyme asso-
ciated with the intestinal inflammatory response (Boussetta
et al. 2009). In other studies, PuA has been shown to relieve
intestinal inflammation and activate PPARγ, a key regulator
of inflammatory and immune responses (Bassaganya-Riera
et al. 2011; Yuan et al. 2015). In neonatal rats, oral adminis-
tration of 1.5% pomegranate seed oil decreased the incidence
and severity of necrotizing enterocolitis, a life-threatening in-
testinal inflammatory condition observed in preterm infants
(Coursodon Boyiddle et al. 2012). In this study, improved
outcome was associated with improvements in intestinal in-
tegrity and decreased mRNA encoding inflammatory cyto-
kines (Coursodon Boyiddle et al. 2012). Another mechanism
for the anti-inflammatory effects of PuA may be its antioxi-
dant properties (Saha and Ghosh 2009; Saha and Ghosh
2012), which likely contribute to the anti-nephrotoxic effects
reported in rats (Boroushaki et al. 2014).

In summary, there is a growing body of literature that
ingesting PuA may have beneficial effects on a variety of
chronic health conditions. Although most of this work has
been done in cell culture and animal models, PuA and other
pomegranate-derived phytochemicals have been available on
the market for a number of years as a nutraceutical, primarily
in the form of powdered capsules (Newman et al. 2007).
Carefully conducted clinical trials are needed to determine
the potential benefits of this bioactive lipid for potential use
in the prevention and treatment of chronic diseases.

Although the use of PuA as a functional food product has
been well-established, the possible industrial application of
this fatty acid has yet to be explored in depth even though
other CLNAs have been widely used in a number of indus-
tries. For example, α-eleostearic acid, which is found at high
levels in tung tree oil, has been used for many years as an
industrial drying oil for coating wood and as a component of
different inks, coatings, and resin formulations (He et al.
2014). CLAs have also been used in the poultry industry as
a feed supplement to improve meat quality (Suksombat et al.
2007; Cho et al. 2013; Jiang et al. 2014). The fact that PuA has

limited availability as it is exclusively extracted from seeds
that are not readily available almost certainly contributes to
this lack of industrial interest, and it is therefore likely that the
development of sustainable alternative sources of PuAwould
enable its full exploitation.

Production of punicic acid in plants via
genetic engineering

Although a handful of plant species are known to naturally
produce seed oils enriched in conjugated fatty acids (Smith
1971; Badami and Patil 1980; Takagi and Itabashi 1981; Joh
et al. 1995), these plants (including pomegranate) usually pos-
sess challenging agronomic characteristics and are therefore
not suitable for large-scale or widespread production. As a
result, the price of pomegranate seed oil is generally very high,
with the cost of oil of unknown quality varying from $2000 to
$100,000 USD per metric tonne (based on prices from 50
suppliers on www.alibaba.com, Accessed 15 November
2017). Therefore, one promising strategy to address our
need for conjugated fatty acids is to produce them via the
metabolic engineering of established oilseed crops. Varying
degrees of success have been achieved thus far in the model
plant Arabidopsis thaliana (hereafter Arabidopsis) and
oilseed crops [e.g., canola (Brassica napus)] in terms of their
genetic manipulation to produce conjugated fatty acids in the
seed oil. However, even in the highest accumulators only
exhibited modest PuA production at best (Table 1).

Both TkFADX (from T. kirilowii) and PgFADX (from
P. granatum) have been found to recruit linoleic acid as sub-
strate and convert its Δ12-double bond into conjugatedΔ11trans

and Δ13trans double bonds to form PuA (Hornung et al. 2002;
Iwabuchi et al. 2003). These enzymes are bifunctional as they
also exhibit Δ12-oleate desaturase activity (Iwabuchi et al.
2003). As expected, the expression of PgFADX and TkFADX
in Arabidopsis led to the accumulation of PuA, but only at
levels up to 4.4% (w/w) and 10.2% (w/w) of the total fatty
acids in seeds, respectively (Iwabuchi et al. 2003). Similarly,
over-expression of TkFADX in canola-type B. napus resulted
in the production of transgenic lines that accumulated PuA up
to only 2.5% of the seed oil (Koba et al. 2007). This limited
accumulation of PuA in the seed oils of these transgenic plants
may be due to the poor availability of the linoleic acid sub-
strate for FADX, with less than 27 and 20% linoleic acid
present in wild-type Arabidopsis and B. napus seeds, respec-
tively. In addition, the low accumulation of PuA in transgenic
Arabidopsis expressing FADX cDNAs was also accompanied
by elevated levels of oleic acid, suggesting that the activity of
FAD2 was somehow inhibited in these lines (Iwabuchi et al.
2003). Similar effects have also been observed in transgenic
plants expressing cDNAs encoding other FAD2-like enzymes
(Napier 2007). It is therefore possible that the conjugated fatty
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acid product may trigger the transcriptional repression of
genes encoding other relevant enzymes in its biosynthetic
pathway (Song et al . 2017). Addit ional ly, post-
transcriptional gene silencingmay occur inPgFADX transgen-
ic lines considering the high sequence identity (> 65%) be-
tween PgFADX and AtFAD2, and the fact that reduced
AtFAD2 expression levels were observed in Arabidopsis
plants expressing PgFADX (Mietkiewska et al. 2014b). To
address these issues, PgFADX was expressed either alone or
in combination with P. granatum FAD2 in an Arabidopsis
fad3fae1 mutant background, leading to the accumulation of
PuA in seed oil up to 11.5% in PgFADX lines and up to 21.0%
in PgFAD2 + PgFADX over-expression lines (Mietkiewska
et al. 2014b). Arabidopsis fad3fae1 mutant lines lack the ac-
tivities of FAD3 and the fatty acid elongase 1 (FAE1) con-
densing enzyme, and thus provide a suitable fatty acid back-
ground with more than 50% linoleic acid available for conju-
gated fatty acid production (Smith et al. 2003). Along these
same lines, when PgDGAT2 was expressed in conjunction
withPgFADX andPgFAD2, the resulting PuA content in seeds
increased up to 24.8% in Arabidopsis fad3fae1 transgenic
lines. The efficiency with which the promoter contained with-
in the transgenic cassette drives the expression of the PgFADX
cDNA may also affect the yield of PuA in engineered plants.
While the napin promoter was used in the aforementioned
studies, the linin promoter has been found to be the most
efficient for this purpose, leading to the accumulation of
PuA in Arabidopsis seeds up to 13.2% of the total fatty acid
content, which is 30% higher than that obtained using the
napin promoter (Song et al. 2017). Considerable effort is also
being devoted to the production of PuA in established oilseed
crops, including canola-type B. napus and flax (Linum
usitatissimum), and the results are promising (Weselake and
Mietkiewska, 2014).

Considering that up to 40 and 80% PuA accumulates in the
oil of T. kirilowii (Joh et al. 1995) and P. granatum (Takagi

and Itabashi 1981) seeds, respectively, the level of PuA that
accumulates in transgenic plants has been modest at best. A
major challenge that hinders the production of conjugated
fatty acids in these plants involves the inefficient trafficking
of conjugated fatty acids from PC to TAG (Cahoon et al. 2006;
Mietkiewska et al. 2014a, b; Napier et al. 2014). Indeed, in
contrast to P. granatum seeds in which PuA is predominantly
present in TAG (60%) rather than PC (0.8%), transgenic
Arabidopsis co-expressing PgFADX and PgFAD2 accumulat-
ed more PuA in PC (12.5%) than TAG (6.6%) (Mietkiewska
et al. 2014b). Therefore, it appears that native plants that nat-
urally accumulate conjugated fatty acids have evolved unique
mechanisms for efficiently channeling these fatty acids into
TAG following their synthesis on PC (Mietkiewska et al.
2014a). To further increase conjugated fatty acid production
in non-native species, it will therefore be necessary to first
identify native acyl-trafficking enzymes from plants accumu-
lating conjugated fatty acids and introduce them along with
other necessary enzymes. Such an approach has shown great
promise in terms of improving the accumulation of other un-
usual fatty acids. For instance, hydroxy fatty acid production
was attained via the co-expression of cassettes encoding spe-
cialized acyltransferases and acyl-editing enzymes, including
DGAT, PDAT, phospholipase A, and PDCT (Burgal et al.
2008; van Erp et al. 2011; Pan et al. 2013; Bayon et al.
2015; Wickramarathna et al. 2015). It has also been suggested
that the introduction of exogenous lipid biosynthetic machin-
ery from other plant sources into oilseed crops may lead to
competition with the endogenous enzyme network, which
could impose a limitation on accumulation of the desired tar-
get fatty acid (Vanhercke et al. 2013; van Erp et al. 2015). This
is supported by recent research on producing unusual fatty
acids in transgenic plants in which the accumulation of unusu-
al fatty acids was limited by the competition between endog-
enous and transgenic isozymes (van Erp et al. 2015).
Therefore, it may be possible to further enhance the

Table 1 Examples of the production of PuA in transgenic plants

Target gene(s) Native species Promoter Transgenic plants/engineered
microorganism

PuA content
(%, w/w)

Total lipid content
(%, w/w)

References

FADX Punica granatum Napin Arabidopsis 4.4 Not reported (Iwabuchi et al. 2003)

FADX Trichosanthes
kirilowiiI

Napin Arabidopsis 10.2 Not reported (Iwabuchi et al. 2003)

FADX Trichosanthes
kirilowiiI

Napin Brassica napus 2.5 Not reported (Koba et al. 2007)

FADX Punica granatum Napin Arabidopsis fad3fae1
mutant

11.5 22.4% (Mietkiewska et al. 2014b)

FAD2 + FADX Punica granatum Napin Arabidopsis fad3fae1
mutant

21 Not reported (Mietkiewska et al. 2014b)

FAD2 + FADX +
DGAT2

Punica granatum Napin Arabidopsis fad3fae1
mutant

24.8 Not reported (Weselake and Mietkiewska
2014)

FADX Punica granatum Linin Arabidopsis fad3fae1
mutant

13.2 Not reported (Song et al. 2017)
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accumulation of conjugated fatty acids in transgenic plants by
reducing this competition through silencing the expression of
endogenous genes encoding the enzymes which compete with
those that are introduced.

Moreover, since TAG is exclusively stored in lipid drop-
lets, it has been suggested that plant seeds accumulating un-
usual fatty acids may have developed a mechanism allowing
them to possess two or more pools of lipid droplets, each
exclusively enriched in different TAG species. For instance,
one pool of lipid droplets containing TAG enriched in com-
mon fatty acids might serve to provide precursors for the gen-
eration of cell membranes and signaling, whereas lipid drop-
lets enriched in TAG species containing PuA might play a
different role in seeds (e.g., germination, protection from pred-
ators, attraction of animals for its nutritional effects). The pro-
cess by which various types of lipid droplets may coexist in a
single cell is currently being investigated (Wolins et al. 2005;
Fujimoto and Parton 2011; Hsieh et al. 2012; Ohsaki et al.
2014). Such studies might shed additional insight into PuA
production in both engineered plants and microorganisms (as
described in the section below) in the future.

Biotechnological production of PuA
in microorganisms

Although plants naturally accumulating PuA have great in-
dustrial potential, many factors such as plant over-utilization,
climate-dependency, large space requirements, and sensitivity
to the environment are limiting in terms of the ever increasing
demand of the growing market. In contrast, microorganisms
could provide a less challenging alternative for PuA produc-
tion due to their capacity to recycle industrial waste, minimal
space requirements for controlled cultivation, rapid growth,
and wide availability of genetic resources and tools
(Ledesma-Amaro 2015; Liu et al. 2017). For example, oleag-
inous microorganisms are considered a suitable source for
renewable fuel production since these organisms accumulate
more than 20% lipids per dry cell weight. Among them, the
oleaginous yeast Yarrowia lipolytica, which is recognized as a
safe microorganism for humans, has been successfully
employed to produce a variety of fatty acids, including
CLAs (reviewed in Ledesma-Amaro and Nicaud 2016). As
an example, in the case of 18:2Δ10trans,12cisCLA production, a
strategy employing soybean-based growth media combined
with multi-copy integration and co-expression of heterolo-
gous genes was used to greatly enhance its accumulation
(Zhang et al. 2013; Ledesma-Amaro and Nicaud 2016). The
lack of efficient and established genetic manipulationmethods
in oleaginous microorganisms, however, has restricted their
widespread use until very recently.

To date, only a small number of research groups have in-
vestigated the recombinant production of enzymes required

for the synthesis of PuA in microorganisms. For example,
the activities of native FADX from P. granatum (PgFADX)
and T. kirilowii (TkFADX) have been characterized in the
yeast Saccharomyces cerevisiae (Hornung et al. 2002;
Iwabuchi et al. 2003). In these studies, the formation of PuA
in strains heterologously expressing the corresponding
cDNAs was not detected. Instead, linoleic acid and
hexadecadienoic acid (16:2 Δ9cis,12cis) accumulated up to
1.2% (w/w), confirming that these FADX enzymes possessed
FAD2 activity (Hornung et al. 2002; Iwabuchi et al. 2003).
Further experiments have shown that PuA is only detected in
strains expressing FADX after supplementation of the culture
media with linoleic acid and that the accumulation of PuAwas
reduced at lower cultivation temperatures, which is in contrast
to linoleic acid and hexadecadienoic acid formation derived
from FAD2 desaturase activities (Hornung et al. 2002). In
both studies, however, the heterologous production of PuA
in S. cerevisiae reached less than 2% (w/w) of total fatty acids,
suggesting that as is the case for plants, additional modifica-
tions will be necessary to further improve PuA accumulation.

Recently, we metabolically engineered the fission yeast
Schizosaccharomyces pombe, which naturally has a high oleic
acid content, to produce PuA by heterologously co-expressing
codon optimized PgFAD2 and PgFADX coding sequences un-
der the control of the strong, inducible, nmt1 promoter
(Garaiova et al. 2017). In contrast to previous studies carried
out in S. cerevisiae, expression of PgFADX on its own resulted
in the production of PuA at levels up to 19.6% (w/w) of total
fatty acids without any fatty acid supplementation. In addition
to PuA accumulation, a limited production of linoleic acid up
to 2.2% of total fatty acids was also observed in these strains.
Co-expression of codon-optimized PgFADXwith PgFAD2 re-
sulted in a further increase in PuA content up to 25.1% of total
fatty acids (corresponding to 38.7 μg PuA/mL culture). In
addition, differences were also noted in PuA accumulation
dynamics between single- and double-expression strains. In
cells expressing PgFADX alone, the level of PuAwas steadily
high from days 3 to 6, with the maximal content occurring on
day 4. In the case of cells co-expressing PgFAD2 and
PgFADX, PuA content only peaked at days 2 and 3.
Interestingly, the accumulated PuA in S. pombe expressing
PgFADX is mainly found at a single position of the glycerol
backbone of TAG (Fig. 4), which is in contrast with pome-
granate seed oil, where the majority of PuA incorporated into
TAG occupies all three positions of the glycerol backbone
(Fig. 4; Kaufman and Wiesman 2007). This indicates that
S. pombe may lack the enzyme specificities that are needed
to maximize PuA accumulation in TAG.

The results obtained from our studies with S. pombe imply
that metabolically engineered microorganisms can potentially
represent an alternative source of PuA, and even higher yields
of PuA could be expected in the event that oleaginous micro-
organisms were to be similarly engineered. Recently,
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CRISPR-Cas9 technology for multigene editing of the
Y. lipolytica genome was established (Gao et al. 2016), thus
providing an efficient and precise tool that might pave the way
for designing industrial microbial strains that rapidly generate
PuA. Other cutting edge approaches such as metabolome
(Pomraning et al. 2015), transcriptome, and proteome analy-
ses (Horn et al. 2016), cDNA library screening (Yazawa et al.
2013), lipid body proteome analysis (Zhu et al. 2015), and in
silico metabolic engineering (Zhang and Hua 2015) may also
help to identify key players required for the efficient heterol-
ogous production of this unusual fatty acid inmicroorganisms.
As seems to be the case in plants, high levels of microbial-
based PuA production may require the heterologous co-
overexpression of acyltransferases (e.g., DGAT and PDAT)
from plants naturally producing PuA along with modifications
of enzymes involved in lipid remodeling processes in order to
redirect the flow of PuA from PC to TAG. Furthermore,
b lock ing PuA degrada t ion and dec reas ing any

microorganism-specific toxicity might also enhance accumu-
lation in this system. Indeed, it is anticipated that by combin-
ing a variety of these strategies, we will begin to reach, and
potentially surpass, PuA contents of 60–80% total fatty acids
within microbial cells as is observed in the seed oils of plants
that naturally produce this bioactive fatty acid.

Conclusions and future perspectives

PuA is being studied extensively for its beneficial effects in
terms of alleviating cancer, diabetes, obesity, and inflamma-
tion, among others. As researchers continue to expand our
knowledge regarding its wide range of bioactivities, interest
in the use of this fatty acid as a functional food product and
nutraceutical will continue to grow. However, the full exploi-
tation of PuA for food, medical, and possibly industrial appli-
cations will require the establishment of a viable alternative
source due to the fact that natural sources of PuA are not
amenable to widespread agronomic production. As the bio-
synthetic genes for PuA production are already well-charac-
terized, and those likely to be required for high levels of ex-
pression are in the process of being deciphered, a genetic
toolkit is well on its way for biotechnological production ef-
forts. Recently, Arabidopsis and S. pombe have been success-
fully engineered to produce this compound at moderate levels
using genes derived from pomegranate, and as our synthetic
biology tools become more advanced and readily available,
future research involving the optimization of plant and micro-
bial pathways will almost certainly result in further increases
in PuA accumulation to reach its maximum potential in the
future.
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