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Abstract
Mercury-resistant (HgR) bacteria occur in various bacterial species from a wide variety of environmental sources. Resistance is
conferred by a set of operon genes termed themer operon. Many HgR bacteria have been isolated from diverse environments and
clinical samples, and it is recognized that mer operons are often localized on transposons. Previous research reports have
suggested that HgR transposons participate in the horizontal gene transfer of mer operons among bacteria. This was confirmed
by a study that found thatmer operons were distributed worldwide in Bacilli with dissemination of TnMERI1-like transposons. In
this mini review, possible strategies for transposon-mediated in situ molecular breeding (ISMoB) of HgR bacteria in their natural
habitat are discussed. In ISMoB, the target microorganisms for breeding are indigenous bacteria that are not HgR but that are
dominant and robust in their respective environments. Additionally, we propose a new concept of bioremediation technology for
environmental mercury pollution by applying transposon-mediated ISMoB for environmental mercury pollution control.

Keywords Bacilli . Bioremediation of environmental mercury pollution . Dissemination of mercury resistance genes . Mercury
resistance transposon . Transposon-mediated in situmolecular breeding

Introduction

Elemental mercury and its compounds are distributed widely
in the environment as a result of geological and anthropogenic
activities (Selin 2009). Microbes convert mercurial com-
pounds and play an important role in the global mercury cycle
(Barkay et al. 2003). Althoughmercury and its compounds are
toxic to all living organisms, certain bacteria possess resis-
tance genes to mercurials. Mercury-resistant (HgR) bacteria
occur in various bacterial species from a wide variety of clin-
ical and environmental sources (Barkay et al. 2003; Osborn
et al. 1997). Different resistance mechanisms against mercury
compounds have been found in a wide range of bacterial gen-
era that have also been isolated from clinical, intestinal, and

environmental samples (Silver and Phung 1996). The most
studied mechanism of bacterial mercury resistance is enzy-
matic reduction of Hg2+ to its metallic form, Hg0 (Barkay
et al. 2003; Misra 1992; Osborn et al. 1997; Silver and
Phung 1996). A high vapor pressure and a very low aqueous
solubility of Hg0 result in its volatilization from the bacterial
cytoplasm into the outer atmospheric environment (Barkay
et al. 2003).

This underlying resistance mechanism is conferred by a set
of operon genes, themer operon. Themer operon consists of a
cluster of linked genes that encode proteins with functions
related to regulation, transport, decomposition, and reduction
of mercurial compounds. Although mer operons regulating
the same mechanisms have been identified from various
Gram-negative and Gram-positive bacteria, the component
genes of the mer operons are not uniform, and genetic varia-
tions within each gene exist (Barkay et al. 2003; Silver and
Phung 1996). In general, merR (regulatory gene), merT and
merP (mercury transport genes), andmerA (mercury reductase
gene) are commonly conserved as core mer operon genes,
while additional genes such as merB (organomercury lyase)
(Begley et al. 1986), merC (mercury transport) (Liebert et al.
2000), merD (regulatory gene) (Nucifora et al. 1989), merE
and merF (mercury transport genes) (Liebert et al. 1999;
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Wilson et al. 2000), and merG (phenylmercury resistance
gene) (Kiyono and Pan-Hou 1999) are optional.

These mer genes are often localized on mobile elements,
such as transposons (Hobman and Brown 1997; Mindlin and
Petrova 2013; Osborn et al. 1997). Transposons carrying mer
operons have been identified from both clinical and environ-
mental species. The majority of characterized HgR transpo-
sons belong to the Tn3-family of replicative transposons (pre-
viously designated class II transposons; DNAwithout an RNA
intermediate) that are generally typified by encoding 35–48 bp
terminal inverted repeat (IR) sequences, the tnpA gene
(transposase), the tnpR gene (resolvase), and res sites (co-
integrated resolution sites) (Grinsted et al. 1990; Liebert
et al. 1999; Nicolas et al. 2015). The first investigated HgR

transposons were Tn21 and Tn501 (Liebert et al. 2000;
Nucifora et al. 1989). The distribution and diversity of
transposition genes relating to Tn21 and Tn501 have been
studied using environmental bacteria or bacterial commu-
nity DNA isolated from different environments (Holt
et al. 1999; Huang et al. 1999a; Liebert et al. 1999;
Mindlin and Petrova 2013).

Environmental mercury contamination, particularly by or-
ganomercurial compounds, has caused very serious disasters
such as methylmercury poisoning cases in Minamata Bay,
Japan, during the 1950s, after the region was polluted with
methylmercury compounds from industrial wastewater
(Harada 1995; Tsubaki and Irukayayama 1977). Based on
reported mercury concentrations in 1959 and the late 1980s,
natural processes (largely microbial) had removed between 75
and 90% of the mercury in Minamata Bay sediment
(Nakamura and Silver 1994; Silver et al. 1994). The frequency
of multiple organomercurial resistant bacteria in isolates from
Minamata Bay sediment were at least 20-fold higher than that
found in isolates from a nearby unpolluted control site
(Nakamura et al. 1990). These records suggest the contribu-
tion of bacteria in in situ remediation activity in mercury-
polluted environments. In the Minamata Bay sediments,
HgR bacteria had been identified from ten different genera
(Bacillus, Enterobacter, Flavobacterium, Moraxella,
Pseudomonas, Vibrio, Corynebacterium, Micrococcus,
Staphylococcus, and Clostridium) (Nakamura et al. 1988,
1990; Narita et al. 1999). Among these bacteria, Bacillus
was the most abundant and was a major contributor of mer-
cury cycling in Minamata Bay sediment (Nakamura et al.
1988, 1990). Similar mer operons among isolated Minamata
Bacillus strains suggest horizontal spread of mercury resis-
tance determinants (Silver et al. 1994).

The first HgR Bacilluswas isolated from a sediment from a
site polluted with heavy metals in Boston Harbor, USA
(Mahler et al. 1986), and the genetic properties of the mercury
resistance determinant of the isolated strain, Bacillus cereus
RC607, were characterized (Wang et al. 1989). Subsequently,
Huang et al. (1999b) identified a broad-spectrum mercury

resistance Tn3-family replicative transposon, TnMERI1, from
a Minamata Bay isolate, Bacillus megaterium MB1 (collec-
tion number: NBRC 110925), which showed resistance to
both organomercurials and inorganic mercury salt, and dem-
onstrated the mobile nature of mercury resistance determi-
nants among Bacillus organisms. Moreover, the findings of
the worldwide distribution of TnMERI1-like mercury resis-
tance transposons indicated the ubiquitousness of the catabol-
ic genes (Bogdanova et al. 1998; Matsui et al. 2016; Narita
et al. 2004). These studies prompted us to propose a new
mercury bioremediation strategy targeting the mercury resis-
tance transposon of Bacilli.

In this mini review, we discuss a possible strategy of
transposon-mediated in situ molecular breeding (ISMoB) of
HgR Bacilli in natural habitats. In ISMoB, breeding target
microorganisms are indigenous Bacilli that are not HgR but
are dominant in the environment and have excellent survival.
We thus propose a new concept of environmental mercury
pollution bioremediation using transposon-mediated ISMoB
and ways to apply this concept.

Diversity of HgR determinants in Bacilli
isolated from Minamata Bay sediment

Toxic mercurials enhanced the abundance of mercury resis-
tance genes and bacteria in Minamata Bay sediment in Japan
(Nakamura et al. 1986, 1990). Previous studies have also sug-
gested the contribution of bacterial in the in situ remediation
activity of mercury-polluted environments (Huang et al.
1999b; Narita et al. 2003). B. megaterium MB1, a broad-
spectrum HgR Bacillus strain, was isolated from Minamata
Bay sediment. The sediment was collected in June 1984, be-
fore the sediment was dredged by authorities to remove mer-
cury contamination, and was stored under air-dry conditions at
4 °C. The detailed mercury resistance genetic module was
characterized from B. megaterium MB1 chromosomal DNA
(Huang et al. 1999a, b). This genetic module is almost identi-
cal to the mer operon of Gram-positive bacteria previously
found from B. cereus RC607 (Gupta et al. 1999; Wang et al.
1989) , which was iso la ted in the USA, and an
Exiguobacterium sp. strain TC38-2b, which was isolated in
Ukraine (Bogdanova et al. 1998; Bogdanova and Mindlin
1991). The mer genes from B. megateriumMB1 are encoded
on a Tn3-family replicative transposon designated as
TnMERI1 (Huang et al. 1999b). This indicates that the trans-
posons are involved in the horizontal dissemination of mercu-
ry resistance among Gram-positive bacteria. The previous ob-
servation of low genetic diversity in Minamata Bay sediment
may reflect a peculiarity of this site (Huang et al. 1999b;
Nakamura and Silver 1994), enabling us to further determine
the molecular diversity of the Minamata Bay mercury-
resistant Bacillus population.
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In addition to the B. megaterium MB1, 30 HgR Bacilli
(designated MB2 to MB31) were also isolated from the same
Minamata Bay sediment samples, and the mercury resistance
genes among these regional Bacilli were characterized in de-
tail (Table 1) (Narita et al. 2003). All isolates were Gram-

positive and grew as rod-shaped spore-forming cells. Eight
isolates (MB11, MB12, MB13, MB22, MB24, MB25,
MB26, and MB27) were facultative anaerobes while the other
22 were strict aerobes. Their mercury resistance was divided
into a narrow spectrum, showing resistance to inorganic

Table 1 Characteristics of
mercury resistance of Minamata
Bay Bacilli isolates (strain MB1-
MB31) from Narita et al. (2003)

Microbial strain MIC (μM)a Hybridization with DNA probesb Resistance spectrum

MCc PMAd merA merB3 merB2 merB1

B. subtilis 168e 10 1.0 – – – – Sensitive

B. megateriumMB1f 80 8.0 ++ ++ ++ ++ Broad

MB2 80 1.0 ++ – – – Narrow

MB3 80 1.0 – – – – Narrow

MB4 40 8.0 ++ ++ ++ ++ Broad

MB5 80 16.0 ++ ++ ++ ++ Broad

MB6 80 8.0 ++ ++ ++ ++ Broad

MB7 40 0.5 ++ – – – Narrow

MB8 80 2.0 ++ – – – Narrow

MB9 160 2.0 ++ – – – Narrow

MB10 160 1.0 ++ – – – Narrow

MB11 160 1.0 – – – – Narrow

MB12 80 0.5 – – – – Narrow

MB13 160 0.5 – – – – Narrow

MB14 80 0.5 + – – – Narrow

MB15 80 1.0 ++ – – – Narrow

MB16 80 0.5 ++ – – – Narrow

MB17 80 0.5 ++ – – – Narrow

MB18 80 0.5 ++ – – – Narrow

MB19 40 4.0 ++ – – – Unidentified

MB20 40 4.0 ++ – – – Unidentified

MB21 40 8.0 ++ – – + Unidentified

MB22 160 16.0 ++ ++ ++ ++ Broad

MB23 80 8.0 ++g ++ ++ ++ Broad

MB24 160 16.0 ++ ++ ++ ++ Broad

MB25 160 8.0 ++ ++ ++ ++ Broad

MB26 160 16.0 ++ ++ ++ ++ Broad

MB27 320 16.0 ++ ++ ++ ++ Broad

MB28 320 16.0 ++ ++ ++ ++ Broad

MB29 160 8.0 ++ ++ ++ ++ Broad

MB30 40 2.0 + – – – Narrow

MB31 40 2.0 + – – – Narrow

aMIC (minimum inhibitory concentration) of mercurials was determined as the lowest concentration of mercu-
rials at which the bacteria could not grow
b ++ positively hybridized, + weakly hybridized, − not hybridized
cMC, mercury chloride (inorganic)
d PMA, phenylmercury acetate (organic)
eMercury sensitive control strain
f Broad-spectrum mercury-resistant (organomercurial-resistant) strain, as described previously (Huang et al.
1999a, b)
g Isolate MB23 produces two hybridization signals with the merA probe
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mercury salt only and broad-spectrum mercury resistance by
their phenotype. Polymerase chain reaction (PCR) amplifica-
tion analysis targeting different mer genes against the 11
broad-spectrum HgR Bacillus isolates resulted in the amplifi-
cation of the PCR fragments of the same size as those from the
B. megaterium MB1 strain. Southern hybridization analysis
showed that these 11 isolates carried the merA, B1, B2, and
B3 genes similar to B. megaterium MB1. Eleven of the 30
broad-spectrum HgR Bacillus isolate HgR strains possessed
merB genes; three of 30 unidentified-genotype phenyl-mercu-
ry acetate (PMA) resistance Bacillus isolates (MB19, MB20,
andMB21) did not containMB1-typemerB genes. A different
PMA resistance mechanism may exist in these bacteria.
Furthermore, three isolates (MB11, MB12, and MB13) did
not hybridize with the merA probes from B. megaterium
MB1 and did not producemer-related PCR products. As these
three isolates showed highminimum inhibition concentrations
(MIC) toward mercury chloride, other resistance mechanisms
may be employed by these strains.

PCR-restriction fragment length polymorphism (PCR-
RFLP) analysis of the entire 6.8 kb mer operon encoding
merB3, R1, E, T, P, A, R2, B2, and B1 in the 11 isolates showed
identical results with that of the B. megaterium MB1 mer
operon. Thus, 11 of 30 isolates had the same mer operon as
that of TnMERI1 in B. megaterium MB1. Targeting the
1.3 kbpmerA core region, the diversity ofmerA gene structure
configurations was determined using RFLP profiles. The 11
broad-spectrum HgR Bacillus isolates showed identical RFLP
patterns, whereas the 16 narrow-spectrum isolates and the
three unidentified genotype HgR Bacilli were classified into
six classes including five new RFLP classes not previously
observed (Fig. 1) (Hart et al. 1998). The most abundant merA
sequences were class 2 type and were shared by eight narrow-
spectrum Minamata Bay Bacillus isolates and 13 previously
identified English Bacillus isolates (Hart et al. 1998). Thus,
the class 2 merA sequences are distributed globally and are
shared by different Bacillus species in different geographic
regions.

A previous study demonstrated that variations ofmer genes
among bacteria from less polluted soils are greater than those
in bacteria from mercury-polluted soils (Olson et al. 1991).
The employed Minamata Bay sediment sample was highly
polluted by Hg2+ and methylmercury, and a low genetic di-
versity was observed from the studied broad-spectrum HgR

Bacillus isolates. These results are consistent with the strong

selective pressure of organomercurials, mainly methylmer-
cury, on the broad-spectrum HgR Bacilli in the studied sedi-
ment. However, these results also indicate a weaker selective
pressure of inorganic mercury on narrow-spectrum mercury
detoxification genes among Bacilli in the same sediment.
These differences demonstrate that broad-spectrum HgR

Bacillus may be responsible for resistance to toxic pollutants
in Minamata Bay sediment and that bacteria carrying broad-
spectrum HgR were selected. At the same time, horizontal
dissemination ofmer genes may occur under weaker selective
pressure of inorganic mercury and may play a key role in the
adaptation of bacterial populations to environmental
contaminants.

Worldwide dissemination of mercury
resistance transposons in Bacilli

Bacteria are ubiquitous in the atmosphere and can be
transported by wind over long distances (Burrows et al.
2009). Generally, the survival of disseminated non-
indigenous microorganisms is expected to be low. However,
spores of Bacilli show high tolerance against harsh environ-
mental conditions such as heat and desiccation (Nicholson
et al. 2000). Previous studies showed that spore-forming
Clostridium spp. and Bacillus spp. were viable after 30 years
on the Antarctic Peninsula, while fecal coliforms lost their
viability rapidly under the same conditions (Hughes and
Nobbs 2004). Thus, spore-forming Bacilli have advantages
for long-term survival and transportation over long distances.

Bacilli showing mercury resistance have been described
repeatedly in various geographically distinguished regions
worldwide (Table 2). Indeed, mercury-resistant Bacilli of dif-
ferent genera and species have been described. Their mercury
resistance determinants were identified on mobile genetic el-
ements such as plasmids and transposons. In Gram-negative
bacteria, transposons carrying mercury resistance determi-
nants have been well documented including the Tn21-,
Tn501-, and -Tn5053 families (Mindlin and Petrova 2013).
However, few studies have investigated Bacilli. The linkage
between mer operons of Gram-positive bacteria and transpo-
sition genes was first reported by Bogdanova et al. in 1998.
Further studies subsequently confirmed that some mercury
resistance determinants of Gram-positive bacteria are located
on transposons, similar to Tn3 (Bogdanova et al. 2001; Huang
et al. 1999b). TnMERI1 was reported in the chromosome of
Bacillus megaterium MB1, an isolate from mercury polluted
sediment in Minamata Bay, Japan (Huang et al. 1999b).
TnMERI1 carries genes that participate in the resistance to
organomercurials and inorganic mercury salts. Three closely
related TnMERI1-like transposons are Tn5083 from
B. megaterium MK64-1 in the Kuril Islands, Russia; Tn5084
from B. cereus RC607 in Boston Harbor, USA; and Tn5085

�Fig. 1 Restriction fragment length polymorphism (RFLP) patterns with
seven restriction endonucleases of amplified 1.3-kbpmerA PCR products
from Minamata Bay Bacillus isolates. Modified from Narita et al.
(2003). For HinfI digests, doublets are represented as bands of double
thickness. The RFLP classes I and VI were previously described in Hart
et al. (1998), and classes XXIII to XXVII are new classes identified in our
study. The RFLP classes XXVIII to XXXI are also new classes obtained
from 1.3-kbp merA sequences of Russian and Ukrainian Bacillus isolates
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Table 2 Geographical distribution of the identified mercury-resistant Bacilli

Biogeographical region
(Ecozones)

Sampling site Mercury resistance
spectrum

References

Palearctic Woodland, Prague, Czech Republic B, N Matsui et al. (2016)

River Mersey, Fiddlers Ferry, England N Hart et al. (1998)

La Côte Saint André, France N Nazaret et al. (2003)

Aussa river, Marano lagoon, Italy N Baldi et al. (2012)

River Tagliamento, Friuli-Venezia-Giulia, Italy B, N Narita et al. (2004)

Hirose River, Miyagi, Japan B, N Matsui et al. (2016)

Kitakami River, Miyagi, Japan N Matsui et al. (2016)

Lake Izunuma, Miyagi, Japan B, N Matsui et al. (2016)

Minamata Bay, Japan B, N Huang et al. (1999b), Nakamura and Silver
(1994), Narita et al. (2003)

Mount Fuji, Japan N Matsui et al. (2016)

Yodo River, Osaka, Japan N Matsui et al. (2016)

Songdo Beach, Busan, Korea B, N Narita et al. (2004)

River Amsterdam, North Holland, Netherlands B, N Narita et al. (2004)

Tagus Estuary, Portugal B, N Figueiredo et al. (2016)

Kamchatka Peninsula, Russia N Bogdanova et al. (1998)

Kuril Islands, Russia N Bogdanova et al. (1998)

Beach by the Citadel near Lund, Sweden B, N Narita et al. (2004)

River Rhein, Graubunden, Switzerland B, N Narita et al. (2004)

Carpathia, Ukraine B, N Bogdanova et al. (1998)

Indomalaya Calcutta, India B, N Sadhukhan et al. (1997)

Odisha coast, Bay of Bengal, India N Dash et al. (2014)

Palk Bay, India N Nithya et al. (2011)

Pulicat Lake, Tamil Nadu, India B, N Kannan et al. (2006)

Rain forest, Sarawak, Malaysia N Matsui et al. (2016)

Kasur and Sheikhupura, Pakistan N Amin and Latif (2017)

Mount Yushan, Taiwan B, N Matsui et al. (2016)

Taichung Harbor, Taichung, Taiwan B, N Narita et al. (2004)

Pattaya Beach, Chonburi, Thailand B, N Narita et al. (2004)

Nearctic Speed River, Guelph, Ontario, Canada N Trevors (1987)

Boston Harbor, Massachusetts, USA B, N Mahler et al. (1986)

Davis Creek Reservoir, California, USA B, N Rochelle et al. (1991)

Little Rock Lake, Wisconsin, USA N Rochelle et al. (1991)

Loon Lake, Michigan, USA N Matsui et al. (2016)

Lower East Fork Poplar Creek floodplain, Oak
Ridge, Tennessee, USA

B, N Rochelle et al. (1991), Oregaard and Sorensen
(2007)

Neotropic Rio de Janeiro, Brasil N Silva et al. (2012)

Boca Del Rio Beach, Veracruz, Mexico N Narita et al. (2004)

Cancun, Quintana Roo, Mexico N Matsui et al. (2016)

San Joaquin, Queretaro State, Mexico N Medina et al. (2013)

Australasia Manly Beach, New South Wales, Australia N Narita et al. (2004)

Dunedin, New Zealand N Matsui et al. (2016)

Afrotropic Lake Malawi, Malawi N Matsui et al. (2016)

Lagos Lagoon, Nigeria N Olukoya et al. (1997)

Oceania Suva, Fiji B, N Matsui et al. (2016)
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from Exiguobacterium sp. TC38-2b in Carpathian, Ukraine
(Bogdanova et al. 2001). Among these, the DNA sequence
of Tn5083 has yet to be completely determined. Our labora-
tory also identified TnMERI1, Tn5084, and Tn5085 transpo-
sons in 21 of 56 Bacilli isolates from worldwide environmen-
tal samples (Narita et al. 2004).

We further investigated 12 of 65 spore-forming HgR

bacteria that were isolated from natural environments
worldwide to understand the acquisition of additional
genes by and dissemination of HgR Tn3-family of replica-
tive transposons across related Bacilli genera via horizon-
tal gene transfer (HGT) (Matsui et al. 2016). The finding of
different TnMERI1-like transposons, including Tn6294 (a
newly identified mercury resistance transposon) and
TndMER3 (a newly identified deleted transposon-like frag-
ment carrying mercury resistance determinants), suggests
the diversity of mercury resistance transposons among
Bacilli, similar to mercury resistance transposons in
Gram-negative bacteria. Moreover, the identification of
Tn6294 in Bacillus sp. from Taiwan and in Paenibacillus
sp. from Antarctica is noteworthy. The horizontal dissem-
ination of TnMERI1-like transposons across bacterial spe-
cies and geographical barriers indicates the worldwide dis-
tribution of Bacilli carrying mercury resistance transpo-
sons in the environment.

Transposition of Bacilli Tn3-family
of replicative transposon

TnMERI1-like transposons are generally unitary non-
composite structures belonging to the Tn3-family
(Nicolas et al. 2015). Tn3-family transposons replicate
during integration into the target sequence, and this repli-
cative mode allows the success of proliferation of catabol-
ic genes in bacteria (Nojiri et al. 2004). Although the
molecular mechanisms underlying Tn3-family transpo-
sons have been well characterized, the triggers that stim-
ulate and attenuate the transposition process are not well
understood.

Transposition activity of TnMERI1-like transposon
(Tn5085 ) was f i r s t revea led exper imen ta l ly in
Escherichia coli cells (Bogdanova et al. 2001). The trans-
position of Tn5085 into the recipient plasmid was shown to

occur with cointegration of plasmid formation in a
recombinase A (recA)-deficient E. coli HB101 strain.
These cointegrates were resolved in E. coli IF238, which
has a complete recombination system. To evaluate the ef-
fect of RecA on translocation of the TnMERI1-like trans-
poson, we constructed a mini-TnMERI1 and confirmed the
participation of RecA in the resolution of the cointegrated
transposon structure (Matsui et al. 2005). Other studies
have also shown that the efficiency of cointegrated resolu-
tion is low in the recA-deficient E. coli strain with different
Tn3-type transposons from Gram-negative bacteria (e.g.,
Tn4652 and TnHad2) (Sota et al. 2002; Tsuda and Iino
1987). RecA may contribute to resolution of the
cointegrates and facilitate the translocation of transposons
to other replicons. However, in the case of TnMERI1, cell
treatment with stress agents, including UV irradiation
doses of up to 3000 J m−2, did not alter transposition fre-
quencies, indicating that RecA functions independently
from SOS stress responses (Matsui et al. 2005).

Although environmental stress seems to be an impor-
tant parameter facilitating transposition activity, recent
studies have indicated the facilitation of HGT under
non-selected conditions. It has been shown that the
conjugative mercury resistance plasmid pQBR57 is ex-
panded among Pseudomonas fluorescens populations via
HGT without mercury selection. Selection with mercury
stimulated the clonal expansion of mercury-resistant bac-
teria but did not stimulate HGT (Stevenson et al. 2017).
Similar results were obtained in our previous study on the
Minamata Bay Bacillus populations, as described in the
previous section (Narita et al. 2003). Environmental and
cellular parameters that influence transposition activity of
TnMERI1-like transposons are scarcely characterized;
however, the dissemination of transposons may occur
without mercury selection. Frequent findings of
mercury-resistant Bacilli from non-contaminated regions
(Table 2) support these findings. The findings from 74
of 78 Bacillus isolates from mercury-polluted Minamata
Bay sediment, showing that these carry identical mer de-
terminant to Bacillus sp. RC607 (Nakamura and Silver
1994), agree with the study by Stevenson et al. (2017).
Further characterization of these mobile elements will be
valuable to disseminate TnMERI1-like transposons for re-
mediation purposes.

Table 2 (continued)

Biogeographical region
(Ecozones)

Sampling site Mercury resistance
spectrum

References

Waikiki Beach, Hawaii, USA B, N Narita et al. (2004)

Antarctic East Ongul Island, Antarctica B, N Matsui et al. (2016)

N narrow- spectrum mercury resistance, B broad-spectrum mercury resistance
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Concept of transposon-mediated ISMoB

In conventional bioremediation methods, purification of con-
taminated environments by microbes is often achieved using
specific microbes that degrade or convert environmental pol-
lutants to non-dangerous substances (El Fantroussi and
Agathos 2005). Under a mercury contamination scenario, pu-
rifying microbes are isolated from the polluted environment
and are grown in pure cultures. They are subsequently used
for augmentation of capable microbes in the polluted environ-
ment, as shown in Fig. 2. In another case, these bacteria are
genetically modified by molecular methods and then intro-
duced into the polluted environment. In the latter method, a
selected host microorganism is genetically transformed with
the functional genes from an isolated microorganism that pos-
sesses pollutant degradation or conversion activity, markedly
increasing the microbial purification activity (Singh et al.
2011).

However, host microorganisms for use in artificial
molecular-breeding are limited in the environment (El
Fantroussi and Agathos 2005; Tyagi et al. 2011).
Additionally, genetically modified microorganisms must be
assessed before their introduction, and their elimination from
the site is sometimes required when the purification process is
completed (Keese 2008). Usually, microbes introduced into
the environment that are not indigenous and that do not accli-
matize are less competitive against wild microbes and are
targeted by grazing organisms in the environment
(Cunningham et al. 2009; Kota et al. 1999). If we are able to
transfer special genetic components for environmental purifi-
cation from introduced microbes to indigenous and predomi-
nant microbes in a habitat, and if the transferred microbes can
express these genetic features, naturally bred transformant mi-
crobes will be preferable for environmental bioremediation

(Wiedenbeck and Cohan 2011). Indeed, these microbes are
more familiar with the environment and have survival advan-
tage over introduced microbes (Ikuma and Gunsch 2013).

As described in the above sections, the same genetic com-
ponents involved in microbial response to environmental de-
terioration are common within various microbial species due
to transposon transfer. Therefore, transposon-mediated HGT
is considered an effective tool for natural breeding of
remediating microbes in polluted environments (Shahi et al.
2017). We propose this as Btransposon-mediated in situ mo-
lecular breeding (ISMoB)^; ISMoB is a fundamentally natural
process. Introduced donor microbes are not indigenous but
possess transposons for environmental purification, and recip-
ient microbes are indigenous, dominant, and robust in the
given environment. However, the ISMoB process can be en-
hanced by adjusting conditional factors.

Three major factors are involved in transposon-mediated
ISMoB. First, effective transposons and mobilization vectors
are required. Next, excision of the transposons from vectors
and insertion of transposons to the genomic DNA in the re-
cipients must occur. Lastly, there must be mating probability
between the donor and recipient microbes. As previously
mentioned, useful transposons for environmental purification
exist, and some of them are conjugative transposons and self-
transmissible (Burrus et al. 2002; Salyers et al. 1995).
However, many others are non-conjugative transposons. In
the process of intercellular transfer of non-conjugative trans-
posons, lysogenic phages, conjugative plasmids, genomic
islands, or other unclassified elements are needed as transfer-
ring vectors (Shahi et al. 2017; Tan 1999). The excision and
insertion capabilities of a transposon originate from the genet-
ic elements of the transposon itself, while other host cellular
components may enhance the excision and insertion of trans-
posons (Bellanger et al. 2014).

Fig. 2 Schematic diagrams of
conventional bioaugmentation for
bioremediation of mercury-
contaminated environments
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Transposon-harboring microbes that contain genetic ele-
ments for pollutant removal and for excision/insertion can be
found and isolated from natural or polluted environments
(Wright et al. 2008). In addition, vectors can be used for in-
tercellular transfer of these transposons from the environment
(Wyndham et al. 1994). By combining effective transposons
and transfer vectors, two of the three required factors for
ISMoB are provided. The third factor requires the develop-
ment of methodologies to enhance the possibility of mating
between donor and recipient microbes. In laboratories,
transposon-mediated transfer of genetic elements beyond the
border of microbial species has been established. However, in
situ mating methods for ISMoB are not yet established. An
important first step of transposon-mediated in situ gene trans-
fer is to establish microbial mating with cell-to-cell contact or
cell aggregation of both donor and recipient microbes.

Figure 3 shows a schematic diagram depicting ISMoB use
for bioremediation of environments polluted with mercury. A
facility with biofilm or immobilization technology to enhance
the mating of donor and recipient microbes is required to
perform ISMoB. Biofilm technology is considered an effec-
tive way to provide an adequate mating environment for these
microbes. Biofilm formation media can be used to provide
adhesion surfaces to increase mating opportunities, and use
of entrapping medium is also effective to enable prolonged
co-existence of mating microbes. Nutrients are supplied to
increase numbers of the introduced donor and indigenous re-
cipient microbes and mating activities of them in the polluted
environment.

As mentioned above, we found that mer genes were dis-
tributed worldwide in Bacilli with the dissemination of
TnMERI1-like transposons (Matsui et al. 2016). To confirm
the mobile nature of mer genes and the ways in which HgR

Bacilli take root in the environment, we developed a reliable
quantitative procedure with a real-time PCR-basedmethod for

identifying mer genes in environmental soil samples. Using
the developed method, we could only quantify mer genes in
from 7 out of the 70 soil samples analyzed. The other 63 sites,
including the sites augmented with Bacilli harboring known
HgR transposons, contained quantities of genetic material that
were below the detection limit of the real-time PCR assay.
However, further cultivation of the unsterilized soils under
nutrient-rich conditions allowed the detection of themer genes
fromHgR Bacillus via PCR (data not published). These results
suggest that recently appeared HgR Bacilli could propagate
under suitable soil environmental conditions. This finding
prompted us to propose transposon-mediated ISMoB of HgR

bacteria in the environments. We are now seeking direct evi-
dence of HGT with the HgR transposons in soil samples, and
the results of this research will be presented in our next orig-
inal paper.

Bioreactors are also available for ISMoB. Using bioreac-
tors for removal of contaminants is an ex situ procedure.
However, bioreactors can be more effective in enhancing
transposon transfers than in situ methods. In bioreactors, mi-
crobes that are gel-entrapped or surface-immobilized onto
fixed beds or fluidized bed systems can be used to provide
adequate room and time for mating between donor and recip-
ient microbes. Propagating conditions for microbes including
nutrients, temperature, and pH after mating, as well as genetic
transfer, can also be easily delivered in bioreactors.

New environmental biotechnology
for mercury bioremediation using
transposon-mediated ISMoB

Recently, Garbisu et al. (2017) proposed plasmid-mediated
bioaugmentation and its utilization in bioremediation of con-
taminated soils. This technology is effective if plasmids with

Fig. 3 Schematic diagrams of
transposon-mediated ISMoB for
bioremediation of mercury-
contaminated environments
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environmental purifying genes are stable in the environment
of the recipient microbes. However, possession of genes with
plasmids usually renders bacteria less stable than genes inte-
grated in recipient microbe chromosomal DNA. Therefore, in
ISMoB, transposon-mediated gene integration into microbial
chromosomes is newly proposed.

To remove mercury from contaminated environments by
applying transposon-mediated ISMoB, microbes that are
highly HgR and can actively reduce and volatilize mercury
from the environments are isolated. It is then determined
whether the isolates possess HgR operons and their specific
location. Possession of vectors for interspecies transfer of HgR

transposons is also investigated. If an isolate with a HgR trans-
poson does not possess a vector for intercellular gene transfer,
the microbe must be transformed with appropriate conjugative
plasmids or phages (Garbisu et al. 2017; Shahi et al. 2017).

Non-indigenous microbes with HgR transposons and
conjugative plasmids are introduced into mercury-
contaminated sites as donors of HgR transposons. In these
sites, procedures to enhance HGT from the donor to the indig-
enous recipient microbes are applied, which include supple-
mentation with nutrients and mating location to activate
ISMoB. After HGT, indigenous recipient microbes survive
and propagate, executing more effective remediation activity.

As described above, B. megaterium MB1 isolated from
Minamata Bay, Japan possesses a HgR transposon,
TnMERI1; B. cereus RC607 isolated from Boston Harbor,
USA possesses a HgR transposon, Tn5084 ; and
Exiguobacterium sp. Tc38-2b isolated from Carpathian
Mountains, Ukraine possesses a HgR transposon, Tn5085
(Bogdanova et al. 2001; Narita et al. 2004). These HgR bac-
teria can be used as donors for transposon-mediated ISMoB.
However, no vector from these HgR bacteria has been identi-
fied for interspecies HGT. Effective HgR transposon vehicles
must be found for interspecies transfer and use in ISMoB.

A gene transfer module of the HgR transposon TnMERI1
from B. megaterium MB1 contains tnpT and tnpR for genetic
transposition and a bacterial group II intron named B.me.I1
(Huang et al. 1999b; Chien et al. 2008). However, TnMERI1
does not contain the same IR sequences at each end of the
transposon. In this case, the IR sequences should be repaired
before using this bacterium for ISMoB to increase the possi-
bility of transfer. The use of B.me.I1 as a gene transfer carrier
may also be considered since group II bacterial introns can
splice themselves from the transcribed intron RNA and home
to other genetic regions. Further research on intron-mediated
gene transfer between microbes is warranted.

In conclusion, interspecies gene transfer in natural environ-
ments actively occurs via transposon mediation and is appli-
cable to ISMoB. To use transposon-mediated ISMoB as a new
biotechnology for environmental mercury pollution control,
finding and using effective vectors such as conjugative and
broad-range transferable plasmids, providing appropriate

mating conditions for both the donor and recipient microbes,
and developing augmentation methods for naturally bred mi-
crobes are required.
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