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Abstract
4-Hydroxybenzoic acid (4-HBA) has recently emerged as a promising intermediate for several value-added bioproducts with
potential biotechnological applications in food, cosmetics, pharmacy, fungicides, etc. Over the past years, a variety of biosyn-
thetic techniques have been developed for producing the 4-HBA and 4-HBA-based products. At this juncture, synthetic biology
and metabolic engineering approaches enabled the biosynthesis of 4-HBA to address the increasing demand for high-value
bioproducts. This review summarizes the biosynthesis of a variety of industrially pertinent compounds such as resveratrol,
muconic acid, gastrodin, xiamenmycin, and vanillyl alcohol using 4-HBA as the starting feedstock. Moreover, potential research
activities with a close-up look at the future perspectives to produce new compounds using 4-HBA have also been discussed.
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Introduction

The aromatic hydroxy acid, 4-hydroxybenzoic acid (4-HBA),
is a valuable intermediate for the synthesis of several
bioproducts with potential applications in food, cosmetics,
pharmacy, fungicides, etc. It is a key component in the
manufacturing of high-performance liquid crystal polymers
(LCPs) with wider and ever-increasing applications in the
thermoplastic industry (Ibeh 2011). The current production
of 4-HBA is entirely based on petroleum-derived chemicals.
However, the harsh reaction’s conditions (high temperature
and pressure), along with undesirable by-product generation,
make the chemical process relatively expensive and unfavor-
able (Yoshida and Nagasawa 2007). Moreover, the limited
raw material availability and high costs, together with envi-
ronmental concerns necessitated the development of an eco-
nomic and environmentally friendly bioprocess for aromatic
4-HBA biosynthesis (Gavrilescu 2014; Yu et al. 2016). In this
context, several important bioproducts are produced from 4-
HBA in the microbial shikimate pathway (Barker and Frost

2001; Krömer et al. 2013; Meijnen et al. 2011; Suzanne et al.
2010; Verhoef et al. 2007).

In the last two decades, shikimate pathway has been inten-
sively studied for the biosynthesis of aromatic amino acids (L-
tryptophan, L-phenylalanine, and L-tyrosine), quinones, fo-
lates, and secondary metabolites including many commercial-
ly valuable compounds (Chen et al. 2014; Curran et al. 2013;
Huang et al. 2011; Jin et al. 2015; Krömer et al. 2013; Li et al.
2010; Noda et al. 2017; Weber et al. 2012) (Fig. 1). The
shikimate pathway links carbohydrate metabolism to aromatic
compound biosynthesis by converting phosphoenolpyruvate
(PEP) and D-erythrose 4-phosphate (E4P) from the central
carbon metabolism (CCM) into 3-deoxy-d-arabino-
heptulosonate-7-phosphate (DAHP). After a series of seven
catalytic reactions, DHAP is transformed to chorismate, a uni-
versal precursor for commercially valuable compounds (Hu
et al. 2017; Jin et al. 2015; Liu et al. 2016; Shen et al. 2017b).
It is reported that improving the metabolic flux in shikimate
pathway would increase the downstream target compounds
titer (Bongaerts et al. 2001; Liu et al. 2016). Jung et al.
(2016) reported the engineering of natural shikimate pathway
and resulted in 99% conversion of p-coumaric acid (pCA) into
4-HBA. Simialry, Meijnen et al. (2011) constructed a path-
way for the co-utilization of xylose and other carbon sources
and considerably improved the 4-HBA yield. On the other
hand, the growth and metabolism of many microorganisms
can be inhibited by species-specific concentrations of 4-
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HBA (Cho et al. 1998). The higher concentrations of 4-HBA
have shown toxic effects to Escherichia coli (Barker and Frost
2001), and Burkholderia glumae (Jung et al. 2016).

In prokaryotes, 4-HBA forms from chorismate via shikimate
pathway. As a useful industrial platform chemical, the high titer
of 4-HBA can be converted into more useful compounds like
resveratrol (Kallscheuer et al. 2017), muconic acid (Sengupta
et al. 2015a), gastrodin (Bai et al. 2016), xiamenmycin (Yang
et al. 2014), ubiquinone (Lee et al. 2017), vanillyl alcohol (Chen
et al. 2017b), and many others (Chen et al. 2017a; Pfaff et al.
2014; Shen et al. 2017a; Su et al. 2017; Yang et al. 2017) (Fig. 1).
The 4-HBA-derived natural products are a large group of sec-
ondary metabolites which exhibit a wide variety of biological
and pharmaceutical activities. This review describes the contem-
porary knowledge of the renewable and sustainable biosynthesis
of 4-HBA-derived natural products using metabolic engineering
and synthetic biology approaches.

Resveratrol biosynthesis

Resveratrol is a non-flavonoid polyphenolic compound with a
stilbene structure and considered to be a plant antitoxin. It

possesses a wide variety of biological and pharmacological
activities, such as antibacterial, antioxidant, anticancer, pre-
vention of coronary artery disease (CAD), hypolipidemic,
and antimutagenic effects (Gilbert 2001; Manach et al. 2004;
Spatafora and Tringali 2012; Tissier et al. 2014). Due to enor-
mous health-promoting attributes of plant polyphenols, E. coli
and Saccharomyces cerevisiae strains were metabolically
engineered for enhanced biosynthesis of monolignols, stil-
benes, and (2S)-flavanones (Koopman et al. 2012; Lim et al.
2011; Summerenwesenhagen and Marienhagen 2015). In re-
cent years, stilbene and (2S)-flavanones have been successful-
ly produced in a well-known platform organism
Corynebacterium glutamicum (Kallscheuer et al., 2016a, b).
(Kallscheuer et al. 2017) a β-oxidative phenylpropanoid deg-
radation was designed and constructed based non-natural
pathway for the synthesis of phenylpropanoid CoA thioesters
starting from cheap benzoic acids as illustrated in Fig. 2.
Functionally reversing the β-oxidation cycle, anabolic direc-
tion started from 4-HBA, where 4-HBA CoA-ligase (HbcL1,
EbA5368) converts 4-HBA to 4-HBA-CoA in the synthetic
pathway (Kallscheuer et al. 2017). The thermodynamic Gibbs
free energy valus (ΔG0’) of the complete synthetic pathway

Fig. 1 4-Hydroxybenzoic acid derivatives synthesized through metabolic engineering of the shikimate pathway. Phenazines studied in our lab including
phenazine-1-carboxylic acid, phenazine-1-carboxamide, 2-hydroxyphenazine, and 2-hydroxyphenazine-1-carboxylic acid
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was recorded to be − 32.8 kJ/mol, which indicates the feasi-
bility of the synthetic pathway. Results demonstrated that dou-
bling the concentration of precursor 4-HBA from 5 to 10 mM
had no positive effects on the final product titer (5 mg/L).
However, no resveratrol production was noted without 4-
HBA supplementation, indicating that the microbial produc-
tion of resveratrol can be achieved byβ-oxidative pathway
starting from 4-HBA.

Muconic acid biosynthesis

Adipic acid is an important industrial dicarboxylic acid used
for the manufacturing of plastics and nylon. The worldwide
demand for adipic acid reached to two million tons per year
(Weber et al. 2012). But its chemical production methods
represent the drawbacks of non-renewability and environmen-
tal pollution, and biosynthesis of adipic acid using bio-
renewable feedstocks is a hopeful way. Notably, adipic acid
can be easily prepared by hydrogenation of muconic acid
(MA) which is a naturally occurring intermediate in the deg-
radation process of a great variety of aromatics. At contempo-
rary, much research efforts have been devoted to developing
biotechnological processes for MA biosynthesis. Many ad-
vancements have been made in constructing microbial cell
factories by engineering of non-natural biosynthetic pathways
and optimizations of regulatory networks (Xie et al. 2014).
Several recent reviews have comprehensively covered the de-
tailed mechanisms of MA biosynthesis. Table 1 enlists the
summary of earlier studies on the microbial-based biosynthe-
sis of MA. Draths and Frost (1994) first reported an approach
to introduce exogenous pathways in E. coli to achieve the MA
production from glucose. In their study, a 3-dehydroshikimate
acid (DHS) dehydratase, a protocatechuic acid decarboxylase
(PDC) from Klebsberg and a catechol 1,2-dioxygenase
(CDO) from Acinetobacter baylyi were co-expressed to pro-
duce MA (2.4 g/L). Similarly, Zhang et al. (2015) designed a

microbial consortium to express different pathways in E. coli-
E. coli co-culture system and successfully achieved MA pro-
ductivity of 0.35 g/g from a glucose/xylose mixed fermenta-
tion medium. This co-culture strategy was also utilized to
convert several other sugar mixtures to 4-HBA (Zhang
et al. 2015). In another study, Sun et al. (2013) construct-
ed a novel artificial pathway for the production of MA in
the tryptophan biosynthesis branch, where anthranilate
was converted to MA by anthranilate 1,2-dioxygenase
(ADO) and CDO. Consequently, the engineered E. coli
strain produced 389.96 mg/L MA from simple carbon
sources in shake-flask experiments. The same research
group established another MA biosynthesis pathway in
E. coli, via extending shikimate pathway by introducing
the hybrid SA biosynthesis pathway with its partial deg-
radation pathway. Systematic optimization facilitated the
biosynthesis of 1.5 g/L MA in the shake flasks-based
batch fermentation (Lin et al. 2014). An artificial meta-
bolic pathway was incorporated in E. coli by Sengupta
et al. (2015a) for the biosynthesis of MA using glucose as
a sole carbon source. The proposed pathway led to an
efficient conversion of chorismate from the aromatic ami-
no acid pathway to MA via 4-HBA (Fig. 3). Three en-
zymes, 4-HBA hydro-lyase (pobA), protocatechuate de-
carboxylase (aroY), and catechol 1,2-dioxygenase (catA)
were overexpressed in E. coli to constitute the MA bio-
synthesis pathway (Sengupta et al. 2015b). In this report,
using 4-HBA as essential intermediates branching out
from chorismate in the shikimate pathway, MA produc-
tion using the proposed pathway was promoted by
exploit ing almost al l the 4-HBA. However, the
chorismate lyase is feedback inhibited by 4-HBA
(Siebert et al. 1994) and overexpression of ubic may in-
crease the production of MA by converting 4-HBA to
MA. It is particularly fascinating to use 4-HBA from
lignin depolymerization as an additional carbon source

Fig. 2 Synthetic reverse β-oxidation pathway for the synthesis of
resveratrol from 4-hydroxybenzoate (Kallscheuer et al. 2017) HbcL1:
4-hydroxybenzoate: CoA ligase, EbA5319: β-ketothiolase, EbA5320:3-

hydroxy acyl-CoA dehydrogenase, EbA5318: enoyl-CoA hydratase,
STS: stilbene synthase
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accompanied by glucose (Sengupta et al. 2015a).
Recently, almost doubled MA production (more than
3.1 g/L) was achieved by co-expressing B4-HBA-MA^
and BDHS-MA^ pathway in parallel to create a synthetic
metabolic funnel (Thompson et al. 2017).

Gastrodin biosynthesis

Gastrodin is a major and active ingredient of gastrodiaelata
B1, a well-known Chinese medicine commonly used in
China as a sedative, anticonvulsant, antiaging, anti-inflamma-
tory, and antimyocardial ischemia. It also enhances the im-
mune and other vital health-related functions (Hsieh et al.
2001; Wang et al. 2007; Zhou 1991). Currently, the synthesis
of gastrodin is primarily based on chemical routes and plant-
based extraction processes (Wang et al. 2007; Zhou 1991),
which display many disadvantages. In recent years, an array
of economically important plant-based natural products in-
cluding terpenoids (Ajikumar et al. 2010; Ro et al. 2006),
alkaloids (Nakagawa et al. 2011; Thodey et al. 2014), and
many other high value-added compounds have been reported
to be synthesized by recombinant microorganisms. Bai et al.
(2016) developed an artificial pathway and managed to
achieve a noticeable gastrodin titer of 545 mg/L in 48 h by
the engineered strain (Fig. 4).

The biosynthesis of gastrodin has also been investigated by
4-HBA precursor feeding experiments as well as genetic and
biochemical approaches. A carboxylic acid reductase (CAR)
from Nocardai iowensis (He et al. 2004), endogenous alcohol
dehydrogenases (ADHs) (Bai et al. 2014) of E. coli, and a
Rhodiola UGT73B6 catalyzed the formation of gastrodin from
4-HBA. To further enhance the 4-HBA production, ubic was
overexpressed to catalyze the conversion of chorismate to 4-
HBA. The metabolic flux to the shikimate pathway was sub-
stantially increased through the overexpression of aroGfbr and
ppsA, and the combined expression of ubic, aroGfbs, and
ppsA, potentially enhanced the biosynthesis of 4-
hydroxybenzyl alcohol, then 4-hydroxybenzyl alcohol was
converted to gastrodin at 545 mg/L by directed evolution of
UGT73B6.

Xiamenmycin biosynthesis

Xiamenmycin is a prenylated benzopyran derivative (Yang
et al. 2014), with remarkable anti-inflammatory activities ac-
companied by the anticontractile capacity of lung fibroblasts,
attenuated hypertrophic scar formation and treating fibrotic
diseases (Xu et al. 2012). L-threonine, 4-HBA, and a geranyl
group are the three main components that constitute the
xiamenmycin. The xiamenmycin biosynthetic gene cluster
from Streptomyces xiamenensis 318 consists of five genes
starting from 4-HBA (Yang et al. 2014). Feeding experiments
with 4-HBA precursors confirmed that the 4-HBA acts as aTa
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starting unit for xiamenmycin biosynthesis. It can be seen
from Fig. 5 that XimC (chorismatease) is responsible for the
generation of 4-HBA. The XimB gene catalyzes 4-HBA and
geranyl diphosphate (GPP) to produce 3-geranyl-4-
hydroxybenzoic acid which was proposed to involve in as-
sembly by XimB from 4-HBA starting unit and PPO extender
units, then XimD, XimE, and XimA catalyze sequentially to
form xiamenmycin (Yang et al. 2014). The function of XimC
is to produce 4-HBA, when targeted inactivation of XimC, no
xiamenmycin was produced, and the supplementation of 4-
HBA by feeding restored the xiamenmycin production. This
indicated that XimC, as the key switch point, might be a
chorismate lyase, catalyzing chorismate to generate 4-HBA
as the initial step of xiamenmycin production.

Ubiquinone biosynthesis

Coenzyme Q, commonly known as ubiquinone, plays a vital
role in the electron transport chain. It is also related to many
types of metabolic diseases, such as neuropathies and muscu-
lar disorders (Mancuso et al. 2010; Sharma et al. 2016). The
number of isoprenyl units makes different types of coenzyme
Q such as CoQ6 in Saccharomyces cerevisiae, CoQ8 in
E. coli, CoQ9 in Arabidopsos thaliana, and CoQ10 in human
and Schizosaccharomyces cerevisiae spome (Kawamukai
2015). In recent years, CoQ10 attracted a noticeable re-
searchers attention due to its enormous significance in bio-
medical and health perspectives (Lee et al. 2017). Therefore,
different strategies have been envisioned to scale up the pro-
duction of CoQ. To date, industrial production of CoQ10

mainly focuses on animal tissue extraction, semi-chemical
and microbial fermentation (De and Lee 2014; Kawamukai
2002). Notably, tissue extraction and chemical-based methods
are high energy consumption process to produce CoQ10, and
very difficult to separate optical isomers in chemical synthesis
(Jing et al. 2011) which makes microbial synthesis of CoQ10
to be a preferred avenue. CoQ biosynthesis involves discrete
synthetic stages including producing aromatic group to form
quinone head, production of the isoprene tail, attachment of
the quinone head to the isoprene tail, and the subsequent steps
that culminate in the formation of the final CoQ10 product
(Jeya et al. 2010; Kawamukai 2015). Both in eukaryotes and
prokaryotes, 4-HBA acts as the quinone head synthesized in
shikimate pathway (Fig. 6). In prokaryotes, 4-HBA is derived
from chorismate, and the CoQ biosynthetic pathway in E. coli
consists of nine enzymes, including ubiA, ubiB, ubiC, ubiD,
ubiE, ubiF, ubiG, ubiH, and IspB (Gonzálezmariscal et al.
2014), while in eukaryotes, 4-HBA is derived from tyrosine.
4-HBA enters the CoQ biosynthetic pathway via the
prenylation of the position 3 catalyzed by Coq2 in eukaryotes
or ubiA in bacteria, and then yields 3-polyprenyl-4-
hydroxybenzoic acid for further metabolism to CoQ (Pierrel
2017). The introduction of decaprenyl diphosphate synthase
gene (ddsA) in E. coli along with supplementation of 4-HBA
led to improved CoQ yield and dry cell weight (DCW) (Zahiri
et al. 2006). Accordingly, 4-acetylantroquinonol B (4-AAQB)
can inhibit the propagation of hepatocellular carcinoma cells
HepG2 with an IC50 of 0.1 g/mL (Lin et al. 2010). Recently,
Lin et al. (2010) reported that 4-AAQBwas synthesized based
on CoQ biosynthetic pathway, where the benzoquinone ring

Fig. 3 Biosynthetic pathway for
muconic acid (Sengupta et al.
2015a). PobA: 4-hydroxybenzoic
acid hydro-lyase; AroY:
protocatechuic acid
decarboxylase; CatA: catechol
1,2-dioxygenase

Fig. 4 Proposed biosynthetic
pathway of gastrodin (Bai et al.
2016). CAR: carboxylic acid
reductase; ADHs, alcohol
dehydrogenase; UGT73B6FS:
uridine sugar glycosyltransferase
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might be originated from shikimate pathway. The 4-HBA ad-
dition substantially improved the production of 4-AAQB. The
biosynthesis pathway of CoQ and 4-AAQB was assumed to
be closely related and 4-AAQB might be a metabolic product
of CoQ in the same pathway (Yang et al. 2017). In
Xanthomonas campestris pv. campestris (Xcc), XanB2 is a

unique bifunctional chorismatase, which is the alternative
source of 4-HBA for CoQ8 biosynthesis. When XanB2 was
deleted in Xcc, the derivative was deficient for CoQ biosyn-
thesis and 4-HBA production decreased (Zhou et al. 2013).
When the supplementation and availability of 4-HBA in
Rhodobacter sphaeroides were increased by heterologous

Fig. 5 Proposed biosynthetic pathway for xiamenmycin (Yang et al. 2014). XimA: amide synthetase; XimB: 4-hydroxybenzoate geranyl transferase;
XimC: chorismate lyase; XimD: epoxidase; XimE: SnoaL-like cyclase

Fig. 6 Biosynthesis of coenzyme
Q10 from 4-hydroxybenzoic acid.
UbiA: 4-hydroxybenzoate
polyprenyltransferase; UbiD: 4-
hydroxy-3-polyprenylbenzoate
decarboxylase; UbiE:
demethylmenaquinone
methyltransferase; UbiF: 2-
octaprenyl-3-methyl-6-methoxy-
1,4-benzoquinol hydroxylase;
UbiG: 2-polyprenyl-6-
hydroxyphenyl methylase; UbiH:
2-octaprenyl-6-methoxyphenol
hydroxylase; UbiI: 2-
octaprenylphenol hydroxylase;
UbiX: 4-hydroxy-3-
polyprenylbenzoate
decarboxylase
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expression of three membrane transport protein, the CoQ10
productivity was substantially improved by enhancing the up-
take of extracellular 4-HBA and addition of external 4-HBA,
reaching maximum of 18.06 mg/g DCW (Qi et al. 2017).

Vanillyl alcohol biosynthesis

Vanillyl alcohol is an edible spice for all kinds of food, cos-
metics, pharmaceutical, and chemicals. Until now, the leading
route for vanilly alcohol production is direct extraction from a
variety of plants; however, these methods display several
drawbacks, such as the limited supply of raw materials, strict
reaction conditions, and low productivities. Therefore, the
eco-friendlier microbial synthesis can be an attractive alterna-
tive to vanillyl alcohol production. Some reports have intro-
duced the biosynthesis of vanillin which is the precursor of
vanillyl alcohol (Brochado et al. 2010; Hansen et al. 2015). A

unique non-natural pathway for the biosynthesis of vanillyl
alcohol from 4-HBA has been illustrated in Fig. 7 utilizing
three heterologous enzymes, namely 4-hydroxybenzoate hy-
droxylase (PobA), carboxylic acid reductase (CAR), and
caffeate O-methyltransferase (COMT) (Chen et al. 2017b).
In this work, 4-HBA generated from shikimate is converted
to 3 ,4 -d ihyd roxybenzo ic ac id ca t a lyzed by 4-
hydroxybenzoa te 3-monooxygenase PobA from
Pseudomonas aeruginosa. Afterwards, the resulting product
was catalyzed by carboxylic acid reductase CAR ,
phosphopante the inyl t ransfe rase ADHs , and O-
methyltransferase COMT to produce vanillyl alcohol. For
the purpose of enhancing chorismate conversion into 4-
HBA, one chorismate lyase ubic was overexpressed, which
reveals that more 4-HBA is beneficial for producing target
products. To further increase the metabolic flux for shikimate
precursors, aroL, ppsA, tktA, and aroGfbr were overexpressed,

Fig. 7 Novel biosynthetic
pathway of vanillyl alcohol (Chen
et al. 2017b). Ubic: chorismate
lyase; PobA: 4-hydroxybenzoate
3-monooxygenase; CAR+Sfp:
carboxylic acid reductase;
COMT: caffeate O-
methyltransferase; ADHs: alcohol
dehydrogenase
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and resultantly 240.69 mg/L vanillyl alcohol was achieved via
modular optimization.

Concluding remarks and future perspectives

4-HBA is a bulk chemical due to its wide-ranging applications
for the biosynthesis of numerous value-added products with
various biological functions. Insight into 4-HBA derivatives
biosynthesis accelerated rapidly with the development of mo-
lecular biology and genetic techniques. Recently concerted
research efforts have been made in developing biotechnolog-
ical routes to produce 4-HBA derivatives, and several research
groups have reported the engineered strains for 4-HBA deriv-
atives production, making significant progress with respect to
both yields and concentrations. Further, the engineering of
novel pathways together with a mixed-substrate feeding strat-
egy might be conceived to improve the 4-HBA yield.

As shown in Fig. 8, 4-hydroxyphenyl alcohol could be
synthesized from 4-HBA, which is mainly used for the syn-
thesis of cardiovascular drugs metoprolol. There is still a wide
range of genetically and biochemically uncharacterized 4-
HBA derivatives requiring more efforts to uncover the fine-
natural products. Biotechnology has expanded the range of
compounds produced and the type of organism used as a bio-
logical chassis; more enzymes such as prenyltransferase and
glycosyltransferase will bemodified to yield 4-HBA. In recent
years, it has been witnessed to biosynthesize innumerable nat-
ural products using 4-HBA as precursors. Many programma-
ble 4-HBA oligomers can be synthesized through

regioselective reactions or 4-HBA tetramers which can be
synthesized via a stereo convergent radical equilibrium like
resveratrol.
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