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Abstract
Oleaginous microorganisms are able to convert numerous agro-industrial and municipal wastes into storage lipids (single cell oil
(SCO)) and are therefore considered as potential biofuel producers.While from an environmental and technological point of view
the idea to convert waste materials into fuels is very attractive, the production cost of SCO is not currently competitive to that of
conventional oils due to the low productivity of oleaginous microorganisms in combination with the high fermentation cost.
Current strategies used to optimize the lipid-accumulating capacity of oleaginous microorganisms include the overexpression of
genes encoding for key enzymes implicated in fatty acid and triacylglycerol synthesis, such as ATP-dependent citrate lyase,
acetyl-CoA carboxylase, malic enzyme, proteins of the fatty acid synthase complex, glycerol 3-phosphate dehydrogenase and
various acyltransferases, and/or the inactivation of genes encoding for enzymes implicated in storage lipid catabolism, such as
lipases and acyl-CoA oxidases. Furthermore, blocking, even partially, pathways competitive to lipid biosynthesis (e.g., those
involved in the accumulation of storage polysaccharide or organic acid and polyol excretion) can also increase lipid-accumulating
ability in oleaginous microorganisms. Methodologies, such as adaptive laboratory evolution, can be included in existing
workflows for the generation of strains with improved lipid accumulation capacity. In our opinion, efforts should be focused
in the construction of strains with high carbon uptake rates and a reprogrammed coordination of the individual parts of the
oleaginous machinery that maximizes carbon flux towards lipogenesis.
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Introduction

Oleaginous eukaryotic microorganisms (i.e., fungi, yeasts,
and microalgae) and some species of autotrophic and hetero-
trophic bacteria are on the forefront of the biotechnological
research thanks to their ability to accumulate oil (triacylglyc-
erols (TAGs)), so-called single cell oil (SCO), thus the poten-
tial to be used as feedstock in the biodiesel manufacture (Li
et al. 2008; Meng et al. 2009; Papanikolaou and Aggelis

2011a, b; Röttig et al. 2016). Although the first works on
oleaginous microorganisms date back to the 1960s, the largest
volume of research has been published in the last 10 years. At
this period of time, numerous research projects have been
funded in many countries, especially in China, which proba-
bly has the world’s highest energy demand.

Numerous agro-industrial by-products of low acquisition
cost have been considered as substrates for SCO production
from heterotrophic oleaginousmicroorganisms (Papanikolaou
and Aggelis 2011b; Qin et al. 2017). For instance, raw glyc-
erol produced during biodiesel production process is a very
popular substrate due to its high availability and relational
origin, while its conversion into biodiesel may increase pro-
ductivity and minimize waste production of the biodiesel
manufacture (Fig. 1) (Easterling et al. 2009; Ibrahim and
Steinbüchel 2009; Papanikolaou and Aggelis 2009; Makri
et al. 2010; Chatzifragkou et al. 2011; Nicol et al. 2012;
Bommareddy et al. 2015; Moustogianni et al. 2015;
Dobrowolski et al. 2016; Gajdoš et al. 2017; de Paula et al.
2017). Despite the low acquisition cost of the rawmaterial, the
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production cost of SCO is very high because of the low pro-
ductivity of oleaginous microorganisms, and/or the high fer-
mentation cost, principally the cost of fixed facilities such as
high-tech bioreactors (Koutinas et al. 2014). Use of oleagi-
nous microalgae can alleviate high fermentation costs, since
microalgae can be cultivated in open ponds or natural lakes
under non-aseptic conditions using carbon dioxide as sub-
strate (Krienitz and Wirth 2006; Spolaore et al. 2006;
Ratledge and Cohen 2008; Priyadarshani and Rath 2012;
Bellou et al. 2014a, 2016a). However, in this case, the biomass
harvesting cost is very high due to the low cell density re-
quired for autotrophic growth that usually does not exceed
400–600 mg/l. High cell densities can be obtained under au-
totrophic and (mainly) mixotrophic growth conditions in
high-tech photo-bioreactors (Ratledge and Cohen 2008;
Davis et al. 2011; Sun et al. 2011), but such processes can
be cost-limiting. Alternatively, SCO can be effectively pro-
duced in a bio-refinery concept, in combination with other
biotechnological applications, especially those concerned
with the treatment of specific agro-industrial wastes or by-
products. These wastes or renewable-type compounds include
but are not limited to orange peels (Gema et al. 2002), pear
pomace (Fakas et al. 2009), sweet sorghum (Economou et al.
2010; Matsakas et al. 2014), olive mill wastewaters, potential-
ly enriched in low-cost carbon sources (i.e., glucose syrups,
glycerol, etc.) (Sarris et al. 2011; Bellou et al. 2014b; Dourou
et al. 2016; Arous et al. 2017a; Sarris et al. 2017), second
cheese whey (Vamvakaki et al. 2010; Tsolcha et al. 2015), rice
hulls (Economou et al. 2011), lignocellulosic sugars and/or
hydrolysates (Ruan et al. 2013, 2014; Gardeli et al. 2017),
cereals (Čertík et al. 2013), hydrolysates of side streams from
wheat milling and confectionery industries (Tsakona et al.
2014, 2016; Arous et al. 2017a).

Research on oleaginous microorganisms is currently fo-
cused on the optimization of lipogenic machineries through

genetic manipulation of essential enzymes involved in lipid
metabolism, as well as of fermentation processes leading to
efficient conversion of the various carbon substrates into
SCO. Genetic manipulations, involving more than 20 genes,
have targeted the upregulation of lipid biosynthetic pathways
(i.e., biosynthesis of the building blocks of TAGs and TAG as-
sembly) and the downregulation of enzymes involved in lipid
degradation. However, such efforts in SCO production have yet
to lead to pilot-scale level projects for production of SCO suitable
as biodiesel feedstock. The only large-scale applications existing
at the present time are those concerned with the production of
SCO-containing polyunsaturated fatty acids (PUFAs) in high
concentrations (Ratledge 2013; Bellou et al. 2014a, 2016a).
Other uncommon lipid production by oleaginous species may
be considered for large-scale applications in the future
(Papanikolaou and Aggelis 2010; Fillet et al. 2017; Zhu et al.
2017; Wu et al. 2017).

In the current review article, we describe essential biochemi-
cal processes that occur during the life cycle of oleaginous mi-
croorganisms with emphasis on recently discovered biochemical
properties of oleaginous microorganisms affecting lipogenesis.
We then discuss current approaches for the optimization of the
lipid-accumulating capacity of oleaginous microorganisms.

Biochemical events during the life cycle
of oleaginous microorganisms: fundamentals
and recent findings

The life cycle of oleaginous microorganisms growing in high
C/N ratio media, where the carbon source is glucose and sim-
ilarly metabolized substrates, is characterized by three distinct
physiological phases, namely the balanced growth phase, the
oleaginous phase, and the reserve lipid turnover phase.

During the balanced growth phase, in which all nutrients are
found in excess in the growth environment, the oleaginous mi-
croorganisms convert the carbon source into cell mass, rich in
proteins and polysaccharides, while restricted quantities of lipids,
mainly polar lipids such as phospholipids and glycolipids that are
essential for the construction of cell membranes, are synthesized
(Dourou et al. 2017). Glucose and similar substrates are metab-
olized via either the Embden-Meyerhof-Parnas (EMP) glycolytic
pathway or the pentose phosphate pathway (PPP), which act
competitively to each other due to their common substrate
(Fig. 2). Both of these pathways, as well as the Krebs cycle,
generate biosynthetic precursors and nucleotides involved in
the production of energy (i.e., NADH from EMP pathway) or
in the production of reducing power (i.e., NADPH from PPP)
that are essential for the biosynthesis of various macromolecules.
Phosphofructokinase (PFK) is an EMP key enzyme that cata-
lyzes the phosphorylation of fructose-6-phosphate to fructose-
1,6-bisphosphate. PFK activity, controlled by the cellular energy

Fig. 1 Conceptual diagram showing the conversion of raw glycerol,
produced during biodiesel manufacture, into TAGs that can be further
converted into biodiesel
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quotient and various catabolic products, regulates carbon flux
towards either the EMP pathway or the PPP.

Following the balanced growth phase, de novo lipid accu-
mulation occurs during the oleaginous phase. Carbon excess
and depletion of at least one essential nutrient, usually nitro-
gen (but also sulfate, phosphate, or magnesium), in the growth
medium are required to trigger the onset of the oleaginous
phase (Papanikolaou and Aggelis 2011a; Kolouchová et al.
2016; Bellou et al. 2016b; Shen et al. 2017). Under nitrogen
starvation conditions, cell proliferation is interrupted but ole-
aginous cells continue to assimilate the carbon source produc-
ing storage lipids, mainly TAGs. High uptake rate of the car-
bon source results in increased C/N ratio in yeast cells, which
is a major factor correlated to lipogenesis. Recently, a
Yarrowia lipolytica strain with enhanced lipid body (LB) for-
mation and content was constructed with deletion of theMIG1
gene, which encodes for a major repressor of the glucose
catabolism (Wang et al. 2013). Likewise, boosting glucose
catabolism through glycolysis (e.g., overexpressing the
ylHXK1 gene encoding for hexokinase) also improves lipid

yield in the same yeast (Lazar et al. 2014). Moreover, specific
peptides, such as tomato peptides, directly affect carbon up-
take rate resulting in enhanced lipid accumulation in
Cunninghamella echinulata (Fakas et al. 2008). Lipogenic
ability also depends on the type of the available nitrogen
source (e.g., ammonium sulfate, yeast extract, or more com-
plex organic sources). Nitrogen availability depends on the
ability of the microorganism to release NH4

+, which affects
the C/N ratio in the cytoplasm (Bellou et al. 2016b).

At the pathway level, nitrogen exhaustion in the culture
medium leads to a rapid decrease of intracellular AMP, which
is temporarily used as source of NH4

+. AMP depletion results
in inhibition of the mitochondrial NAD+-dependent isocitrate
dehydrogenase (NAD+-ICDH), enzyme allosterically activat-
ed by AMP (Ratledge and Wynn 2002). ICDH inhibition is
critical in signaling the onset of lipogenesis (Papanikolaou
et al. 2004b; Arous et al. 2016), since the disturbance of the
Krebs cycle at this step induces an intra-mitochondrial accu-
mulation of citric acid that is then excreted to the cytoplasm in
exchange with malate. In the cytoplasm, citric acid is

Fig. 2 A simplified overview of central metabolism pathways in
oleaginous microorganisms with emphasis to FA and TAG biosynthesis
and degradation. Competitive pathways are also depicted. Manipulated
genes are shown in red (modified by Dourou et al. 2017). Abbreviations:
(i) enzymes: ACC, acetyl-CoA carboxylase; ACL, ATP-citrate lyase;
ACS, acetyl-CoA synthetase; ALDO, aldolase; DGAΤ, diacylglycerol
acyltransferase; FAS, fatty acid synthase; FBP, fructose-1,6
biphosphatase; GPAT, glycerol-3-phosphate acyltransferase; GPD and
GUT, isoforms of G3P dehydrogenase; GS, glycogen synthase; HK,
hexokinase; ICDH, NAD+ dependent isocitrate dehydrogenase;
LPAAT, lyso-phosphatidic acid acyltransferase; ME, malic enzyme;

MFE, b-oxidation multifunctional enzyme; PAP, phosphatidate
phosphatase; PC, pyruvate carboxylase; PD, pyruvate dehydrogenase;
PEX, peroxisomal protein; PFK, phosphofructokinase; PGI, glucose-6-
phosphate isomerase; PGM, phosphoglucomutase; PK, pyruvate kinase;
POX, acyl-CoA oxidases; TALDO, transaldolase; TKT, transketolase;
UDPG, UDP-glucose pyrophosphorylase; (ii) intermediate metabolites/
substrates: DAG, diacylglycerol; DHAP, dihydroxyacetone phosphate;
G3P, glycerol-3-phosphate; Glc, glucose; LPA, lysophopshatidic acid;
OAA, oxaloacetate; PA, phosphatidic acid; PEP, phosphoenolpyruvate;
PL, phospholipids; PYR, pyruvate; TAG, triacylglycerols
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cleaved to acetyl-CoA and oxaloacetate by the ATP-
dependent citrate lyase (ACL), a key lipogenic enzyme. A
similar mechanism is used by the ascomycetous yeast
Debaryomyces etchellsii for acetyl-CoA synthesis in asci
and free ascospores (Arous et al. 2016). Posttranscriptional
regulations of the abovementioned key lipogenic enzymes
occur in Y. lipolytica and probably in other oleaginous micro-
organisms. Specifically, transcription of the genes ACL1 and
ACL2 (both encoding for ACL) and ICDH is observed under
both oleaginous and non-oleaginous conditions, but lipid ac-
cumulation occurs only when low or zero ICDH activity and
high ACL activity are detected in the cytoplasm (cell-free
extract) (Bellou et al. 2016b).

Below a critical ACL activity, citrate is excreted in the
growth environment (as in the case of citric acid producing
microorganisms) or, alternatively, accumulated in the cyto-
plasm inhibiting glycolysis at the level of PFK. In the latter
case, phosphorylated sugars (i.e., glucose-6P) are accumulat-
ed in the cytoplasm and used as building blocks in polysac-
charide biosynthesis (Tchakouteu et al. 2015a, b; Dourou et al.
2017; Gardeli et al. 2017). Recent research has shown that
even in oleaginous microorganism polysaccharides are pro-
duced inside the cells (Shen et al. 2017), especially during
the first growth steps, and are converted under certain condi-
tions into TAGs during the oleaginous phase (Bellou and
Aggelis 2012; Tchakouteu et al. 2015a; Dourou et al. 2017;
Gardeli et al. 2017). Also, citric acid is commonly excreted in
the growth environment of oleaginous microorganisms during
lipogenesis (Dourou et al. 2017). These data suggest a defi-
cient coordination between citric acid production and lipid
biosynthesis leading to citric acid accumulation in the cyto-
plasm, which may further induce carbon outflow towards met-
abolic pathways competitive to lipogenesis. Furthermore, dur-
ing growth on glucose or similarly catabolized compounds,
low molecular weight metabolites, such as acetic acid, man-
nitol, and erythritol, may be excreted into the growth medium
as a microbial response to the nitrogen limitation, instead of
storage lipid accumulation that commonly occurs. Excretion
of such metabolites has been recorded in Y. lipolytica strains
and to a lesser extent in Rhodotorula glutinis (Papanikolaou
et al. 2008, 2009, 2017a, b; Makri et al. 2010; Chatzifragkou
et al. 2011; Karamerou et al. 2017).

The acetyl-CoA produced from citric acid is converted into
long-chain acyl-CoA by a multienzyme protein, the FA syn-
thase (FAS) with the expense of enormous quantities of reduc-
ing power (i.e., NADPH). In bacteria and microalgae, as well
as in non-oleaginous eukaryotic microorganisms, such as
Saccharomyces cerevisiae, acetic acid is the precursor of
acetyl-CoA in the cytosol instead of citric acid. In species of
Rhodococcus, and probably in other oleaginous bacteria,
NADPH is provided by the PPP (Spaans et al. 2015). In typ-
ical oleaginous eukaryotes, NADPH is provided by the malic
enzyme (ME) reaction (i.e., the conversion of malate into

pyruvate), which takes place under non-growth conditions
(Bellou et al. 2016b). In Y. lipolytica, a non-conventional yeast
and model oleaginous eukaryotic organism, and other oleagi-
nous species lacking cytoplasmicME activity, PPP is the main
donor of reducing power, instead of the ME reaction
(Ratledge 2014; Dulermo et al. 2015; Wasylenko et al.
2015). Even in Rhodosporidium toruloides, which possesses
cytoplasmic ME activity, PPP contributes by more than 60%
to NADPH production (Bommareddy et al. 2015). In
Y. lipolytica, small quantities of organic nitrogen ensuring
growth conditions, thus active PPP, are required for lipid ac-
cumulation (Bellou et al. 2016b). This yeast is able to accu-
mulate more than 40% lipid in the dry cell mass, growing in
continuous culture (Papanikolaou and Aggelis 2002), while
low lipid accumulation occurs in batch culture under non-
growth conditions (Makri et al. 2010). In autotrophically
growing oleaginous microalgae, although ME activity is de-
tected (Bellou and Aggelis 2012; Bellou et al. 2014a), the
main donor of reducing power seems to be the ferredoxin
NADP reductase of photosystem I.

The long-chain acyl-CoA synthesized in the cytoplasm is
transported to the endoplasmic reticulum (ER) and esterified
with glycerol-3P (G3P), generating structural (phospholipids,
glycolipids) and storage (TAGs) lipids. PUFAs are synthe-
sized by the action of ER-localized desaturases and elongases.
Generally, lipids produced by fungi and microalgae are more
unsaturated than those of yeasts, containing PUFAs of medic-
inal interest such as γ-linolenic acid (GLA), dihomo-γ-
l inolenic ac id (DGLA), a rachidonic ac id (AA),
docosahexaenoic acid (DHA), and eicosapentanoic acid
(EPA). Bacteria usually synthesize specialized lipids, such as
poly(3-hydroxybutyrate) and other polyhydroxyalkanoates
(PHAs) (Steinbüchel 1991; Steinbüchel and Valentin 1995),
while TAGs are not commonly utilized as storage material.
Exceptions are members of the actinomycetes group, such as
Mycobacterium, Streptomyces, Nocardia, and Rhodococcus
species and cyanobacteria, such as Nostoc species, which are
able to accumulate substantial amounts of TAGs (Alvarez
et al. 1996; Alvarez et al. 2000; Alvarez and Steinbüchel
2002; Janßen et al. 2013). The mechanism of fatty acid (FA)
biosynthesis is strongly conserved between bacteria and eu-
karyotes, while the archaea synthesize isoprenoid-derived
lipids. The FAs synthesized by bacteria are similar to those
synthesized by eukaryotes, except that the bacterial FAs are
generally shorter and lack polyunsaturation, while the mono-
unsaturated FAs of the C18 group have different double-bond
positions. Also, some bacteria are able to synthesize branched
chain FAs (Cronan and Thomas 2009).

Besides TAGs, sterol esters (SEs) also participate into LB
structures, serving as an intracellular pool of sterols. Sterols
are essential components of the membranes of all eukaryotic
organisms controlling membrane fluidity and permeability.
The biosynthetic precursor of sterols is squalene, which is
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converted to lanosterol in fungal cells (Mercer 1984).
Subsequently, lanosterol is converted to ergosterol via a se-
quence of reactions which may differ among eukaryotes
(Barrero et al. 2002). Ergosterol is the major sterol in ascomy-
cetes and basidiomycetes, while some green algae also contain
large quantities of ergosterol (Mejanelle et al. 2000; Patterson
1969). Zygomycetes produce ergosterol as a major sterol ac-
companied by dihydro-ergosterol (Ratledge and Wilkinson
1988). Besides ergosterol, the presence of other sterols, such
as ergosta-5,7,9(11) 22-tetraen-3β-ol, ergosta-7,22-dien-3β-
ol, ergosta-7,22,24(28)-trien-3β-ol, and episterol, was con-
firmed in C. echinulata ATHUM 4411 (Fakas et al. 2006).

After the exhaustion of the extracellular carbon source, or due
to low uptake rate, the oleaginous microorganisms utilize their
own storage lipids as energy source for maintenance purposes or
as intracellular carbon source for the production of new lipid-free
material, provided that essential nutrients are available in the
growth medium (Aggelis et al. 1995; Alvarez et al. 1996,
2000; Makri et al. 2010; Papanikolaou and Aggelis 2011a;
Janßen and Steinbüchel 2014; Dourou et al. 2017). Y. lipolytica
cultivated on less preferred carbon sources, such as saturated fats,
degrades its own storage lipids (Papanikolaou and Aggelis
2003). Cellular lipid degradation in Y. lipolytica also occurs
when cultivated on glycerol (Makri et al. 2010; Bellou et al.
2016b) and in oleaginous fungi like Aspergillus niger,
C. echinulata, and Umbelopsis (Mortierella) isabellina cultivat-
ed on glucose, glycerol, and other sugar-based media
(Papanikolaou et al. 2004a; André et al. 2010; Vamvakaki
et al. 2010), due to the low uptake rate of the carbon source.
However, the addition of carbon source in the growth medium
during lipid turnover may suppress, partially at least, lipid deg-
radation (Bellou et al. 2016b). In the case of microalgae, lipid
turnover may occur in opaque cultures or under CO2 starvation
conditions (Bellou and Aggelis 2012). TAG lipases and steryl-
esters hydrolases are involved in lipid degradation, while the
released FAs in their activated form are catabolized via β-
oxidation process towards acetyl-CoA, which is further catabo-
lized via glyoxylate shunt. Besides its role in energy production
through acyl-CoA catabolism,β-oxidation process may serve as
a pathway for FA shortening, thus lipid remodeling. In fact, high
activities of acyl-CoA oxidases (ACOXs), peroxisomal enzymes
that participate in the oxidation of acyl-CoA to enoyl-CoA, have
been detected during lipid accumulation in Y. lipolytica and
U. isabellina (Dourou et al. 2017).

Strengthening lipogenesis in oleaginous
microorganisms

The SCO production cost is critically affected by the produc-
tivity of oleaginousmicroorganisms, especially by their ability
to accumulate lipids (Davis et al. 2011; Koutinas et al. 2014).
The specific growth rate and the total cell mass produced per

unit of culture volume also considerably affect lipid produc-
tion cost, but to a lesser extent than the lipid content. In any
case, in high cell density cultures, it is very difficult to retain
oleaginous microorganisms in a productive state, since under
these conditions dissolved oxygen becomes a limiting factor
downregulating lipid biosynthesis (Bellou et al. 2014c).
Similarly, in microalgae high cell density cultures, both CO2

and light are shown to be limiting factors.
Several researchers investigated the possibility of oleaginous

microorganisms to secrete their own lipids into the culture me-
dium, overcoming limitations associated with cell mass (Liu
et al. 2011; Ledesma-Amaro et al. 2016). However, despite the
fact that many yeast strains are able to secrete amphiphilic mol-
ecules (e.g., Stodola et al. 1967), very few quantities of glycer-
ides are detected extracellularly. According to our own experi-
ence, glycerides are found in the growth environmentmostly as a
result of cell lysis rather than of active transport from the cyto-
plasm to the extracellular environment.

Approaches for increasing TAG accumulation in oleagi-
nous microorganisms include the upregulation of key en-
zymes involved in (a) the biosynthesis of building groups used
for TAG assembly (i.e., acyl-CoA and G3P) and (b) TAG
assembly.

Biosynthesis of building groups used for TAG
assembly

Acetyl-CoA is the biosynthetic precursor of acyl-CoA. In eu-
karyotic oleaginous microorganisms, acetyl-CoA is produced
from citrate through the ACL reaction carried out in the cyto-
plasm (see above). Although it has been proposed that this reac-
tion is not the limiting step in lipogenesis, overexpression of the
ACL genes increases lipid accumulation in A. oryzae (Tamano
et al. 2013) and in Y. lipolytica (Blazeck et al. 2014; Zhang et al.
2014).

The first committing step in the acyl-CoA synthesis is the
conversion of acetyl-CoA into malonyl-CoA, a reaction cata-
lyzed by the acetyl-CoA carboxylase (ACC) and with central
role in carbon metabolism. It takes place in the cytosol of hetero-
trophic or both in the cytosol and plastid of autotrophic microor-
ganisms (Bellou et al. 2014a). Overexpression of ACC1 in ole-
aginous yeasts, such as Y. lipolytica and R. toruloides, signifi-
cantly increased lipid content (Tai and Stephanopoulos 2013;
Zhang et al. 2016).

S. cerevisiae, although a non-oleaginous yeast, is frequent-
ly used for studying lipid metabolism (Fakas 2017). This yeast
possesses both cytosolic and mitochondrial ACC, encoded by
the ACC1 and HFA1 genes, respectively. Manipulating ACC
at the posttranslational level resulted in increased activity and
thereby improved flux through malonyl-CoA-dependent met-
abolic pathways for the production of chemicals including FA
ethyl esters (FAEEs) (Shi et al. 2014). Combined overexpres-
sion of ACC1 from Lipomyces starkeyi and GPD1, encoding
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for glycerol 3-phosphate dehydrogenase (GPDH) (see below),
resulted in 63% increase in lipid content in S. cerevisiae (Wang
et al. 2016). Recently, Besada-Lombana et al. (2017) engineered
a constitutively active ACC in S. cerevisiae by replacing the
serine residue 1157 with alanine, so as to prevent deactivation
by phosphorylation. Expression of ACC1S1157A resulted in
an increase in total FA production, especially in oleic
acid. However, increasing ACC1 expression has not al-
ways had the desirable outcome in FA synthesis, as is
the case in A. oryzae (Tamano et al. 2013) and in
Cyclotella cryptica and Navicula saprophila (Dunahay
et al. 1996; Mühlroth et al. 2013).

Following malonyl-CoA production, FAS catalyzes the
elongation of the carbon chain consuming huge quantities of
NADPH (i.e., 2 NADPH molecules per C2-unit elongation).
NADPH is provided by the ME located in the cytosol or via
the PPP. Wynn et al. (1999) suggested that the ME activity
plays a crucial role in determining the extent of lipid accumu-
lation in filamentous fungi. Often, overexpression of the ME
is a target of genetic engineering for enhanced lipid accumu-
lation. Indeed, overexpression of this gene in R. glutinis (Li
et al. 2013) and in heterotrophically growing Phaeodactylum
tricornutum (Xue et al. 2015) significantly improved lipid
accumulation. However, overexpression of the malA gene
(encoding for isoforms III/IV of ME), although it resulted in
higher transcript levels and ME activity, was inconsequential
for growth or lipid content in Mucor circinelloides (Zhang
et al. 2007; Rodríguez-Frómeta et al. 2013), which probably
means that either the ME reaction is not the rate-limiting step
or that NADPH is supplied by another reaction. In
Y. lipolytica, overexpression of ME did not significantly affect
lipid content (Beopoulos et al. 2009; Beopoulos et al. 2011;
Zhang et al. 2013). Y. lipolytica, similarly to L. starkeyi, is
suggested to only have mitochondrial ME activity that does
not participate in the process of lipid accumulation (Tang et al.
2010; Ratledge 2014). In Y. lipolytica, the PPP is the NADPH
source (Ratledge 2014; Yang et al. 2014; Dulermo et al. 2015;
Wasylenko et al. 2015). In the fungal pathogen Ustilago
maydis, the activity ofMEwas lower than that of the cytosolic
NADP+-ICDH, the glucose-6-phosphate dehydrogenase
(G6PD) and the 6-phosphogluconate dehydrogenase
(6PGD), indicating that theME reaction is not the main source
for NADPH (Aguilar et al. 2017). Recently, Safdar et al.
(2017) reported that in Crypthecodinium cohnii, a heterotro-
phic dinofagellate, the G6PD contributes more to NADPH
production than the ME. In other cases, both PPP and ME
reaction play essential roles in metabolism, as independent
knockouts of 6PGD and ME in Synechocystis sp. resulted in
mutants that could not grow under dark heterotrophic condi-
tions (Wan et al. 2017). Therefore, we can conclude that, de-
spite an initial assessment about the unique role of ME reac-
tion in lipogenesis, PPP seems to be an important source of
reducing power for many oleaginous microorganisms.

In yeasts and fungi, FAs are biosynthesized by a type I
FAS, which is a large multifunctional protein that contains
all of the required catalytic sites within domains of two poly-
peptides. In the algal chloroplast, as well as in bacteria, a type
II FAS is found, which is a group of independently acting
enzymes that catalytically elongate a growing FA by two car-
bon units in an iterative pathway (Cronan and Thomas 2009;
Blatti et al. 2013; Bellou et al. 2016a). Upregulation of the
acyl-carrier protein (ACP) or the 3-ketoacyl- ACP synthase
(both essential proteins of FAS) together with overexpression
of the fatty acyl-ACP thioesterase (which catalyzes the hydro-
lysis of acyl-ACP complex), in Haematococcus pluvialis im-
proved FA synthesis (Lei et al. 2012). Moreover, overexpres-
sion of FAS1 and FAS2 (encoding for FAS) along with ACC1,
in S. cerevisiae, resulted in a significant improvement of lipid
production over the wild-type (Runguphan and Keasling
2014).

The synthesis of PUFAs requires the presence of specific
elongases and desaturases, which act primarily on
phospholipid-bound FAs (see below). The implication of
these enzymes in the biosynthesis of PUFAs has been exten-
sively reviewed in heterotrophic microorganisms and in
microalgae (Bellou et al. 2014a, b, c, 2016a). Microsomal
membrane-bound ME is also implicated in PUFA biosynthe-
sis through NADPH production, which is required for FA
desaturation (Kendrick and Ratledge 1992). For instance, in
M. circinelloides, increased ME activity led to an increase in
both lipid content and GLA biosynthesis (Zhang et al. 2007).
Palmitic and stearic acids are successively desaturated and
elongated into the ER in yeasts and fungi or both in the ER
and plastids in algae. In the last decade, genetic engineering
has resulted in the construction of improved yeast strains
(mainly Y. lipolytica, but also S. cerevisiae) and microalgae.
Such research focuses on the construction of strains able to
express various desaturases (e.g., D5-, D6-, D8-desaturate),
elongases and acyl-transferases, and to synthesize TAGs rich
in PUFAs . In par t i cu la r, p roduc t ion of DGLA,
eicosatetraenoic acid, and EPA was achieved in S. cerevisiae
(Li et al. 2011; Tavares et al. 2011), while GLA, EPA, and
DHA have been successfully produced after overexpression
of related genes from M. alpina and Thraustochytrium
aureum in Y. lipolytica (Chuang et al. 2010; Damude et al.
2014; Xie et al. 2015). Improvement of PUFA content in
microalgae after genetic engineering has also been reported
(Hamilton et al. 2014; Peng et al. 2014).

Glycerol-3-phosphate (G3P) is the second component of
TAG molecules and therefore has been hypothesized that its
availability affects TAG biosynthesis. Dulermo and Nicaud
(2011) showed that overexpression of GPD1 (encoding for a
G3P dehydrogenase that is involved in G3P synthesis from
DHAP) in Y. lipolytica and/or inactivation ofGUT2 (encoding
for a different G3P dehydrogenase, which converts G3P to
DHAP) result in increased G3P concentration, leading to high
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TAG accumulation. In the model microalga Chlamydomonas
reinhardtii, among the five GPD-encoding genes, GPD2 and
GPD3were shown to be induced by nutrient starvation and/or
salt stress. Surprisingly, overexpression of GPD2 had no sig-
nificant impact on growth, whileGPD3 overexpression result-
ed in growth inhibition and changes in lipid composition. This
suggests the existence of a downstream regulation on
glycerolipid metabolism pathway, and thus, engineering of
lipid metabolism via GPD modification may also affect these
additional downstream effectors (Driver et al. 2017).

TAG assembly

Acyl-CoA is elongated up to 16 or 18 carbon atoms and then
moved to the ER and esterified in the glycerol backbone via
the Kennedy pathway, in which various acyltransferases are
involved. In the first step of TAG assembly, acylation of G3P
by the G-3-P acyltranferase (GAT) to yield 1-acyl-G-3-P
(lysophospatidic acid (LPA)) is conducted. The LPA is then
acylated by lysophosphatidic acid acyltransferase (also named
1-acyl-G-3-P acyltransferase-AGAT) to yield phosphatidic ac-
id (PA), the key intermediate of all glycerophospholipids and
TAGs. PA is subsequently dephosphorylated by the PA phos-
phatase (PAP) to release diacylglycerol (DAG) (Carman and
Han 2009). PA dephosphorylation has been considered as the
committing step in TAG biosynthesis (Pascual and Carman
2013; Park et al. 2015; Fakas 2017; Hardman et al. 2017).

In the final step of the Kennedy pathway, the DAG is ac-
ylated either by diacylglycerol acyltransferase (DGAT) or
phospholipid diacylglycerol acyltransferase to produce
TAGs. Overexpression of both DGA1 and FAA3 (encoding
for an acyl-CoA synthetase) in S. cerevisiae restores and/or
increases lipid biosynthesis (Kamisaka et al. 2013; Greer et al.
2015). Furthermore, overexpression of DGA1 and DGA2 in
Y. lipolytica significantly increases lipid yield and productivity
(Tai and Stephanopoulos 2013; Blazeck et al. 2014; Gajdoš
et al. 2015; Friedlander et al. 2016), while this upregulation is
also beneficial for lipid accumulation in R. toruloides (Zhang
et al. 2016). The combination of three genetic modifications in
Y. lipolytica, i.e., overexpression of DGA1 from R. toruloides
and ofDGA2 from Claviceps purpurea along with deletion of
the TGL3 lipase regulator, significantly increases lipid content
(Friedlander et al. 2016). In addition, double overexpression
of ylDGA2 (encoding for DGAT) and ylGPD1 (encoding for
glycerol-phosphate dehydrogenase) genes in a peroxidase and
lipase deficient strain of Y. lipolytica resulted in increased
TAG biosynthesis (Sagnak et al. 2018). Concerning the pho-
tosynthetic microorganisms, overexpression of a DGA in the
diatom Phaeodactylum tricornutum increased neutral lipid
content by 35%, as well as PUFA content (Niu et al. 2013),
but did not affect either TAGs biosynthesis or lipid profile in
C. reinhardtii (La Russa et al. 2012).

In S. cerevisiae, the genes ARE1 and ARE2, encoding for
acyl-CoA:cholesterol acyltransferase-related enzymes, are im-
plicated in SEs biosynthesis (Yang et al. 1996; Yu et al. 1996).
Disruption ofARE1 had nearly no effect on the biosynthesis of
SE, whereas deletion of ARE2 reduced the SE level to approx-
imately 25% of wild type (Yang et al. 1996). Deletion of both
genes resulted in the total lack of SE, demonstrating that
Are1p and Are2p are the only sterolesterifying enzymes in
yeast. Jensen-Pergakes et al. (2001) reported that the role of
Are2p is to esterify ergosterol, while the role of Are1p is to
esterify sterol intermediates.

After their synthesis in the ER, TAGs and SEs are moved to
the cytoplasm forming, in association with phospholipids and
proteins, LBs. The size and morphology, as well as the num-
ber of LBs per cell, vary considerably among genera and even
among closely related species (Arous et al. 2017b). In
R. toruloides, the LB proteome consists of 226 proteins, many
of which are involved in lipid metabolism and LB formation
and progress. R. toruloides LDP1 overexpression in
S. cerevisiae, encoding for a major LB structural protein, fa-
cilitates giant LB formation, suggesting that this protein plays
an important role in the regulation of LB dynamics (Zhu et al.
2015). In Y. lipolytica, overexpression of specific DGATs af-
fects, besides lipid accumulation, LB formation. Specifically,
overexpression of YlDGA2 (located in a structure strongly
resembling the ER) induces the formation of large LBs, while
smaller but more numerous LBs are produced when YlDGA1
(located in LBs) is overexpressed (Gajdoš et al. 2016).
Simultaneous deletion of DGA1, LRO1, ARE1, and ARE2
genes in S. cerevisiae completely abolishes LB formation,
while typical LB proteins were restricted to the ER in the
mutant strain (Sorger et al. 2004). In the oleaginous bacterium,
Rhodococcus jostii LBs bind to genomic DNA through
MLDS (a major LB protein in bacteria), resulting in increased
survival rate of the cells under nutritional and genotoxic stress.
That indicates that bacterial LBs participate in genome regu-
lation and facilitate bacterial survival under adverse conditions
(Zhang et al. 2017).

Direct synthesis of biodiesel by bacteria

The biodiesel production process includes the conversion of
FAs esterified with glycerol (forming glycerides, mostly
TAGs), into FA methyl (or ethyl) esters, and is an energy-
dependent process. Kalscheuer et al. (2006) proposed the di-
rect synthesis of biodiesel (FA ethyl esters) by Escherichia
coli, avoiding TAG production followed by transesterification
with methanol or ethanol. This was achieved in recombinant
E. coli by co-expression of the ethanol production genes from
the ethanol-producing fermentative bacterium Zymomonas
mobilis and the atfA gene (encoding wax ester synthase/
acyl-coenzyme A:diacylglycerol acyltransferase) from a strain
of Acinetobacter baylyi. Similar approaches have been used
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by Nawabi et al. (2011) and Sherkhanov et al. (2016) for FA
methyl ester production in E. coli. Although the microbial
production of FA methyl-/ethyl-esters can lead to a suitable
technology, it seems that the current yields are not high
enough to permit the transfer of this technology to pilot scale.

Repression of storage lipid turnover

Repression of storage lipid catabolism is a strategy to increase
lipid content in oleaginous microorganisms and may be
approached through inactivation of genes encoding for enzymes
involved in FA release from lipid structures (i.e., TAGs and SEs)
and/or for enzymes involved inβ-oxidation pathway. Deletion of
the ylTGL4 gene, encoding for a lipase attached to the LBs,
resulted in an increase in lipid accumulation (Sagnak et al.
2018). In Y. lipolytica, inactivation of POX1-6 genes, encoding
for six different acyl-CoA oxidases, which participate in the first
reaction of β-oxidation pathway (Mlíčková et al. 2004;
Beopoulos et al. 2008; Dulermo and Nicaud 2011), and/or of
MFE1 gene, encoding for an enzyme catalyzing the second step
of the β-oxidation pathway (Gajdoš et al. 2015), significantly
increased lipid content. Deletion of ylSNF1, encoding for SNF1
protein kinase (Seip et al. 2013), also enhances lipid content.
Likewise, effective repression of FA oxidation may be achieved
through the disturbance of peroxisome biogenesis via PEX10
deletion (Xue et al. 2013).

In a Pseudomonas putida strain that synthesized medium-
chain-length PHAs, interruption of the phaZ gene encoding
for a PHA depolymerase resulted in significantly enhanced
biopolymer titer, while high production of citrate was also
observed (Poblete-Castro et al. 2014).

Blocking competitive to lipid biosynthesis
pathways

An alternative approach towards increasing SCO production
involves the manipulation of pathways that energetically com-
pete or directly counteract SCO production. The accumulation
of macromolecules rich in energy, such as polysaccharides or
PHAs, and/or the secretion of low molecular weight metabo-
lites (e.g., citric acid, polyols) occur in the expense of energy
that could be channeled towards SCO production. The bio-
synthesis of these compounds is obviously competitive to the
SCO production, and thus, the partial blocking of these path-
ways could increase lipid accumulating ability in oleaginous
microorganisms.

Lipid vs polysaccharide/PHA accumulation

Although organisms, both unicellular and multicellular ones, are
specialized in accumulating specific forms of chemical energy
(i.e., TAGs or polysaccharides or PHAs), it has been shown that

they do not store all their energy in a single macromolecule.
Several oleaginous and non-oleaginous microorganisms are able
to accumulate, in addition to lipids, other energy-containing com-
pounds. In particular, several oleaginous yeasts (e.g., L. starkeyi,
Cryprococcus curvatus, R. torulaides, and Y. lipolytica)
(Tchakouteu et al. 2015a, b; Dourou et al. 2017) synthesize,
during the first growth phase (i.e., before nitrogen depletion in
the growth medium), significant quantities of polysaccharides.
Similarly, the oleaginous fungus U. isabellina (Dourou et al.
2017; Gardeli et al. 2017) and the microalgae Chlorella sp. and
Nannochloropsis salina (Bellou and Aggelis 2012), synthesize
polysaccharides in parallel with lipid accumulation. On the other
hand, higher non-oleaginous fungi, such as Flammulina
velutipes, Pleurotus pulmonarius, Morchella esculenta, and
Volvariella volvacea are able to synthesize storage lipids in par-
allel with polysaccharide synthesis (Diamantopoulou et al. 2012,
2014, 2016). Oleaginous bacteria, such as R. opacus and
R. ruber, synthesize PHAs in parallel with TAGs (Alvarez
et al. 1996, 2000).

Studies on carbon metabolism in Y. lipolytica and
U. isabellina revealed that during the balanced and the early
oleaginous phases, polysaccharide accumulation is triggered as
a result of insufficient enzymatic activity of PFK to drive hexoses
towards pyruvate synthesis (Dourou et al. 2017). A clear inter-
conversion of polysaccharides into lipids was observed in both
U. isabellina (Dourou et al. 2017) and in Chlorella sp. (Bellou
and Aggelis 2012) during the lipid accumulation phase, while
polysaccharide degradation and reconstruction was also ob-
served, as suggested by the high enzymatic activities of phos-
phoglucomutase (PGM) and fructose-1,6-biphosphatase (FBP).
On the contrary, there is no evidence of such inter-conversion
between lipids and polysaccharides during the lipid accumula-
tion phase in Y. lipolytica. In this yeast, due to non-negligible
activities of transaldolase (TALDO), PGM, and FBP, a polysac-
charide reconstruction through the PPP and gluconeogenesis
may occur. During lipid turnover, in both Y. lipolytica and
U. isabellina high activities of UDPG, PGM, TALDO, and
FBP, enzymes involved in polysaccharide biosynthesis, degra-
dation, and reconstruction are detected (Dourou et al. 2017). In
the non-oleaginous fungi P. pulmonarius, Agrocybe aegerita,
Ganoderma applanatum, and V. volvacea, a clear conversion
of lipids to polysaccharides during the late growth steps was
observed (Diamantopoulou et al. 2012, 2014, 2016).

Blocking enzymes involved in polysaccharide biosynthesis
may favor lipid accumulation. Recently, Bhutada et al. (2017)
reported that the deletion of ylGSY1 encoding for glycogen
synthase in Y. lipolytica, increased biosynthesis of storage
lipids. Strikingly, in photosynthetic microorganisms, blocking
starch synthesis may be a more effective strategy for improv-
ing TAG production than the direct manipulation of the lipid
synthesis pathway. The inactivation of ADP-glucose
pyrophosphorylase in C. starchless led to an increase in
TAG content (Li et al. 2010). In addition, lipid yield was
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considerably increased by blocking starch synthesis, in
C. pyrenoidosa and C. reinhardtii (Ramazanov and
Ramazanov 2006; Work et al. 2010), indicating that shifting
carbon flux from starch to lipid synthesis is feasible.
Accordingly, we can hypothesize that blocking PHA biosyn-
thesis in bacteria can favor TAG accumulation.

CA and/or polyol excretion during lipid accumulation

Y. lipolytica strains are capable of secreting low molecular
weight secondary metabolites, such as organic acids (mostly
citric acid) and polyols (i.e., mannitol, erythritol), under spe-
cific growth conditions. Citric acid is an intermediate of lipid
biosynthesis and a compound of biotechnological interest
(Papanikolaou et al. 2008; André et al. 2009; Gonçalves
et al. 2014; Morgunov and Kamzolova 2015; Rakicka et al.
2016). Excess citric acid that cannot be assimilated by the
lipogenic machinery is excreted in the growth environment
under certain circumstances, probably due to a deficient coor-
dination between citric acid production and its channeling in
lipid biosynthesis (see above). Despite the fact that both ACL1
and ACL2 are constitutively expressed (Bellou et al. 2016b),
and ACL activity is high, in both Y. lipolytica and
U. isabellina (Bellou et al. 2016b; Dourou et al. 2017), citric
acid is constantly excreted in the growth environment, indi-
cating that additional to ACL bottlenecksmay exist in the lipid
anabolic pathway. Thus, it is not surprising that the overex-
pression of genes involved in TAG synthesis (e.g., ylDGA2
and ylGPD1) in Y. lipolytica decreases citric acid production
(Sagnak et al. 2018). Kavscek et al. (2015) reconstructed the
metabolic network of Y. lipolytica using a genome-scale mod-
el of this yeast as a scaffold. They successfully designed a fed-
batch strategy to avoid citrate excretion during the lipid pro-
duction phase in Y. lipolytica and succeeded to increase the
lipid content up to 80% in cell mass, while lipid yield was
improved more than fourfold compared to standard
conditions.

Sugar alcohols, such as xylitol, mannitol, sorbitol, and
erythritol, are considered as osmoprotective agents for plants,
fungi, yeasts, and bacteria. Osmotolerant strains of
Y. lipolytica and other yeasts have been reported to produce
some of these molecules in high concentrations, depending on
the growth phase and the type of the carbon source in the
growth medium (Tomaszewska et al. 2012; Tomaszewska-
Hetman and Rywińska 2016; Dourou et al. 2016; Park et al.
2016; Meng et al. 2017; Papanikolaou et al. 2017b; Rakicka
et al. 2017). Dulermo et al. (2015) observed a negative corre-
lation between FA and mannitol synthesis in Y. lipolytica, in-
dicating that the related biochemical pathways are competi-
tive. Indeed, after inactivation of the ylSDR gene, encoding for
a mannitol NADPH-dependent dehydrogenase converting
fructose to mannitol, the FA content increased by 60% during
cultivation on fructose.

Conclusions and future perspectives
for improving SCO production

The potential of SCO to be utilized as biodiesel feedstock
depends on the reduction of the production cost of SCO, by
reducing the fermentation and downstream processing cost,
and/or by increasing the relevant microorganism productivity.
The construction of oil-overproducingmicrobial strains is cur-
rently approached through the overexpression of genes in-
volved in biosynthesis of building groups used for TAG as-
sembly, mostly acyl-CoA, such as ACC, ACS, ACL, ME,
FAS, and in TAG biosynthesis from FAs and G3P, including
DGAT, and/or the deletion/inactivation of the genes involved
in lipid degradation, such as lipases and acyl-CoA oxidases.

Approaches for strain improvement could include adaptive
laboratory evolution (ALE) of wild or engineered strains to-
wards their capacity to rapidly take up the carbon source,
presenting a high growth rate during the balanced growth
phase and a high lipid accumulation rate during nitrogen star-
vation, and/or towards optimization of citric acid utilization by
the lipogenic machinery. The genetic changes that occur dur-
ing adaptation are a reflection of the condition under which
adaptation occurs (Wenger et al. 2011; Gerstein et al. 2012;
Kvitek and Sherlock 2013; Venkataram et al. 2016;
Deatherage et al. 2017). Often, adaptation under a certain
condition can result in decreased fitness in another environ-
ment (Wenger et al. 2011; Deatherage et al. 2017).
Considering that and by being aware of the metabolic process-
es available in our system, we can engineer strains in such a
way so as to shift metabolism towards desired pathways.
Careful design of the adapting condition(s) can lead to the
evolution of desired phenotypes in Yarrowia, and also reveal
unanticipated targets for further engineering and optimization.
Nevertheless, these are extremely complex phenotypes and
the search of growth conditions that provide the appropriate
selective pressures for such traits to be maintained and/or re-
fined could be an endeavor on its own. In such cases,
employing more than one alternating environment as adapting
conditions could be a promising strategy (Sandberg et al.
2017).

Adaptive evolution in model systems has revealed a wealth
of information on evolutionary dynamics under various con-
ditions and on the respective molecular targets of adaptation.
For example, we know that adaptation rates diminish over the
course of evolution, mostly due to diminishing fitness advan-
tage that adaptive mutations have as they accumulate
(Kryazhimskiy et al. 2014; Wünsche et al. 2017).
Consequently, maladaptive strains are expected to have high
adaptation rates. Indeed, strong selective pressures can initial-
ly result to suboptimal Bfixes,^ such as chromosomal rear-
rangements that are subsequently optimized (Yona et al.
2012), or fixation ofmutator phenotypes that are reverted once
fitness is restored (Lynch et al. 2016). The process of
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introduction of Bnovel^ sequences in engineered microbes
results in reduced fitness compared to their non-engineered
ancestors (Chou et al. 2011; Kacar et al. 2017). All these
suggest that engineered genotypes, more often than not have
many ways to increase organismal fitness; thus, engineered
strains can be genetically unstable, accumulate compensatory
mutations, and their cultures can be vulnerable to contamina-
tions by fitter strains. However, ALE approaches under appro-
priate conditions can optimize stability and performance of
such strains, without loss of the desirable trait(s). Currently,
several studies have employed ALEs for the generation of
strains with biotechnological interest. Such efforts have most-
ly focused on strain optimization, frequently after engineering,
for the production of biofuels (Almario et al. 2013; Dragosits
and Mattanovich 2013; Wallace-Salinas and Gorwa-
Grauslund 2013; Jin et al. 2016; Gong et al. 2017;
Horinouchi et al. 2017).

An interesting possibility for strain construction and/or op-
timization via ALE could arise from adaptation under condi-
tions that promote spatially structured populations. Spatial
structure can alleviate clonal interference, thus allowing for
exploration of remote genotypes that may be of great interest,
as opposed to well-mixed unstructured populations (Nahum
et al. 2015; Van Cleve and Weissman 2015). Finally, genetic
screening of randomly mutagenized cells could also lead to
the generation of interesting strains; however, in that case, the
discovery of the causal locus can be challenging.
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