
APPLIED GENETICS AND MOLECULAR BIOTECHNOLOGY

Inactivation of the indole-diterpene biosynthetic gene cluster
of Claviceps paspali by Agrobacterium-mediated gene replacement

László Kozák1,2 & Zoltán Szilágyi2 & Barbara Vágó2
& Annamária Kakuk2 & László Tóth2

& István Molnár3 & István Pócsi1

Received: 21 October 2017 /Revised: 13 January 2018 /Accepted: 19 January 2018 /Published online: 19 February 2018
# Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
The hypocrealean fungus Claviceps paspali is a parasite of wild grasses. This fungus is widely utilized in the pharmaceutical
industry for the manufacture of ergot alkaloids, but also produces tremorgenic and neurotoxic indole-diterpene (IDT) secondary
metabolites such as paspalitrems A and B. IDTs cause significant losses in agriculture and represent health hazards that threaten
food security. Conversely, IDTs may also be utilized as lead compounds for pharmaceutical drug discovery. Current protoplast-
mediated transformation protocols ofC. paspali are inadequate as they suffer from inefficiencies in protoplast regeneration, a low
frequency of DNA integration, and a lowmitotic stability of the nascent transformants.We adapted and optimized Agrobacterium
tumefaciens-mediated transformation (ATMT) for C. paspali and validated this method with the straightforward creation of a
mutant strain of this fungus featuring a targeted replacement of key genes in the putative IDT biosynthetic gene cluster. Complete
abrogation of IDT production in isolates of the mutant strain proved the predicted involvement of the target genes in the
biosynthesis of IDTs. The mutant isolates continued to produce ergot alkaloids undisturbed, indicating that equivalent mutants
generated in industrial ergot producers may have a better safety profile as they are devoid of IDT-type mycotoxins. Meanwhile,
ATMT optimized for Claviceps spp. may open the door for the facile genetic engineering of these industrially and ecologically
important organisms.
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Introduction

The indole-diterpenes (IDTs) are a group of chemically di-
verse mycotoxins that cause large economic losses in the live-
stock industry, especially in the Southern hemisphere (Bennett
and Klich 2003; Cawdell-Smith et al. 2010). The IDTs are
agonists of potassium ion channels in the nervous systems of

insects and mammals and cause potent neurotoxic and
tremorgenic effects (McMillan et al. 2003; Imlach et al.
2011; Uhlig et al. 2009). These secondary metabolites are
produced by a number of ascomycetous fungi including
Penicillium, Aspergillus , Claviceps, Epichloë , and
Neotyphodium species (Parker and Scott 2004). In their native
ecological contexts, these metabolites defend the
overwintering structures of the fungus, and/or protect the host
plant of the producing fungi against grazing by large animals
and insects, thereby offering evolutionary advantages for the
producing organism (di Menna et al. 2012; Thom et al. 2014;
Panaccione et al. 2006). This antifeedant activity of the IDTs
can be exploited in various plant protection strategies in agri-
culture as a part of integrated pest management systems
(Panaccione et al. 2014; Saikkonen et al. 2016). In addition,
IDTs are also investigated as lead compounds for potential
drugs, for example in breast cancer therapies (Sallam et al.
2013).

During IDT biosynthesis, the diterpene moiety derives
from geranylgeranyl diphosphate (GGPP), while the indole
moiety originates from tryptophan or a tryptophan precursor
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(Laws and Mantle 1989; Byrne et al. 2002). The first IDT
biosynthetic gene cluster to be genetically characterized was
the paxilline cluster from Penicillium paxilli (Young et al.
2001), followed by additional gene clusters for various IDTs
from diverse filamentous fungi (Nicholson et al. 2015; Young
et al. 2006; Zhang et al. 2004). All these clusters encompass a
conserved core set of genes that are responsible for the early
steps of IDT biosynthesis, and a set of variable tailoring genes
that ensure the remarkable chemical diversity of the final
products (Zhang et al. 2004; Young et al. 2005, 2006;
Nicholson et al. 2009). For example, paxG, paxM, paxB,
and paxC from the paxilline cluster encode enzymes that are
sufficient for the assembly of paspaline, the first stable cyclic
IDT intermediate (Saikia et al. 2006). Not surprisingly,
orthologues of these genes are present in all IDT gene clusters
elucidated so far (Nicholson et al. 2015). The tailoring genes
that are responsible for the chemical diversity of these metab-
olites may encode prenyl transferases, and cytochrome P450
monooxygenases and FAD-dependent monooxygenases that
catalyze regiospecific and stereospecific oxidations of the IDT
skeleton (Young et al. 2001, 2005; Nicholson et al. 2015; Liu
et al. 2014).

The biosynthetic pathways of IDTs and the regulatory cir-
cuits governing the production of these metabolites have been
studied in a number of model organisms such as
Neotyphodium lolii and P. paxilli (Young et al. 2001, 2006).
However, N. lolii is not well suited for large-scale production
of secondarymetabolites in the pharmaceutical industry due to
its fastidious growth habits and genetic instability (Wiewióra
et al. 2015). While P. paxilli has been extremely useful for the
study of the biosynthesis of the IDT congener paxilline in the
laboratory (Young et al. 2001), this organism has not been
adopted for industrial strain development and fermentation
process optimization. In contrast, the IDT producer
Claviceps paspali has earned a good reputation in the fermen-
tation industry for its relatively easy handling, and industrial
scale fermentation processes for ergot alkaloid production
have been developed and implemented with this fungus
(Arcamone et al. 1960; Tudzynski et al. 2001). Unlike other
IDT producers such as N. lolii (Young et al. 2006), C. paspali
does not require the presence of any host plant to produce
IDTs, thus its axenic submerged cultures may prove to be
useful for the economical production of these metabolites.
Conversely, IDT production represents an impediment for
the industrial manufacture of ergot alkaloids with this species
since precursors and cofactors that may be utilized for ergot
production are depleted by IDT biosynthesis. In addition,
IDTs represent hazardous impurities that must be excluded
from the ergot alkaloid products and have to be safely dis-
posed. Despite the potential benefits and the extant disadvan-
tages of IDT production by C. paspali, the genetic basis of
IDT biosynthesis has only been inadequately characterized in
this strain. Thus, although putative IDT gene clusters have

been identified in the genome sequences of Claviceps spp.
including C. paspali RRC-1481 (Schardl et al. 2013), these
bioinformatics studies have not been followed up by function-
al investigations of the constituent biosynthetic genes.

Agrobacterium tumefaciens-mediated gene transfer
(ATMT) has long been used in plant molecular biology
(Păcurar et al. 2011). This transformation technique was first
adapted to the baker’s yeast Saccharomyces cerevisiae in
1995 (Bundock et al. 1995), and to the filamentous fungus
Aspergillus awamori in 1998 (de Groot et al. 1998). This
technique does not require laborious and often inefficient pro-
toplast preparation and regeneration, and the success of the
transformation reaction does not depend on the effectiveness
of cell wall hydrolyzing enzyme preparations that often show
significant batch-to-batch variability. In addition, the trans-
ferred DNA readily integrates into the genome of the host
during ATMT. This allows this transformation method to be
used for random insertional mutagenesis (Zhong et al. 2007;
Kunitake et al. 2013) and for the targeted genetic modification
of various filamentous fungi by gene deletion or replacement.
In particular, ATMT has been used to validate the predicted
roles of secondary metabolite biosynthetic genes, including
core genes responsible for the assembly of polyketide or
nonribosomal peptide metabolite skeletons in various fungi
(Zhang et al. 2003; Xu et al. 2008, 2009). In spite of the
advantages of this transformation method, there has been no
ATMT protocol published so far, to the best of our knowledge,
for any Claviceps species.

Hereby, we describe the development of a facile and effec-
tive ATMT protocol for generating mitotically stable
C. paspali transformants. We validate the suitability of this
protocol for the genetic manipulation of this industrially im-
portant ergot producer by replacing a part of the predicted IDT
biosynthetic gene cluster with a selectable marker gene. We
show that this targeted gene replacement of the idtCBGF
genes leads to the complete elimination of the biosynthesis
of the whole spectrum of IDT secondary metabolites in
C. paspali without adversely affecting the production of ergot
alkaloids. This work thus provides a hitherto missing func-
tional proof for the involvement of these genes in IDT pro-
duction in C. paspali, and opens the way for the use of mo-
lecular genetics for the optimization of this important fungus
for the production of useful bioactive metabolites on an indus-
trial scale.

Materials and methods

Fungal strains and growth conditions

Although the genome sequence of C. paspali RRC-1481 was
deposited in GenBank (Schardl et al. 2013), the strain itself is
not available to the public from any mainstream strain
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collections. Thus, the IDT-producing C. paspali DSM-833
strain [equivalent to the now-discontinued ATCC 13893
(Chain et al. 1962)] was obtained from the DSMZ culture
collection (Braunschweig, Germany) and was used through-
out this study in lieu of C. paspali RRC-1481. C. paspali
DSM-833 was maintained on potato dextrose agar (PDA,
Sigma-Aldrich, St. Louis, MO). For the production of IDTs
in axenic culture, C. paspali mycelium was collected from an
agar slant (3.9% PDA, 0.05% yeast extract, pH 5.2) and ho-
mogenized with a Dounce Homogenizer in 5 mL distilled
water. A 1 mL aliquot of the homogenized mycelium was
used to inoculate 60 mL inoculum medium (5% mannitol,
1% succinic acid, 0.5% soy flour, 0.2% KH2PO4, 0.03%
MgSO4 × 7H2O, pH 5.2), and the culture was incubated for
5 days at 28 °C with shaking at 240 rpm. A 5 mL aliquot of
this preculture was inoculated into 60 mL production medium
(10% sorbitol, 3.5% succinic acid, 1.5% corn steep liquor,
0.05% yeast extract, 1.5% NH4NO3, 0.07% MgSO4 x
7H2O, 0.0022% FeSO4 x 7H2O, 0.001% ZnSO4 x 7H2O,
pH 5.2) in a 500 mL Erlenmeyer flask, and the resulting main
culture was incubated for a further 12 days at 28 °C with
shaking at 240 rpm. Mycelia were collected by centrifugation
(5 min, 2000 g), freeze-dried, and homogenized under liquid
nitrogen in a porcelain mortar. 0.5 g homogenate was extract-
ed with 10 mL acetonitrile/water (4:1, v/v) overnight with
shaking at 240 rpm. The supernatant was filtered through a
0.22 μm MultiScreen filter plate (Merck Millipore,
Burlington, MA) before direct injection for LC-MS analysis.

Genomic DNA isolation and PCR reactions

The nucleotide sequence of the putative IDT biosynthetic
gene cluster of C. paspali RRC-1481 (AFRC01000001-
AFRC01002304) was obtained from the National Center for
Biotechnology Information (NCBI) under the GenBank ac-
cession numbers JN613321.1 and JN613322.1 and was used
to design primers for the PCR amplification of sequences from
the genome of C. paspali DSM-833. For genomic DNA iso-
lation, 0.1 g wet C. paspali DSM-833 mycelium was ground
under liquid nitrogen in a mortar with a pestle. The homoge-
nate was re-suspended in 400 μl sulfite buffer (0.7 M NaCl,
0.1 M Na2SO3, 0.1 M Tris-Cl pH 7.5, 0.05 M EDTA, 1%
SDS) and digested with 3 U proteinase K (ThermoFisher) at
55 °C for 90 min. After inactivation of proteinase K at 95 °C
for 5 min, cell debris was removed by centrifugation at 4000 g
for 5 min. A 250 μl aliquot of the supernatant was further
digested with 50 U RNase A (Thermo Fisher Scientific,
Waltham, MA) at 37 °C for 12 h, and the RNA-free solution
was used for the isolation of DNAwith the MagNa Pure LC
DNA Isolation Kit III (Roche Diagnostics, Indianapolis, IN)
according to the manufacturer’s protocol. PCR reactions were
carried out with 20 ng genomic DNA or 1 ng plasmid DNA as
templates, respectively, in 50 μl reaction mixtures containing

0.2 mM of each dNTP, 1 pM of each primer, 1 μl Phusion HF
DNA polymerase and 10μl HF buffer (New England Biolabs,
Ipswich, MA). Thermal cycling conditions for the PCR reac-
tions were 180 s at 98 °C for the initial denaturation, followed
by 31 cycles of amplification (98 °C for 10 s, 55 °C for 15 s,
72 °C for 30 s/kbp), and a final extension step of 60 s/kbp at
72 °C.

Assembly of the idtCBGF deletion construct

Construction of the idtCBGF deletion vector pAG-LTA-hph-
RTA was carried out in two consecutive steps using Gibson
assembly [Fig. 1; hph is the Escherichia coli gene coding for
hygromycin B phosphotransferase (Gritz and Davies 1983)].
In the first step, the linearized pAg-H3 vector (Zhang et al.
2003) was PCR amplified with primers pAg-F1 and pAg-R1
and fused using the Gibson Assembly Master Mix (New
England Biolabs, Ipswich, MA) with the left targeting arm
(LTA, the 1.5 kb region of the C. paspali DSM-833 genomic
DNA located upstream of the idtC gene, amplified with
primers idtCBGF-LA-F and idtCBGF-LA-R). Primer se-
quences are displayed in Supplementary Table S1. After trans-
formation of the assembly mixture into E. coliXL1Blue (New
England Biolabs, Ipswich, MA), the pAg-LTA-hph plasmid
was selected for the presence of the LTA by PCR. In the
second step, pAg-LTA-hph was linearized by PCR with
primers pAg-F2 and pAg-R2, and fused using the Gibson
Assembly Master Mix with the right targeting arm (RTA, the
1.9-kb genomic region downstream from the idtF gene, am-
plified using primers idtCBGF-RA-F and idtCBGF-RA-R).
The resulting pAG-LTA-hph-RTA plasmid was selected by
PCR after transformation of the assembly mixture into
E. coli XL1Blue, and its proper construction was verified by
sequencing. The successfully assembled pAG-LTA-hph-RTA
plasmid was then transformed into A. tumefaciens LBA4404
electrocompetent cells (Takara Bio Inc., Kusatsu, Japan) and
the transformants were selected on LB agar (Formedium,
Hunstanton, UK) medium supplemented with 25 μg/mL
kanamycin (final concentration).

Agrobacterium tumefaciens-mediated
transformation of C. paspali DSM-833

A. tumefaciens-mediated transformation of C. paspali was
carried out according to Yamada et al. (2009) with modifica-
tions (Supplementary Fig. S1). C. paspali vegetative myceli-
um was collected from the surface of PDA agar slants and
homogenized with a Dounce Homogenizer. The homogenized
mycelium was suspended in 5 mL distilled water, inoculated
into 50 mL potato dextrose broth (PDB, Sigma-Aldrich, St.
Louis, MO) in a 500 mL Erlenmeyer flask and was cultivated
for 48 h at 28 °C with shaking at 240 rpm. A 5 mL aliquot of
this preculture was inoculated into 50 mL fresh PDB medium
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in a 500 mL Erlenmeyer flask and was cultured for an addi-
tional 24 h at 28 °C with shaking at 240 rpm. Mycelia were
collected by centrifugation for 5 min at 2000 g, washed in
40mL of distilled water, suspended at 100 mg/mL in IM broth
(Induction Medium, Michielse et al. 2005), supplemented
with 200 μM acetosyringone, and incubated for 8 h at 28 °C
with shaking at 240 rpm.

A. tumefaciens LBA4404 cells carrying the pAG-LTA-
hph-RTA plasmid were inoculated into 50 mL of LB medium
(Sigma-Aldrich, St. Louis, MO) supplemented with kanamy-
cin (25 μg/mL) and streptomycin (50 μg/mL) in a 500 mL
Erlenmeyer flask, and cultivated at 30 °C for 48 h with shak-
ing at 120 rpm. A 1 mL aliquot of this preculture was used to
inoculate 50 mL of LB medium supplemented with 25 μg/mL
kanamycin and 50 μg/mL streptomycin in a 500 mL
Erlenmeyer flask, and was cultured at 30 °C for 12–16 h with
shaking at 120 rpm. The cells were collected by centrifugation
for 5 min at 2000 g, washed twice with distilled water,
suspended in 50 mL IM broth containing 200 μM
acetosyringone, and incubated at 30 °C for 8 h with shaking
at 120 rpm.

One hundred microliter aliquots of the C. paspali mycelia
and the A. tumefaciens cells were mixed, spread onto IM agar
plates containing 200 μM acetosyringone (Michielse et al.
2005), and the co-culture was incubated for 2–6 days at
28 °C. To select transformants and inhibit the further growth
of the A. tumefaciens cells, the IM agar plates (20 mL) were
overlaid with 10 mL of top agar (PDA, 14.5 g/L) supplement-
ed with 600 μg/mL hygromycin and 600 μg/mL cefotaxime

(final concentrations calculated for the full plate: 200 μg/mL
each), and the plates were incubated at 28 °C for an additional
10 days. Transformation efficiency was estimated by calculat-
ing the average number of hygromycin-resistant colonies per
IM plates (i.e., per 10 mg wet C. paspali mycelium).

Co-cultivation was also attempted on IM agar plates cov-
ered with cellulose acetate ester membranes (0.45 μm,
Whatman PLC, Maidstone, UK). After incubation for 4 days
at 28 °C, the membrane with the cells was lifted to a fresh
PDA agar plate supplemented with 200 μg/mL hygromycin
and 200 μg/mL cefotaxime and the incubation was continued
for a further 10 days at 28 °C.

Enrichment to obtain homokaryotic strains was achieved
by macrodissection of hyphae from the leading edges of the
hygromycin-resistant colonies with a sterile toothpick, and
inoculation of the cells onto PDA plates containing 200 μg/
mL hygromycin. The resulting colonies were incubated at
28 °C for 7 days, and re-isolation was repeated at least four
times to facilitate homogenotization of the multinucleate cells
under prolonged antibiotic selection.

Liquid chromatography—tandem mass spectrometry
(LC-MS/MS) analysis

LC-MS/MS analysis was performed with an Agilent (Santa
Clara, CA) 1290 Infinity LC System connected to an Agilent
6550 iFunnel Q-TOF mass spectrometer equipped with an
electrospray (Dual AJS ESI) source, operated in positive ion
mode. Liquid chromatographic separation was performed on a

Fig. 1 Construction of the pAg-
LTA-hph-RTA deletion vector.
Left and right targeting arms
(LTA and RTA, respectively)
were generated by PCR using
C. paspali DSM-833 genomic
DNA as the template, and fused
with the vector using in vitro
isothermal Gibson assembly.
Gene symbols: hph, hygromycin
phosphotransferase; nptIII,
neomycin phosphotransferase III
(kanamycin resistance); trfA,
replication initiation gene; oriV,
vegetative replication origin; LB
and RB, left and right T-DNA
border, respectively
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Kinetex XB-C18 analytical column (150 × 4.6 mm, 2.6 μm,
Phenomenex, Torrance, CA) at 1.0 mL/min flow rate. A linear
gradient profile was used with 5 mM ammonium acetate in
water (A) and acetonitrile (B) as follows: 0–20 min, 30% B to
95% B; hold 95% B for 5 min, then return to 30% B over
0.2 min and hold for 4.8 min (total run time was 30 min). The
column temperature was maintained at 30 °C, and UV absorp-
tionwas recorded atλ = 230 and 280 nm (see detailed conditions
for mass spectrometry in the Supplementary Table S2).

HPLC analysis of ergot alkaloids

Five grams of the fermentation broth of the appropriate
C. paspali strain was collected in a 50 mL volumetric flask,
the flask was filled up to the mark with acetonitrile:water
(15:85), and the resulting solution was filtered using a
0.22 um membrane (Merck Millipore, Burlington, MA) be-
fore injection (10 μL) into the HPLC system. A Waters
(Milford, MA) XBridge C18 (100 × 4.6 mm; 3.5 μm) analyt-
ical HPLC column was used for the analyses with the eluent
system of (A) 10 mM monobasic sodium phosphate (pH 7.0,
adjusted with 25% sodium hydroxide solution):acetonitrile =
90:10 (v/v); and (B) the same components in a 70:30 (v/v)
ratio. The ratio of eluent B was changed during the gradient
run according to the following profile: 0–16 min: 0 to 50%;
16–24 min: 50 to 100%; 24–24.1 min: 100 to 0%; 24.1–
28 min: constant 0%. The flow rate was maintained at
1.0 mL/min. UV detection was performed at 310 nm, and
the column and the sample compartment temperatures were
kept at 25 and 5 °C, respectively. Ergonovine maleate (Sigma-
Aldrich, St. Louis, MO) solution (100 μg/mL) was used as the
external standard for quantitation. Main ergotamide com-
pounds, such as ergonovine, lysergic acid methyl carbonyl
amide, isolysergic acid methyl carbonyl amide, ergine, and
erginine were identified by comparing their chromatographic
mobility and UV absorption spectra with those of in-house
reference materials.

Since lysergic acid and paspalic acid co-eluted under these
conditions the separation of these compounds was achieved
by a different HPLC method with UV detection at λ =
230 nm. In this assay, the samples were diluted twofold with
acetonitrile:water = 5:95 (v/v) and filtered through a 0.22 μm
membrane (Merck Millipore, Burlington, MA) prior to anal-
ysis. A reversed phase column (Zorbax Extend C18, 100 ×
4.6 mm, 3.5 μm, Agilent Technologies, Santa Clara, CA) was
used with an eluent system that consists of 2 g/L aqueous
solution of ammonium carbamate (A) and acetonitrile (B),
and the total flow rate was 1.7 mL/min. The ratio of eluent
B was changed during the gradient run according to the fol-
lowing profile: 0–5 min: 10 to 15%; 5–7.5 min: 15 to 35%;
7.5–10 min: 35 to 80%; 10–12 min: constant 80%; 12–
13 min: 80 to 10%; the total run time was 15 min. Typically,
20 μL aliquots of the specimens were injected onto the

column, which was kept at 30 °C during the analyses.
Product yields per 1 g C. paspali fermentation broths were
determined and are presented as mean ± SD values, calculated
from three independent experiments.

Results

Agrobacterium tumefaciens-mediated
transformation of C. paspali

Although putative genes for the biosynthesis of IDTs in
C. paspali were annotated (Schardl et al. 2013), experimental
confirmation of the involvement of these genes in IDT pro-
duction is still necessary. To provide such a proof, we set out
to disrupt IDT biosynthesis in C. paspali DSM-833.
Unfortunately, we found that protoplast-mediated transforma-
tion protocols developed previously for Claviceps spp. (van
Engelenburg et al. 1989), at least in our hands, suffer from low
protoplast regeneration efficiency when applied to C. paspali
DSM-833, yield very few antibiotic-resistant putative
transformants and that these transformants display high mitot-
ic instability. This latter obstacle is partially due to the multi-
nucleate nature of C. paspali hyphae (Hareven and Koltin
1970), whereby wild type nuclei without the incoming DNA
persist in transformants even under antibiotic selection and are
responsible for mixed phenotypes displayed by heterokaryotic
mycelia. Worse, in the absence of selection (such as during
industrial scale fermentation), these wild type nuclei displace
those that have undergone transformation, leading to the de
facto reversion of the transformed strain to the wild type.
Thus, effective and industrially useful molecular genetic strain
improvement of C. paspali demands the development of a
more convenient and more reliable transformation procedure.

To d e v i s e s u c h a p r o t o c o l , w e t u r n e d t o
A. tumefaciens-mediated transformation (ATMT,
Supplementary Fig. S1), and set out to replace the idtCBGF
genes with a selectable resistance marker gene. We built a
derivative of the pAg-H3 binary vector (Zhang et al. 2003),
pAg-LTA-hph-RTA (Fig. 1). In this vector, the hph
hygromycin resistance gene is bracketed by a 1.5-kb left
targeting arm and a 1.9-kb right targeting arm, taken from
the sequences bordering the area to be deleted on the
C. paspali genome as depicted on Fig. 1. Next, we determined
the minimum inhibitory concentration of hygromycin against
wild type C. paspali mycelia as 200 μg/mL (Supplementary
Fig. S2), and optimized the A. tumefaciens cell density and the
length of the co-incubation time of the bacterium with
C. paspali (Fig. 2). The highest transformation frequency,
approximately 80 hygromycin-resistant colonies per 10 mg
wet C. paspali mycelium, was recorded at an A. tumefaciens
cell density of OD600 = 0.5, after 4 days of co-incubation.
Longer co-incubation or higher A. tumefaciens cell densities
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reduced the apparent efficiency of the transformation, likely
due to the reduced efficiency of antibiotic selection against
denser A. tumefaciens cultures reaching stationary phase,
and the inhibitory/competitive effects of the denser bacterial
cultures on developingC. paspalimycelia. We also confirmed
the necessity to supplement the IM agar with acetosyringone
during co-incubation in order to induce T-DNA formation in
A. tumefaciens (Michielse et al. 2005, Supplementary Fig.
S3). Finally, we found no improvement in transformation fre-
quency when co-cultivation was carried out on the surface of a
cellulose acetate ester membrane covering the agar plate, as
opposed to plating the two microorganisms directly on IM
agar pla tes (compare Supplementary Fig. S4 to
Supplementary Fig. S3).

To test the stability of the transformants, 50 primary
hygromycin-resistant colonies were re-isolated onto PDA agar
supplemented with 200 μg/mL hygromycin. All of these
transformants retained hygromycin resistance and displayed
vigorous growth. During subsequent re-isolations, putative
C. paspali transformants tended to develop larger colonies
within the same incubation timespans, likely due to the en-
richment of the transformed nuclei at the expense of the wild
type ones within the mycelia.

To check whether or not the hph gene integrated into the
genomes of the transformants at the expected site and thus
replaced the idtCBGF genes, genomic DNAwas isolated from
12 independent hygromycin-resistant colonies after four
rounds of re-isolation and were examined by a series of five

PCR reactions (Fig. 3). All 12 strains were confirmed to carry
the hph hygromycin resistance marker gene. Three out of the
12 transformants, CPIDT2, 8 and 9 were validated to have
undergone site-specific integration of the hph gene with the
concomitant loss of the genomic region encompassing the
wild type idtCBGF genes. The absence of the idtC and idtF
amplicons also demonstrated that these strains are
homokaryotic for the gene replacement allele. One
transformant, CPIDT5, yielded amplicons indicative of the
presence of both the intact idtCBGF allele and the gene re-
placement allele, suggesting that this strain remained hetero-
karyotic even after repeated strain re-isolation. Finally, the rest
of the transformants carried only the intact idtCBGF allele,
indicating that the hph gene has undergone ectopic integration
in these isolates.

LC-MS/MS analysis of IDT production

Production of IDT congeners by the wild type C. paspali
DSM-833 and its ΔidtCBGF replacement mutants CPIDT2
and CPIDT8 were investigated by liquid chromatography—
high-resolution tandem mass spectrometry (LC-MS/MS)
analysis of the extracts of 12 days old submerged liquid cul-
tures (Fig. 4). We have tracked the production of five IDT
congeners: paspaline, paxilline, paspalinine, and paspalitrems
A and B (Fig. 4) by monitoring their retention times, corre-
sponding [M + H]+ ions and their major fragment ions
(Supplementary Table S3), and comparing these with

Fig. 2 Optimization of the co-
incubation step during ATMT.
Effects of the length of the co-
incubation period on the number
of hygromycin-resistant
C. paspali transformants. Co-
incubations were conducted at
three different cell densities of the
A. tumefaciens culture.
Transformant numbers (per
10 mg wet C. paspali mycelium
plated) are shown as averages ±
SD over three independent
experiments
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literature examples (Uhlig et al. 2014), or with an available
standard as in the case of paxilline. For paspalitrem A, com-
prehensive analysis of the mass spectrometric data (including
fragment ions) was particularly important since the selected
ion chromatogram of the extract from the wild type strain
revealed several peaks with near-identical mass to charge ra-
tios, whose fragmentation patterns nevertheless differed from
that of paspalitrem A. Taken together, these analyses unequiv-
ocally showed that production of all monitored IDTcongeners
is completely abrogated in the ΔidtCBGF replacement mu-
tants CPIDT2 and CPIDT8.

Analysis of ergot alkaloid production

In order to examine whether alkaloid biosynthesis in
C. paspali DSM-833 is affected by the inactivation of the
idtCBGF genes, we examined the ergot alkaloid productivity
of the wild type, CPIDT2 and CPIDT8 strains. HPLC analysis
of the extracts of the fermentation broths showed
(Supplementary Table S4, Supplementary Figs. S5 and S6)
that the total ergot alkaloid productivities of these strains were
statistically identical. Wild type C. paspali DSM-833 pro-
duced 18.30 ± 1.05 μg/g total ergot alkaloids including 1.25
±0.09 μg/g paspalic acid. The CPIDT2 and CPIDT8 knockout
strains produced 19.09 ± 1.30 μg/g and 18.41 ± 0.50 μg/g to-
tal ergot alkaloids, including 1.17±0.15 μg/g and 1.28

±0.11 μg/g paspalic acid, respectively. Lysergic acid was not
detectable in the fermentation broths of the wild type or the
CPIDT2 or CPIDT8 strains (Supplementary Fig. S6).
Distribution of the detected ergot alkaloids such as ergine,
lysergic acid methyl carbonyl amide, ergonovine, isolysergic
acid methyl carbonyl amide, erginine, and paspalic acid
(Supplementary Table S4) were similarly not affected by the
disruption of IDT biosynthesis.

Discussion

C. paspali is an ergot fungus of great veterinary, food security,
public health, and pharmaceutical importance (Cawdell-Smith
et al. 2010; Keller and Tudzynski 2002; Flieger et al. 2003;
Hulvová et al. 2013). The aim of this study was to establish an
easy-to-use and reliable genetic modification system for the
stable transformation ofC. paspali, and to validate this system
by generating a functional proof for the involvement of puta-
tive core genes identified in the genome sequence of this spe-
cies in the biosynthesis of IDTs (Schardl et al. 2013). The
resulting convenient ATMT protocol and the functional veri-
fication of the IDT biosynthetic gene cluster pave the way for
the development of new C. paspali mutant strains with supe-
rior productivity of various secondary metabolites, including
ergot alkaloids and IDTs of pharmaceutical interest.

Fig. 3 PCR analysis of the genomic DNA of the transformants. a The
hph gene is detected in C. paspali transformants CPIDT1–12, but not in
the wild type control (WT), by amplifying a 415-bp internal fragment of
the gene using the hph-F and hph-R primers. b PCR primers designed to
detect the presence of the idtC (primer pair: idtC-F and idtC-R) and idtF
genes (primer pair: idtF-F and idtF-R). The predicted sizes of the PCR

amplicons are also shown. c PCR primers designed to detect the replace-
ment of the idtCBGF genes by the hph gene (primer pairs: LOUT-F and
hph-R; hph-F and LOUT-R) and the predicted sizes of the PCR
amplicons. d PCR analyses of the CPIDT1-12 transformants and the wild
type C. paspali for the presence of the idtC and idtF genes and for the
correct site-specific integration of the hph gene
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C. paspali has long been used in the pharmaceutical industry
to produce lysergic acid and similar ergot alkaloids in submerged
liquid cultures (Ricicová et al. 1982; Socic et al. 1986).
Nevertheless, the targeted molecular genetic modification of this
fungus remained a major challenge due to the low efficiencies of
most steps in the transformation workflow, including protoplast
regeneration, DNA introduction, mitotically stable integration of
the incoming DNA, and homogenization of the transformant
allele. Here, we report that ATMT can be successfully applied
to overcome these challenges to generate targeted, stable, and
homokaryotic gene replacements in the genome of C. paspali,
and by extension, in other Claviceps spp.

ATMT was developed as an effective tool for the genetic
engineering of a number of industrially important fungi. This
method has been used to increase the production of various
hydrolytic and biosynthetic enzymes and also to modify sec-
ondary metabolite profiles, e.g., via the elimination of poly-
ketide synthases (Zhang et al. 2003). ATMT has also been
employed successfully to verify the roles of selected genes
in some biosynthetic pathways (Xu et al. 2008, 2009).

The most important factors for the successful application of
ATMT for C. paspali are the cell density of the A. tumefaciens
donor cells and the co-incubation time. Optimization of the
hygromycin concentration to block the outgrowth of untrans-
formed wild type colonies and supplementation of the IM medi-
um with acetosyringone to activate T-DNA generation in
A. tumefaciens cells were also essential. ATMT can also be car-
ried out with a similarly high efficiency on cellulose acetate ester
membranes laid on agar plates. To eliminate heterokaryotic cells
that are typical inClaviceps species (Amici et al. 1967; Esser and
Tudzynski 1978, Tudzynski et al. 2001), hygromycin-resistant
primary colonies had to be re-isolated by repeated
macrodissection of the edge of the colonies and serial passage
on hygromycin-containing plates. The final, optimizedworkflow
of C. paspali transformation by A. tumefaciens provided us with
mitotically highly stable, homokaryotic transformants. The ob-
served proportion of homologous recombination (~ 33%) vs.
ectopic integration was also encouraging in this experiment.

Functional identification of the IDT biosynthetic gene clus-
ter also allowed us to reconstruct the biochemical pathway
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Fig. 4 Metabolic profiling of C. paspali strains. Extracted ion
chromatograms are presented for the [M + H]+ ions of key IDT
products in extracts of the submerged cultures of the wild type
C. paspali DSM-833 and the strain CPIDT2, a representative

ΔidtCBGF mutant. The structures, molecular formulas, and the mass to
charge ratios (m/z) of the [M +H]+ ions of the IDT congeners are also
shown
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leading to the biosynthesis of the tremorgenic IDTs
paspalitrems A and B in C. paspali (Fig. 5). For this, we
considered previous genome annotations, and the results of
published chemical and functional analyses in P. paxilli
(Saikia et al. 2006), Aspergillus flavus (Zhang et al. 2004),
Penicillium janthinellum (Nicholson et al. 2015), and
C. paspali itself (Cole et al. 1977; Schardl et al. 2013; Uhlig
et al. 2014). The putative IDT biosynthetic gene cluster spans
two separate contigs on the genome sequence assembly of
C. paspali RRC-4128 (Schardl et al. 2013). Contig
JN613321 includes idtQ, idtP, idtF, idtG, idtB, and idtC, while
contig JN613322 harbors the idtM gene. The translated pro-
tein products of theC. paspali idtG, idtM, idtB, and idtC genes
show 53, 38, 56, and 45% identities with the protein products
of the paxG, paxM, paxB, and paxC genes resident in the
paxilline cluster of P. paxilli. These genes encode a GGPP
synthase, a FAD-dependent monooxygenase, an integral
membrane protein and a prenyl transferase, respectively
(Saikia et al. 2006; Scott et al. 2013). Collectively, these en-
zymes are responsible for the assembly of paspaline, the first
stable, cyclic IDT intermediate (Saikia et al. 2006; Scott et al.
2013). The gene idtP codes for a putative cytochrome P450

monooxygenase that shows 41% identity to PaxP of P. paxilli
(Scott et al. 2013). We propose that like PaxP, IdtP catalyzes
the conversion of paspaline to 13-desoxypaxilline via the in-
termediate β-PC-M6 by removing the C-30 methyl group and
installing the carbonyl oxygen at C-10 (Scott et al. 2013). The
deduced IdtQ is a P450 monooxygenase that is orthologous to
PaxQ of P. paxilli (37% identity). Just as PaxQ, IdtQ may
catalyze the C-13 oxidation of 13-desoxypaxilline to afford
paxilline (Scott et al. 2013). However, orthologues of IdtQ
also take part in the biosynthesis of aflatrems and sheraninine
A in A. flavus and P. janthinellum, respectively (Zhang et al.
2004; Ehrlich and Mack 2014; Nicholson et al. 2015). Just as
AtmQ of the aflatrem producer A. flavus NRRL6541
(Nicholson et al. 2009), IdtQ may alternatively catalyze the
formation of paspalinine from 13-desoxypaxilline via
paspalicine as an intermediate. Considering that both
paspalicine and paxilline were detected in the C. paspali—
Paspalum dilatatum (dallisgrass) association (Uhlig et al.
2014), it is reasonable to assume that IdtQ does in fact catalyze
both the C-13 and the C-7 oxidations of 13-desoxypaxilline.
Whether paxilline may be converted to paspalinine by IdtQ, or
paxilline represents a shunt product of the pathway remains to

Fig. 5 Proposed biosynthetic pathway for IDTs inC. paspali. IPP, isopentenyl diphosphate; DMAPP, dimethylallyl diphosphate; GGPP, geranylgeranyl
diphosphate
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be determined. Finally, the prenylation of the C ring of
paspalinine to form paspalitrem A is catalyzed by the IdtF
prenyl transferase (Schardl et al. 2013), followed by hydrox-
ylation at C-32 by a still unknown oxidase to afford
paspalitrem B.

In this study, we successfully replaced the idtCBGF region
of the IDT biosynthetic gene cluster ofC. paspaliwith the hph
hygromycin resistance marker gene. This genomic region en-
codes three (IdtC, B, and G) of the four core biosynthetic
enzymes necessary for the assembly of the hexacyclic skele-
ton of IDTs. It also encodes the prenyl transferase IdtF that
decorates paspalinine to yield paspalitrem A. Replacement of
these genes eliminated the biosynthesis of the whole spectrum
of IDTs that have been reported to be produced by this ergot
fungus (Cole et al. 1977; Uhlig et al. 2014), including
paspaline, paspalinine, paxilline, paspalitrem A, and
paspalitrem B. Importantly, the ΔidtCBGF strains continued
to produce ergot alkaloids undisturbed. Elimination of IDT
production thus not only verifies the deduced role of the pu-
tative IDT biosynthetic gene cluster of C. paspali (Schardl
et al. 2013) but also serves as a model for the generation of
similar mutants in industrially relevant C. paspali strains. The
blockade of IDT biosynthesis in such mutants may reduce
heightened competition for precursors and cofactors during
high-titer ergot alkaloid production, and thus may improve
ergot productivity. Further, utilization of such mutants may
also reduce the costs associated with the downstream process-
ing of ergot alkaloid products by eliminating the co-
product ion of IDT mycotoxins during industr ial
fermentations.

The optimized ATMT protocol described in this article may
be easily adapted for other Claviceps spp., and can find utility
in other strain improvement projects. For example, the copy
numbers of selected biosynthetic genes may be increased, or
promoters and other regulatory elements may be replaced to
improve the yields of desired metabolites. Deeper insights
may also be gained about the organization, regulation, and
evolution of industrially important secondary metabolite bio-
synthetic gene clusters present in the family Clavicipitaceae
(Panaccione and Schardl 2003; Haarmann et al. 2005; Schardl
et al. 2006, 2013; Hulvová et al. 2013; Young et al. 2015;
Kishimoto et al. 2016). In addition, synthetic biological plat-
forms based on C. paspali strains adapted for industrial scale
fermentation may provide us with novel metabolites with use-
ful biological activities. Outside the pharmaceutical industry,
facile genetic manipulation of clavicipitalean fungi may also
help us to shed light on the complex ecological interplay that
these fungi engage in during plant-fungus-herbivore
multitrophic interactions (Panaccione et al. 2006).
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